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Abstract

Based on the notion of altruism, we present an approach to cooperative parameter estimation in a system comprising two
information-sharing agents. The underlying assumption is that the overall two-agent scheme can reach desired performance
level even if only one of the agents performs satisfactorily, hence there exist two independent opportunities to estimate. The
notion of altruism motivates a definition of cooperative estimation optimality that generalizes the common definition of minimum
mean squared error optimality. Fundamental equations are derived for two types of altruistic cooperative estimation problems,
corresponding to heterarchical and hierarchical setups. Although these equations are, generally, hard to solve, their solution in the
Gaussian case is straightforward and only entails the computation of the largest eigenvalue of the conditional covariance matrix
and its corresponding eigenvector. Moreover, in the Gaussian case the performance improvement of the two altruistic cooperative
estimation techniques over the conventional (egoistic) estimation approach is shown to depend on the problem’s dimensionality
and statistical distribution. In particular, the performance improvement grows with the dispersion of the spectrum of the conditional
covariance matrix, rendering the presented estimation approach especially appealing in ill-conditioned problems. The validity of
the solution in the Gaussian case is illustrated numerically.

I. INTRODUCTION

Complex missions often involve a number of systems, or agents, operating together as a team, to promote flexibility and
robustness and to improve overall performance. In such teamwork, it is highly advantageous for the member agents constituting
the team to be capable of sharing information among themselves. The need for improving teamwork, as well as the capability
to share information among team members, have led to accelerated advances in the research of cooperative estimation. Current
cooperative estimation algorithms differ in the way they handle shared information among the nodes of the distributed system,
but, in the end, in most cases a common team estimate is computed, which is then used by the entire team.

In contradistinction to the prevailing team estimation concept, this paper introduces a nonorthodox paradigm in cooperative
parameter estimation, whereby local estimates, that are generated by separate (but information-sharing) agents, are — by design
— not identical, and they are not merged to form a unified estimate. Possibly even sub-optimal in the standard, minimum mean-
squared error (MMSE) sense, these local estimates are designed, instead, to minimize together a single, global, system-oriented
cost.

To illustrate this cooperative estimation paradigm and its applicability, consider the following scenario. An attacker (say,
an aircraft equipped with high-precision guided missiles) is tasked with destroying a static high-valued target whose precise
location is not deterministically known (say, a well-hidden rocket launcher). We assume that the attacker has two launch
opportunities, i.e., it can fire two missiles at the target. We also assume that the attacker knows (either through intelligence
sources or via its self-acquired measurements) the target location’s distribution function. Clearly, as long as it is eventually
successful in destroying the target, the attacker is completely indifferent as to how its mission is actually accomplished, that
is, which of its two launch opportunities is successful in hitting the target. So, assuming that the attacker’s two missiles are
identical, and that they rely on the same positional information, how should they be aimed? If they are aimed at a common
point, say, the mean of the target location’s distribution function — which would be an optimal aiming point from an estimation
perspective — this would amount to wasting one missile (assuming that both missiles operate flawlessly). Indeed, as will be
shown later in this paper, the attacker will benefit from dispersing its two shooting opportunities, aiming them at different
(possibly suboptimal from an individual missile’s estimation standpoint) locations, in order to maximize its overall success
probability.

The key assumption underlying the introduced cooperative estimation paradigm is that the system encompasses an inherent
redundancy, which, in the scenario illustrated above, is embodied in the attacker having two missiles. Frequently called for to
improve the probability of success in critically important missions, redundancy is implemented by using more than the minimal
number of agents required to perform a certain, global, task. For example, in the theatre ballistic missile defense world, several
(identical) defending interceptors may be launched at a single oncoming threat, if the defended target is so valuable that it must
be protected at all cost [1]. While system redundancy obviously contributes to immunity against local, subsystem failures, it is
proposed herein to exploit it in a seemingly unrelated manner. Thus, we note that when the system comprises several identical
and information-sharing agents, it would be advantageous to put aside the performance of each individual estimator (each
agent’s estimate) and, instead, to focus on enhancing the estimation performance of the entire system in some global sense.
Such design philosophy suggests an altruism-based cooperation, in which each agent forgoes its own (egoistic) estimation
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performance in order to maximize a global estimation performance measure. A well-known term in nature and in sociology,
as well as in game theory, altruism means that an individual sacrifices itself for the greater good of its species, or in favor of
other individuals, in order to improve the chances of its species to thrive. The use of altruism leads conceptually to a min-min
game, that is, a game where all players (belonging to one side) cooperate such that there is one global goal to achieve, and
the optimizer aspires to minimize a cost function based on the minimal cost among all players. The underlying notion is that
the success of the global mission is determined only by the performance of the most successful individual among all agents.
The interested reader is referred to [2], [3] for perfect-information examples of such min-min games in the field of missile
guidance, where, however, the estimation problem was not addressed.

Two approaches for cooperative parameter estimation based on the notion of altruism are proposed herein. Called heterarchical
altruistic cooperative estimation, the first approach considers two equally-ranked agents that take into account the action of each
other, and calculate their estimates fully altruistically such that neither of the two is necessarily optimal (in the conventional
sense). Thus, both agents sacrifice their own estimation performance in order to maximize the global mission’s probability of
success. Termed hierarchical altruistic cooperative estimation, the second approach is more conservative, in that it assumes that
one of the agents operates egoistically, as if it were the only estimator present, thus minimizing the conventional mean-squared
error (MSE) criterion. The second agent in this approach takes into account the action of the first one, and maximizes the
success of the global mission, given the (egoistic) estimate of the first agent. Here the term hierarchy alludes to the fact that
the first agent works as if it were ranked higher than the other, and tries to accomplish the mission on its own. Comparing
the two approaches in performance, the heterarchical one is superior to the hierarchical one, as the former is globally optimal,
whereas the latter results from a constrained optimization. However, in some cases, design conservatism may dictate the use
of the hierarchical approach.

Returning to the scenario of the attacker and its two shooting attempts, assume now that the target’s location is Gaussian
distributed on a line. We will show in this paper that an attacker using the globally-optimal heterarchical approach would
shift both of its missiles’ aiming points to the sides of the target’s expected location (the mode of the distribution), thus
maximizing the overall probability of at least one of its missiles striking sufficiently close to the target. Alternatively, the more
conservative attacker, that implements the hierarchical approach, would aim one of its missiles at the expected location of the
target (maximizing this particular missile’s probability of hitting the target), and would shift the aiming point of the second
missile aside (reasonably, the second missile’s aiming point’s shift from the expected target location would be larger than the
respective shifts of both heterarchical attempts).

The main contributions of this paper are the following:
1) We generalize the standard MMSE parameter estimation problem to the realm of cooperative estimation, in cases involving

two separately-operating but information-sharing agents.
2) We introduce the concept of altruistic cooperative estimation, and, within this concept, we introduce two altruistic

estimation approaches (heterarchical and hierarchical estimation), that outperform the standard, egoistic approach in the
sense considered herein.

3) We prove the existence of a global solution for each of the two altruistic estimation approaches.
4) In the Gaussian case we provide closed-form, analytical solutions to the two altruistic estimation problems, along with

a complete analysis of the solutions’ potential performance advantages.
The remainder of this paper is organized as follows. The two altruistic cooperative estimation problems are defined in

Section II. In Section III we derive necessary conditions for estimators corresponding to both problems, and prove the existence
of optimal estimators satisfying these conditions. In Section IV we address the Gaussian case in detail. Concluding remarks
are offered in the last section. Some technical derivations and proofs are deferred to Appendices.

II. PROBLEM FORMULATION

Consider a random parameter vector θ defined on the probability space (Θ,F , P ), where Θ ⊆ Rn is the continuous sample
space, F is the set of events (σ-algebra) on Θ, and P is a probability measure. The problem is to find two estimates of θ
based on the random vector of measurements Z, which are (possibly nonlinear) functions of θ. The mapping Z induces the
sample space Z ⊆ Rm (with an appropriate σ-algebra). Both Θ and Z are Hilbert spaces, equipped with the 2-norm induced
by the dot-product. For later purpose, we assume that the (known) joint distribution of θ and Z has finite first two moments.

We consider a scenario where the system tasked with the estimation problem comprises two agents, each of which yields
a local estimate of the parameter vector θ based on the shared measurements Z. The system does not merge the two local
estimates to a final, single estimate; rather, its overall performance results, in some manner, from the joint performance of
the two estimators. Context-depending, we will use the notation θ̂(1) and θ̂(2) to denote both the estimators and the estimates
(generated by these estimators) of the two agents, respectively.

A cost function that reflects the idea of altruistic estimation is the following:

J(θ̂(1), θ̂(2)) ≜ E(∥θ̂(1) − θ∥2 ∧ ∥θ̂(2) − θ∥2) (1)

where E is the expectation operator, and a ∧ b ≜ min(a, b) for some a, b ∈ R.
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The underlying premise of this work is that the global mission is accomplished even if only one of the agents provides an
MSE-acceptable estimate. Thus, the overall system performance is determined by the performance of the better agent among
the two.

Remark 1. Setting the two estimators to be identical in (1) reduces it to the standard MMSE cost, manifesting the fact that
the problem defined here is an extension of the MMSE estimation problem to the realm of altruistic cooperative estimation.

Remark 2. Somewhat resembling the optimal sub-pattern assignment (OSPA) metric of [4], [5], the cost (1) as defined here is
radically different due to the difference between the meanings of both problems. In the OSPA case, the best targets-to-estimates
combination is chosen, based on the premise that targets are unlabeled, so that the problem is how to optimally “throw two
stones at two indistinguishable birds”, aiming at hitting both. In contradistinction, in the present work the problem is “how
to throw two stones at a single bird”, while maximizing the probability that at least one (unlabeled) stone hits its target.

We define two altruistic estimation problems. In the heterarchical problem, the estimators θ̂(1)HT and θ̂(2)HT solve the global
minimization problem

min
θ̂(1),θ̂(2)∈L2(Z)

J(θ̂(1), θ̂(2)) (2)

where L2(Z) is the space of all square Lebesgue-integrable (measurable) functions of the measurements.
A constrained version of the heterarchical problem, the hierarchical problem sets one of the estimators, θ̂(1)HI , identical

to the minimum mean squared error estimator (MMSEE), θ̂MS. The second hierarchical altruistic estimator, θ̂(2)HI , solves the
constrained minimization problem

min
θ̂(2)∈L2(Z)

J(θ̂(1), θ̂(2)) such that θ̂(1) = θ̂MS. (3)

Problems (2) and (3) are closely related to some well-studied optimization problems appearing in the Voronoi literature
[6]–[8], generally called facility serviceability problems [7]. In these problems, there exist some points called facilities (or,
Voronoi generators), that are said to supply some necessary resource. The optimization task is to localize these facilities inside
a populated region, such that they generate a Voronoi tessellation which is optimal in some sense. The simplest example is
the problem of public mail box localization: given a city and its population distribution, the problem is to position a certain
number of public mail boxes, assuming that every citizen in the city uses the closest public mail box. These problems appear
in many scientific domains [8], such as data compression (e.g, in the image processing world), quantization, and distortion
problems [9] in the signal compression world. However, to the best of the authors’ knowledge, no closed-form solutions have
been presented, perhaps because the literature focuses mainly on problems with many facilities, that require efficient numerical
solutions, such as Lloyd’s algorithm [6]–[8].

III. ESTIMATOR DERIVATION

Applying the smoothing theorem to the cost function (1) yields

J = E[E(∥θ̂(1) − θ∥2 ∧ ∥θ̂(2) − θ∥2 | Z)] = E JZ (4)

where
JZ ≜ E(∥θ̂(1) − θ∥2 ∧ ∥θ̂(2) − θ∥2 | Z). (5)

Since the outer expectation in (4) does not depend on the choice of the estimators, the global minimizing arguments for J are
identical to those of JZ . We, thus, proceed with minimizing JZ .

Consider the function a ∧ b for some a, b ∈ R. Clearly, in the region a > b, a ∧ b = b, so that the function is not affected
by the value of a. Analogously, the space Θ can be divided into two subspaces, in each of which JZ is affected by only one
of the two estimates – the one closer to any value of θ in this subspace. This observation naturally calls to mind the notion
of Voronoi regions [8], giving rise to the following definition.

Definition 1 (Estimates’ Voronoi regions). The Voronoi region of θ̂(1), denoted V1, is a set in Θ such that:

∥θ̂(1) − θ∥ < ∥θ̂(2) − θ∥ ∀θ ∈ V1. (6)

Analogously, V2 is defined to satisfy
∥θ̂(1) − θ∥ > ∥θ̂(2) − θ∥ ∀θ ∈ V2. (7)

The boundary separating both Voronoi regions (the Voronoi edge), denoted as ∂V , is defined to satisfy:

∥θ̂(1) − θ∥ = ∥θ̂(2) − θ∥ ∀θ ∈ ∂V. (8)
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Notice that the two estimates, θ̂(1) and θ̂(2), play the part of Voronoi generators, and that the regions V1 and V2 along with
∂V constitute a Voronoi tessellation [8]. The optimization problems (2) and (3) are Voronoi optimization problems, for, using
the law of total probability, we can express JZ as

JZ =

2∑
i=1

E(∥θ̂(i) − θ∥2 | Z,θ ∈ Vi) Pr (θ ∈ Vi | Z) (9)

where we have used the fact that ∂V ⊂ Θ has measure zero, as dim ∂V = dimΘ− 1 (because ∂V satisfies a constraint in Θ).
The heterarchical problem stated in (2) is the classical Voronoi facility serviceability problem [7]. For given measurements,

the estimates are the facilities, located in Rn; the probability distribution of θ serves as the population distribution, and each
individual (random realization of θ) is associated with the estimate closest to it.

The hierarchical problem stated in (3) is a special case of the problem stated in [6, Section 9.2.4]. To see this, set the
number of facilities to two (represented by the two estimates), the number of ranks to two (one egoistic estimate and one
altruistic), and the consumption rate for each supply to half, such that both are equally consumed. In that case, it is obvious
that the location of the higher ranked facility should be the MMSEE, since it is the only facility supplying this service to the
entire population. However, this higher-ranked facility, whose location is already set, supplies also the second service which
the other facility supplies as well. Hence, it is obvious that the optimizer should locate the lower-ranked facility according to
the global mission of serviceability, taking into consideration the location of the higher-ranked facility.

For these kinds of problems, [8] proves that the optimal solutions lead to centroidal Voronoi tessellations (CVT), in which
the facilities are the centroids of their corresponding Voronoi regions. Requiring the domain in which the problem is defined
to be a compact subset of Rn, [8, p. 651-652] proves the existence of a globally-optimal solution, that consists of a set
of non-identical facilities. The localization problems addressed in the literature are commonly solved numerically, perhaps
because most of them involve a large number of facilities [6]–[8]. Related to what would be called the 2-facilities problem in
the Voronoi literature, our work extends already known results by proving the existence of a globally-optimal solution in not
necessarily compact domains, and by providing a closed-form solution in the Gaussian case.

A. Preliminary Calculations

Because we allow unconstrained estimates, the minimizers of JZ are those for which either the gradient vector vanishes,
or the cost function is not differentiable. The function a ∧ b for some a, b ∈ R is differentiable everywhere with respect to
both a and b, except at a = b. Similarly, JZ is not differentiable with respect to either of the two estimates only in the trivial
case θ̂(1) = θ̂(2), which is not of interest here (one can always do better by dispersing the two estimates; see Lemma 2 in
Appendix A). We, thus, seek for optimal solutions rendering θ̂(1) ̸= θ̂(2). Since, for such solutions, JZ is differentiable, we
will derive the necessary conditions by setting its gradient to zero. Notice that because JZ is quadratic (assuming θ̂(1) ̸= θ̂(2)),
its extremum is necessarily a minimum.

To compute the gradient of JZ we first rewrite (9) as

JZ(θ̂
(1), θ̂(2)) = EV1

z (∥θ̂(1) − θ∥2)Pz(V1)+EV2
z (∥θ̂(2) − θ∥2)Pz(V2) (10)

where the (probabilistic) measure of Voronoi region i and the local expectation operator associated with that region are defined,
respectively, as

Pz(Vi) ≜ Pr (θ ∈ Vi | Z) , i = 1, 2 (11)

and

EVi
z (·) ≜ E(· | Z,θ ∈ Vi), i = 1, 2. (12)

Let δ(·) denote an infinitesimal perturbation of (·). Arbitrarily perturbing the first estimate to θ̂(1) + δθ̂(1) while keeping the
second estimate intact, results in a corresponding infinitesimal change in the Voronoi tessellation. In turn, this results in a
perturbation in the cost,

δJZ = δ(EV1
z (∥θ̂(1) − θ∥2)Pz(V1)) + δ(EV2

z (∥θ̂(2) − θ∥2)Pz(V2)). (13)

The infinitesimal change in the tessellation affects both terms on the RHS of (13), but it does so in an antisymmetric manner,
as the change in ∂V , the boundary separating the two Voronoi regions, induces oppositely signed changes of both terms.
Letting δθ̂(1) → 0 nullifies the change in the tessellation, and its total effect on the perturbation of the cost. The other effect
contributing to the perturbation of the cost is the change (integrated over all points θ ∈ V1) in the norm ∥θ̂(1) − θ∥ due to the
change in θ̂(1). Thus,

δJZ = 2EV1
z (θ̂(1) − θ)T δθ̂(1) Pz(V1) . (14)
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By symmetry, (14) yields the gradients of JZ as

∇θ̂(i) JZ = 2Pz(Vi)EVi
z (θ̂(i) − θ), i = 1, 2. (15)

Remark 3. Addressing the multi-dimensional case, (15) was also derived in [6], [7], albeit in a deterministic setting.

Next we show that there exists a rotation transformation, that, when applied to the parameter space Θ, maps the Voronoi
regions of both estimates to one-dimensional, half-infinite intervals. This transformation will facilitate the ensuing derivation
of the altruistic estimators. Defining

∆θ̂ ≜ θ̂(2) − θ̂(1) (16)

the Voronoi edge equation, (8), can be written as

⟨θ − θ̂(1) + θ̂(2)

2
,∆θ̂⟩ = 0 (17)

where ⟨·, ·⟩ stands for the inner product. Similarly, the definitions (6) and (7) of the estimates’ Voronoi regions can be written
(for any θ̂(1) and θ̂(2)) as

⟨θ − θ̂(1) + θ̂(2)

2
,∆θ̂⟩ < 0 (18)

and

⟨θ − θ̂(1) + θ̂(2)

2
,∆θ̂⟩ > 0 (19)

respectively. Equation (17) means that the boundary ∂V is an (n − 1)-dimensional plane orthogonal to ∆θ̂, that contains
the point θ̂(1)+θ̂(2)

2 , the mid-point between the two estimates. The two Voronoi regions are located on opposite sides of the
boundary.

Now let τ be an n × n proper orthogonal matrix having ∆θ̂T /∥∆θ̂∥ as its first row (∥∆θ̂∥ cannot vanish because, as
explained earlier, we disregard the case θ̂(1) = θ̂(2)). Define

u ≜ τθ (20)

û(i) ≜ τ θ̂(i), i = 1, 2 (21)

∆û ≜ û(2) − û(1). (22)

Rotating the standard basis of the space Θ using the transformation τ , let eu1 be a unit vector along the first basis vector of
the rotated space. Using (16) and (21) in (22), and recalling the special construction of the orthogonal matrix τ , yields

∆û = ∥∆θ̂∥eu1 . (23)

Because eu1 is collinear with ∆û, the vector connecting both transformed estimates, we call it the solution-axis.
Using τT τ = I in (18) along with (23) and the definitions (20) and (21), the Voronoi region of the first estimate can be

expressed as

V1 = {u ∈ Θ : ⟨u− û(1) + û(2)

2
, ∥∆θ̂∥eu1⟩ < 0}. (24)

Let ûm be the projection of the midpoint between the two estimates in the transformed space on eu1 , that is

ûm ≜
1

2
(û(1) + û(2))Teu1 . (25)

Using (25) in (24) yields
V1 = {u ∈ Θ : u1 < ûm} (26)

where u1 denotes the first component of the vector u (its projection along eu1 ). Stated in words, in the transformed space,
V1 is the half-infinite open interval (−∞, ûm) along the solution axis. Similarly, the Voronoi region of the second estimate in
the transformed space is the half-infinite open interval (ûm,∞) along the solution axis.

Having these preliminary results on hand, we now proceed with the derivation, considering separately each of the altruistic
approaches.
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B. Heterarchical Altruistic Estimation

Setting the gradient of JZ [expressed in (15)] to zero yields

θ̂(i) = EVi
z θ, i = 1, 2 (27)

which shows that an optimal heterarchical estimate is locally MMSE-optimal inside its Voronoi region. As such, it inherits the
properties of MMSE estimators inside that region. We have thus shown that the two heterarchical estimators yield a CVT of
Θ (this has also been shown, for other Voronoi problems of similar nature, in, e.g., [8]).

Equations (27) are coupled and, generally, hard to solve in closed form. Efficient algorithms for their numerical solution
(even in the general case involving more than two facilities, e.g., Lloyd’s algorithm) can be found in [6]–[8].

Remark 4. Using the law of total probability and (27) yields

E(θ | Z) = Pz(V1)EV1
z θ + Pz(V2)EV2

z θ = Pz(V1)θ̂
(1) + Pz(V2)θ̂

(2) (28)

which generalizes the fundamental theorem of MMSE estimation. This should come as no surprise, as the cost function (1)
generalizes the MSE cost function. In fact, as shown in Appendix A, when the norm-difference between the estimates tends
to infinity, the Voronoi region of the estimate possessing the larger norm tends to a set of measure zero, whereas the other
Voronoi region tends to a set of measure one. In that case, (28) yields that the (single) MMSE estimator is the familiar global
conditional mean.

Sometimes it might be advantageous to calculate first ûm, the midpoint between estimates along the solution axis. To do
that we use (20) in (27) to obtain the following alternative form of (27)

θ̂(i) = τT EVi
z u, i = 1, 2. (29)

Now using (21) in (25) and substituting (29) results in the following scalar equation

ûm =
1

2
(EV1

z u1 + EV2
z u1) (30)

which only depends on the marginal, conditional distribution of u1.
Hereafter referred to as the heterarchical altruism equation, equation (30) follows naturally from the symmetric definition

of the heterarchical estimation problem. Using (26), (30) can be rewritten as

ûm =
1

2
[E(u1 | u1 < ûm, | Z) + E(u1 | u1 > ûm, | Z)] (31)

revealing its dependence on the truncated distribution of u1 given Z [10, Chapter 22]. We will use this equation in solving
the Gaussian case (Section IV).

Finally, although the cost function can have an unbounded domain and is not everywhere differentiable, we can still say
something about the existence of globally-optimal solutions. We do this in the next theorem, proven in Appendix A. In
passing, we note that a similar theorem, related to the general case albeit assuming a compact parameter domain, is proven
in [8, pp. 651-652].

Theorem 1. There exists at least one globally-optimal heterarchical solution. All such solutions satisfy (27), and their (identical)
cost is smaller than the MMSE.

C. Hierarchical Altruistic Estimation

Recall that, in this case, the first hierarchical estimator is the MMSEE, so that only the second estimator needs to be found.
Setting the value of the gradient of JZ with respect to the second estimate [expressed in (15)] to zero yields

θ̂(2) = EV2
z θ (32)

rendering the second hierarchical estimate locally MMSE-optimal with respect to its Voronoi region.
To calculate ûm for the hierarchical estimates we use (20) in (32) to yield

θ̂(2) = τT EV2
z u. (33)

Using (21) in (25) and substituting (33) yields

ûm =
1

2
[τ E(θ | Z) + τ θ̂(2)]Teu1 =

1

2
[E(u1 | Z) + EV2

z u1]. (34)

Equation (34), which is a scalar equation, is referred to as the hierarchical altruism equation. Notice that the first expectation
on the RHS of (34) is with respect to the entire sample space Θ (conditioned on Z), which follows naturally from the fact
that the first hierarchical estimator is the MMSEE.
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Using (26), (34) can be rewritten as

ûm =
1

2
[E(u1 | Z) + E(u1 | u1 > ûm, | Z)], (35)

revealing its dependence on the truncated conditional distribution of u1 [10, Chapter 22].
We conclude with the next theorem, the proof of which is deferred to Appendix B.

Theorem 2. There exists at least one globally-optimal hierarchical solution. All such solutions satisfy (32), and their (identical)
cost is smaller than the MMSE.

IV. THE GAUSSIAN CASE

In this section we assume that the parameter and the measurements are jointly Gaussian distributed, so that:

θ | Z ∼ N (θ | Z,µ(Z),R(Z)) (36)

where µ, the conditional mean, is the MMSEE. The conditional covariance matrix R is assumed to be positive definite. Let
the eigenvalues of R be λ1 ≥ λ2 ≥ · · · ≥ λn, and let their corresponding unit-norm eigenvectors be vλ1

,vλ2
, . . . ,vλn

. We
further denote the conditional mean of u [as defined in (20)] and its components as

µu ≜ E(u | Z)≡ (µu1
, µu2

, . . . µun
). (37)

We next derive the optimal solution for each of the altruistic estimation approaches.

A. Heterarchical Altruistic Estimation

Theorem 3. In the Gaussian case, the optimal altruistic heterarchical estimates are

θ̂
(1)
HT = µ+

√
2λ1

π
vλ1 (38a)

θ̂
(2)
HT = µ−

√
2λ1

π
vλ1

(38b)

and their estimation error covariances are identical to that of the MMSEE.

Proof. We begin by stating the following proposition, for the proof of which the reader is referred to Appendix C.

Proposition 1. In the Gaussian case, the unique solution to the heterarchical altruism equation (30) is

ûm = µu1
. (39)

Using (39) in (26) and noting the symmetry of the Gaussian distribution about its mean yields

Pz(V1) = Pr(u1 < µu1
| Z) = Pz(V2) =

1

2
(40)

which is a manifestation of the heterarchy in our problem. Using (29) and the law of total probability yields

θ̂(1) + θ̂(2)

2
= τT (EV1

z uPz(V1) + EV2
z uPz(V2)) = τ

T E(u | Z) = µ, (41)

identifying the mid-point between the two estimates as the MMSE estimate. It follows that

∆θ̂ = 2(θ̂(2) − µ) = −2(θ̂(1) − µ) (42)

which facilitates parameterizing the problem in terms of ∆θ̂, thus reducing the problem’s degrees of freedom by half. The
cost function can, therefore, be recast as

JZ = E(∥µ− 1

2
∆θ̂ − θ∥2 ∧ ∥µ+

1

2
∆θ̂ − θ∥2 | Z). (43)

Manipulating (43) results in

JZ = E[∥µ∥2 + 1

4
∥∆θ̂∥2 + ∥θ∥2 − 2⟨µ,θ⟩+ (∆θ̂T (θ − µ) ∧∆θ̂T (µ− θ)) | Z]

= trR+
1

4
∥∆θ̂∥2 − E(

∣∣∣∆θ̂T (θ − µ)
∣∣∣ | Z) (44)

where we have used the fact that min(−a, a) = − |a| for any a ∈ R. Substituting

∆θ̂T (θ − µ) = ∆θ̂T τT τ (θ − µ) = (τ∆θ̂)T (u− µu) = ∥∆θ̂∥(u1 − µu1) (45)
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in (44) yields

JZ = trR+
1

4
∥∆θ̂∥2 − ∥∆θ̂∥E(|u1 − µu1

| | Z). (46)

Explicitly expressing the central absolute first moment of the Gaussian variable u1 in (46) [11] yields

JZ = trR+
1

4
∥∆θ̂∥2 − ∥∆θ̂∥

√
2Ru1

π
(47)

with Ru1
being the conditional variance of u1 | Z. The term Ru1

depends only on the direction of ∆θ̂ (and not on its norm),
because the rotation matrix τ that maps θ into u is a function of that direction only. This observation, then, means that (47)
is a parametrization of JZ in terms of the norm and argument of ∆θ̂. We thus proceed with finding the optimal norm first.
Differentiating JZ with respect to ∥∆θ̂∥ and setting the derivative to zero yields:

∥∆θ̂∥ = 2

√
2Ru1

π
. (48)

Substituting (48) into (47) yields

JZ
∣∣
∥∆θ̂∥=2

√
2Ru1

π

= trR− 2Ru1

π
. (49)

Therefore, minimizing JZ is equivalent to solving

max
∆θ̂

Ru1
such that ∥∆θ̂∥ = 2

√
2Ru1

π
. (50)

To do that we write

Ru1
= eTθ1

(τRτT )eθ1 =
∆θ̂T

∥∆θ̂∥
R

∆θ̂

∥∆θ̂∥
(51)

where eθ1 is the unit vector along the first standard basis vector, so that the maximization problem becomes

max
∆θ̂

∆θ̂TR∆θ̂

∆θ̂T∆θ̂
. (52)

According to the Rayleigh-Ritz theorem [12], the maximum in (52) is λ1, the largest eigenvalue of R, and it is reached for
∆θ̂ that is collinear with the eigenvector vλ1

of R corresponding to λ1. Thus, using (48), we have

∆θ̂ = 2

√
2λ1

π
vλ1

(53)

which, with (42), then yields (38). Moreover, using (49), the cost obtained by using the candidate heterarchical estimators is

JHT = trR− 2

π
λ1 (54)

which is identical among all candidate solutions and independent of vλ1
. Combining this fact with Theorem 1, which states

that the candidate solutions include at least one global solution, we conclude that all candidate solutions are global minimizers.
Finally, because θ̂(1)HT , θ̂(2)HT differ from the MMSEE by a deterministic constant (given the measurements), their estimation

error covariances are identical to that of the MMSEE.

In passing, we observe that, as JHT depends only on R, then, for the optimal estimators, J = JZ = JHT. Also, as the solution
requires only the computation of the largest eigenvalue and its corresponding eigenvector, efficient numerical algorithms, such
as the power method, can be used in real-time applications involving high dimensionality.

B. Hierarchical Altruistic Estimation

Theorem 4. In the Gaussian case, letting the first altruistic hierarchical estimate be

θ̂
(1)
HI = θ̂MS = µ (55)

the optimal second estimate is
θ̂
(2)
HI = µ+ wHI

√
λ1vλ1 (56)

where wHI is defined such that χ = 1
2wHI is the unique solution to

ϕ(χ)

2[1− Φ(χ)]
− χ = 0. (57)
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In (57), ϕ and Φ are the standard Gaussian probability density and cumulative distribution functions, respectively. The estimation
error covariance of θ̂(2)HI is identical to that of the MMSEE.

Remark 5. The approximate value of wHI is 1.224 (see Appendix C). Notice that wHI, which can be referred to as the
standardized hierarchical shift of θ̂(2)HI from the conditional distribution mode (as it is the shift for the standardized case

where λ1 = 1), is bigger than its analogous heterarchical standardized shift,
√

2
π , as per Theorem 3. This shift difference can

be explained by observing that in the hierarchical approach the first estimate is the mode, rendering a bigger shift from it
probabilistically beneficial, compared with the heterarchical approach, where both estimates are already shifted from the mode
in opposite directions.

Remark 6. In (56), the sign of the second term on the RHS is arbitrary, because the sign of the eigenvector vλ1
is arbitrary.

Proof. Using (55) in (16) yields
θ̂(2) = µ+∆θ̂ (58)

so that the cost function can be written as

JZ = E(∥µ− θ∥2 ∧ ∥µ+∆θ̂ − θ∥2 | Z). (59)

Manipulating (59) yields

JZ = trR+
1

2
∥∆θ̂∥2 −∆θ̂T E(θ − µ | Z)

+ E{[−1

2
∥∆θ̂∥2 +∆θ̂T (θ − µ)] ∧ [

1

2
∥∆θ̂∥2 −∆θ̂T (θ − µ)] | Z}

= trR+
1

2
∥∆θ̂∥2 − E(

∣∣∣∣∆θ̂T (θ − µ)− 1

2
∥∆θ̂∥2

∣∣∣∣ | Z) (60)

where we have used E[(θ − µ) | Z] = 0. Using (45) in (60) yields

JZ = trR+
1

2
∥∆θ̂∥2 − ∥∆θ̂∥E(

∣∣∣∣(u1 − µu1
)− 1

2
∥∆θ̂∥

∣∣∣∣ | Z)

= trR+
1

2
∥∆θ̂∥2 − ∥∆θ̂∥[−1

2
∥∆θ̂∥(1− 2Φ(

∥∆θ̂∥
2
√
Ru1

)) + 2
√
Ru1

ϕ(
∥∆θ̂∥
2
√

Ru1

)]. (61)

Equation (61) is obtained by introducing φ ≜ u1− (µu1
+ 1

2∥∆θ̂∥), and calculating the conditional mean of the folded variable
E(|φ| | Z) [11].

To proceed with the minimization of JZ , we need to calculate ∥∆θ̂∥. To do that, we need to first solve the hierarchical
altruism equation (35). It turns out that this equation has no analytical solution, even in the Gaussian case. Using wHI, which
was defined implicitly in the Theorem, yields its unique solution (see Appendix C) as

ûm = µu1 +
1

2
wHI

√
Ru1 . (62)

To calculate ∥∆θ̂∥ we use the rotation transformation τ :

∥∆θ̂∥ = ∥τ∆θ̂∥ = ∥∆û∥. (63)

In the transformed parameter space, both transformed estimates reside along the solution axis eu1 , such that ûm is the midpoint
between them along that axis. Hence

∥∆û∥ = ∆û1 = 2(ûm − µu1) (64)

where ∆û1 is the component of ∆û along eu1 . Using (62) then yields

∥∆θ̂∥ = wHI
√

Ru1
. (65)

Using (65) in (61) yields

JZ
∣∣
∥∆θ̂∥=wHI

√
Ru1

= trR− [2ϕ(
wHI

2
)− wHI(1− Φ(

wHI

2
))]wHIRu1

= trR− ϕ(
wHI

2
)wHIRu1

(66)

where the last equality results from using (138) with (139a) (see Appendix C). Moreover, as analytically proved in Appendix C,
1
2wHI ∈ (0,

√
3), hence ϕ(wHI

2 )wHI > 0. Thus, (66) leads to a maximization problem identical to (52), obtained in the
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heterarchical problem. Adopting the solution of that problem (together with the definition of wHI) yields (56). Moreover,
the cost obtained from using the candidate hierarchical estimates is

JHI = trR− ϕ(
wHI

2
)wHIλ1 (67)

and that cost is identical among all candidate solutions, and independent of vλ1
. Combining this observation with Theorem 2,

which states that the candidate solutions include at least one global solution, renders all candidate solutions global minimizers.
Finally, because θ̂(2)HI differs from the MMSEE by a deterministic constant (given the measurements), its estimation error

covariance is identical to that of the MMSEE.

Similarly to the heterarchical problem, here too only the largest eigenvalue and its corresponding eigenvector need to be
calculated.

C. Cost Reduction

To assess the benefit of the altruistic cooperative methodology, we compare its achievable MSE cost (1) to the MMSE
baseline cost achieved by using two identical MMSE estimates,

JMS ≜ E∥θ̂MS − θ∥2. (68)

In the Gaussian case JMS = trR.
For both approaches we define the relative cost reduction as

ΥMTHD ≜ 1− JMTHD

JMS
, MTHD = HT or HI. (69)

In the heterarchical approach, (54) yields

ΥHT =
2
πλ1∑n
i=1 λi

. (70)

Since λ1 ≥ λ2 ≥ · · · ≥ λn, then, for a given λ1,

sup
λ2,...,λn

ΥHT = lim
λ2
λ1

→0

ΥHT =
2

π
(71)

and
min

λ2,...,λn

ΥHT = ΥHT
∣∣
λ2=···=λn=λ1

=
2

nπ
(72)

which gives
2

nπ
≤ ΥHT <

2

π
. (73)

In the hierarchical case,

ΥHI =
wHIϕ(

wHI
2 )λ1∑n

i=1 λi
(74)

whence
wHIϕ(

wHI
2 )

n
≤ ΥHI < wHIϕ(

wHI

2
). (75)

Notice that in both approaches the best achievable relative reduction corresponds to λ1

λ2
→ ∞, whereas the worst achievable

reduction corresponds to λ1 = λ2 = . . . = λn. This is so because in both approaches the two estimates are dispersed along the
eigenvector that corresponds to λ1. Thus, the benefit gained from dispersing the estimates is biggest when the variance in that
direction is largest compared with the other variances. When the variances in all directions are equal, the benefit assumes its
smallest possible value. It is also noted that the benefit shrinks when the dimension of the system increases, because there are
only two estimates, distributed along one direction. Nevertheless, even in high dimensional cases, if one direction dominates
the others in terms of its variance, still the reduction can be significant, which means that the altruistic approaches become
appealing in cases involving ill-conditioned covariance matrices (characterized by large condition numbers).

To demonstrate the effect of the problem’s dimensionality on the cost function reduction, the upper and lower cost reduction
bounds for each approach are depicted in Fig. 1. In a scalar problem (n = 1) the lower and upper bounds coincide, yielding
a unique value for the reduction. At higher dimensions the best achievable gains are identical to those obtained for the scalar
problem, whereas the worst achievable reductions diminish with the increasing dimension.
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Fig. 1: Relative cost reduction bounds vs problem dimension. Solid lines: heterarchical (ΥHT). Dashed lines: hierarchical (ΥHI).

D. Numerical Illustration

We now numerically illustrate the behavior of the cost function JZ , in order to demonstrate the validity of the solutions in
the Gaussian case, and highlight some properties of altruistic estimation problems and their solutions. We focus on JZ , rather
than on J , because, as we have previously shown, the choice of the optimal estimators is independent of the measurements.

Let θ | Z ∼ N (0, 100). The heterarchical and hierarchical estimates are

θ̂
(1)
HT = 10

√
2

π
≈ 7.979, θ̂

(2)
HT = −θ̂

(1)
HT (76)

and
θ̂
(1)
HI = µ = 0, θ̂

(2)
HI = ±10wHI ≈ ±12.240. (77)

The costs for the MMSE (two egoistic estimates), heterarchical, and hierarchical approaches are: JMS = 100, JHT ≈ 36.338,
and JHI ≈ 59.5, respectively.

Figure 2 shows equilevel contour lines of the cost function, computed at each node (θ̂(1), θ̂(2)) of a 500× 500 grid of the
two estimates. The cost is approximated as the mean of 105 samples drawn from the given parameter conditional distribution.
The contours are distributed logarithmically, so that they are denser around lower values of JZ . The optimal heterarchical and
hierarchical estimates, (76) and (77), respectively, are superimposed on the contour plot as squares and circles, respectively.
The figure exhibits the tendency of JZ to infinity when both estimates tend to infinity in absolute values (as per Lemma 1
in A). On the other hand, when one of the estimates tends to infinity in absolute value and the other estimate remains finite
(which renders the infinite estimate irrelevant in the computation of the cost), the lowest value of JZ is the MMSE estimate,
which is achieved when the finite estimate is the MMSEE.

Figure 2 exhibits two reflection symmetries of the function JZ , 1) about the mirror line θ̂(1) = θ̂(2), and 2) about the
normal to the line θ̂(1) = θ̂(2) through the origin. The first symmetry expresses the symmetric nature of JZ with respect to
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Fig. 2: Equilevel cost contours of JZ in the 1-D Gaussian example of subsection IV-D. Square markers: heterarchical solutions.
Circle markers: hierarchical solutions.

its arguments (the two estimates). The second expresses the symmetric nature of the Gaussian distribution. The figure also
clearly demonstrates the non-differentiability of JZ on the reflection axis θ̂(1) = θ̂(2). The figure exhibits two (reflective)
global minima of the function JZ , precisely at the analytically calculated heterarchical estimates (76), with cost agreeing
with the analytically computed cost. The two (reflective) optimal hierarchical estimates of the second hierarchical estimator are
positioned at the minima of JZ along the constraint line θ̂(1) = 0, which coincide with the analytically calculated hierarchical
estimates (77), with cost agreeing with the analytically computed cost. As could be expected, at both minima the JZ contour
lines are tangent to the constraint.

V. CONCLUSIONS

We have proposed an estimation methodology for optimal cooperation between two information-sharing agents, that is based
on the notion of altruism. The methodology is suited for scenarios that can benefit from the existence of two opportunities to
estimate, such as scenarios involving two cooperating agents that have one global mission that is accomplished even if only
one of the agents provides a satisfactory estimate (using its own, local estimator). In the proposed approach, the two agents do
not yield an identical optimal estimate, but, rather, at least one of them sacrifices its own estimation performance by providing
a sub-optimal estimate. The benefit of the proposed scheme is an improvement in the overall estimation performance, measured
by a global mean squared error criterion.

Two approaches of altruistic cooperation are proposed. In the heterarchical approach, both estimators are altruistic, which
yields two sub-optimal estimates that are different than the (egoistic) MMSE estimate. In the hierarchical approach the first
agent maximizes its performance egoistically without considering the other estimator, thus computing the MMSE estimate; the
second agent maximizes the global performance measure while taking into account the presence of the first (MMSE-optimal)
agent. Implicit and coupled equations are derived for the design of the estimators in both approaches. In the Gaussian case,
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explicit optimal solutions are provided, that require, in both approaches, only the calculation of the largest eigenvalue of the
conditional covariance matrix of the parameter and its corresponding eigenvector. These results can also be viewed as analytical
solutions to two well-known Voronoi serviceability problems in the two-facility case.

In the Gaussian case, it is shown that the improvement in the overall performance (relative to naive MMSE estimation)
depends on the dimension of the problem and on the spread of the spectrum of the conditional covariance matrix. In general,
the larger the dimension of the problem, the smaller the improvement that can be expected using the proposed cooperative
estimation approach. On the other hand, the proposed altruistic approaches are especially appealing in (even high-dimensional)
ill-conditioned estimation problems.

APPENDIX A
PROOF OF THEOREM 1

Proof. Following the reasoning of the estimator derivation in Section III, the proof follows from minimizing the measurement-
conditioned cost, JZ , defined in (5). Let θ̂ ∈ (Θ × Θ) and JZ(θ̂) denote the augmented estimate vector [(θ̂(1))T , (θ̂(2))T ]T

and the value of the cost (5) computed with the pair of estimates comprising θ̂, respectively.
For the reader’s convenience, we first provide an overview of the proof’s main stages:
1) We tessellate the augmented estimate vector space (Θ × Θ) into two parts: an internal part (where θ̂ is bounded), and

its complementary external part.
2) We prove Lemma 1, showing that choosing the internal part to be large enough guarantees that for any point θ̂ in the

external part, the cost JZ(θ̂) is arbitrarily close to the MMSE.
3) We prove Lemma 2, showing that choosing the internal part to be sufficiently large guarantees that there is at least one

minimum point (satisfying (27)) in the internal part, for which the cost JZ(θ̂) is strictly smaller than the MMSE.
4) We build a final internal part, which is sufficiently large to guarantee that any point in the external part yields a cost

strictly higher than that of any minimum of the internal part.
Moving on to the proof itself, define

Sa
θ̂
≜ {θ̂ | ∥θ̂(1)∥ ∨ ∥θ̂(2)∥ ≤ a}, a ∈ R>0 (78)

where α ∨ β ≜ max(α, β) for some α, β ∈ R. We begin by proving the following two lemmas.

Lemma 1. For any ϵ ∈ R>0 there exists a(ϵ) ∈ R>0 such that if θ̂ ̸∈ Sa(ϵ)

θ̂
then JZ(θ̂) > JMS − ϵ.

Proof. We begin with a brief overview of the proof of this lemma:
1) Choosing some (temporary) edge a0(ϵ) to the internal part Sa(ϵ)

θ̂
, we show in Proposition 2 that when the norms of both

estimates are beyond a0(ϵ), the lemma is satisfied.
2) Next, we show in Proposition 3 that if the distance between the norms of both estimates is large enough, the lemma is

satisfied.
3) Finally, we choose a (bigger) edge a(ϵ) for which, if θ̂ ̸∈ Sa(ϵ)

θ̂
, then either of the conditions of Proposition 2 or

Proposition 3 must be satisfied.
Using the law of total probability and the triangle inequality in (5) yields, for any r ∈ R>0,

JZ(θ̂) = E(∥θ̂(1) − θ∥2 ∧ ∥θ̂(2) − θ∥2 | Z, ∥θ∥ ≤ r) Pr(∥θ∥ ≤ r | Z)

+ E(∥θ̂(1) − θ∥2 ∧ ∥θ̂(2) − θ∥2 | Z, ∥θ∥ > r) Pr(∥θ∥ > r | Z)

≥ E(∥θ̂(1) − θ∥2 ∧ ∥θ̂(2) − θ∥2 | Z, ∥θ∥ ≤ r) Pr(∥θ∥ ≤ r | Z)

≥ E[(∥θ̂(1)∥ − ∥θ∥)2 ∧ (∥θ̂(2)∥ − ∥θ∥)2 | Z, ∥θ∥ ≤ r]

× Pr(∥θ∥ ≤ r | Z). (79)

We now define
r ≜ arg

ρ∈R>0

{Pr(∥θ∥ ≤ ρ | Z) =
1

2
}. (80)

Also, observing that ϵ < JMS (as otherwise the lemma holds trivially since JZ > 0), and using the assumption that the second
moment of the joint distribution of θ and Z is finite, we set

a0(ϵ) ≜ 1 + r +
√
2(JMS − ϵ). (81)

We first state and prove the following propositions.

Proposition 2. If both ∥θ̂(1)∥ > a0(ϵ) and ∥θ̂(2)∥ > a0(ϵ), then JZ(θ̂) > JMS − ϵ.
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Proof. Employing definitions (80) and (81) in (79) yields

JZ(θ̂) ≥ [(∥θ̂(1)∥ − r)2 ∧ (∥θ̂(2)∥ − r)2] Pr(∥θ∥ ≤ r | Z)

> [a0(ϵ)− r]2 Pr(∥θ∥ ≤ r | Z)

=
1

2
[1 +

√
2(JMS − ϵ)]2 > JMS − ϵ. (82)

Prior to presenting the next proposition we now assume that ∥θ̂(2)∥ ≥ ∥θ̂(1)∥ and define D ≜ ∥θ̂(2)∥ − ∥θ̂(1)∥.

Proposition 3. For any number ϵ ∈ R>0 there exists a number L(ϵ) ∈ R>0 such that if D > L(ϵ) then JZ > JMS − ϵ.

Proof. Define φ(θ̂(1)) ≜ E[∥θ̂(1) − θ∥2 | Z]. Then, since ∂V is a set of measure zero, the law of total probability yields

φ(θ̂(1)) = EV1
z ∥θ̂(1) − θ∥2 Pz(V1) + EV2

z ∥θ̂(1) − θ∥2 Pz(V2). (83)

Equation (83) yields
EV1
z ∥θ̂(1) − θ∥2 Pz(V1) = φ(θ̂(1))− EV2

z ∥θ̂(1) − θ∥2 Pz(V2). (84)

Expressing JZ using the law of total probability and using (84) yields

JZ = φ(θ̂(1))− f1 + f2 (85)

where we have defined

f1 ≜ EV2
z ∥θ̂(1) − θ∥2 Pz(V2) (86)

f2 ≜ EV2
z ∥θ̂(2) − θ∥2 Pz(V2). (87)

Clearly, f1 ≥ 0 and f2 ≥ 0. Using (7) and the monotonicity of the probability measure, we have

Pz(V2) = Pr(∥θ̂(1) − θ∥2 − ∥θ̂(2) − θ∥
2
> 0 | Z)

= Pr{∥θ̂(1)∥2 − ∥θ̂(2)∥2 + 2θT (θ̂(2) − θ̂(1)) > 0 | Z}

≤ Pr{∥θ̂(1)∥2 − ∥θ̂(2)∥2 + 2
∣∣∣θT (θ̂(2) − θ̂(1))∣∣∣ > 0 | Z}

≤ Pr{∥θ̂(1)∥2 − ∥θ̂(2)∥2 + 2∥θ∥∥θ̂(2) − θ̂(1)∥ > 0 | Z} (88)

where the last inequality follows from the Cauchy-Schwarz inequality. Using the triangle inequality yields

Pz(V2) ≤ Pr{∥θ̂(1)∥2 − ∥θ̂(2)∥2

+ 2∥θ∥(∥θ̂(1)∥+ ∥θ̂(2)∥) > 0 | Z}

= Pr{∥θ̂(1)∥ − ∥θ̂(2)∥+ 2∥θ∥ > 0 | Z} = Pr{∥θ∥ >
1

2
D | Z} (89)

showing that when D → ∞, V2 becomes a set of measure zero. Thus Pz(V1) → 1 and, hence, the LHS of (84) satisfies

lim
D→∞

EV1
z (∥θ̂(1) − θ∥2)Pz(V1) = φ(θ̂(1)) (90)

yielding limD→∞ f1 = 0. By the definition (7) of the Voronoi region V2, f2 ≤ f1, implying limD→∞ f2 = 0. Defining
f ≜ f1 − f2, (85) becomes

JZ = φ(θ̂(1))− f (91)

where f ≥ 0 and limD→∞ f = 0. Since, due to the fundamental theorem of MMSE estimation, JMS ≤ φ(θ̂(1)), we have

JZ ≥ JMS − f (92)

which yields the proposition.

Now set
a(ϵ) ≜ 1 + a0(ϵ) + L(ϵ). (93)

If θ̂ ̸∈ Sa(ϵ)

θ̂
then either

∥θ̂(2)∥ > a(ϵ) and ∥θ̂(1)∥ ≤ a(ϵ) (94)

or

∥θ̂(1)∥ > a(ϵ) and ∥θ̂(2)∥ > a(ϵ). (95)
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Assume, first, that (94) holds. If ∥θ̂(1)∥ > a0(ϵ) then ∥θ̂(2)∥ > a0(ϵ) and the lemma is proved based on Proposition 2.
Conversely, if ∥θ̂(1)∥ ≤ a0(ϵ), then, since ∥θ̂(2)∥ > a(ϵ),

D = ∥θ̂(2)∥ − ∥θ̂(1)∥ ≥ a(ϵ)− a0(ϵ) = 1 + L(ϵ) > L(ϵ) (96)

and the lemma follows from Proposition 3.
If (95) holds, then (93) implies that both ∥θ̂(1)∥ > a0(ϵ) and ∥θ̂(2)∥ > a0(ϵ), and the lemma follows from Proposition 2.

Lemma 2. There exists a number b0 ∈ R>0 such that for any b ≥ b0, JZ attains at least one minimum in Sb
θ̂

, at a point
where JZ < JMS. All such points satisfy (27).

Proof. Assuming that the first moment of the joint distribution of θ and Z is finite, let ζ̂(1) ≜ θ̂MS and ζ̂(2) ≜ ceθ1 (recalling
that eθ1 ∈ Rn is the unit vector along the first standard basis vector of Θ), with c ∈ (0, 1) such that ζ̂(2) ̸= θ̂MS. To show that
JZ(ζ̂) < JMS, where ζ̂ comprises the estimators ζ̂(1) and ζ̂(2), we use the law of total probability to rewrite (5) as

JZ(ζ̂) = EV1(ζ̂)
z (∥ζ̂(1) − θ∥2)Pz(V1(ζ̂)) + EV2(ζ̂)

z (∥ζ̂(2) − θ∥2)Pz(V2(ζ̂)). (97)

Because θ is continuous in Θ and ζ̂(2) has a bounded norm, Pz(V2(ζ̂)) > 0. Thus, using the definition (7) of V2, (97) yields

JZ(ζ̂) < EV1(ζ̂)
z (∥ζ̂(1) − θ∥2)Pz(V1(ζ̂))

+ EV2(ζ̂)
z (∥ζ̂(1) − θ∥2)Pz(V2(ζ̂)) = φ(ζ̂(1)) = JMS. (98)

We next choose b0 based on ζ̂. Let
ϵ ≜ JMS − JZ(ζ̂). (99)

According to (98) ϵ > 0, and Lemma 1 states that there exists a number a(ϵ) ∈ R>0 such that if θ̂ ̸∈ Sa(ϵ)

θ̂
then JZ(θ̂) >

JMS − ϵ = JZ(ζ̂). Set
b0 ≜ 1 + a(ϵ) ∨ ∥θ̂MS∥ (100)

and consider the set Sb
θ̂

for any number b ≥ b0. Because Sb
θ̂

is closed and bounded, it is compact. Since JZ is continuous
everywhere, it is necessarily continuous in Sb

θ̂
. Thus, according to the Weierstrass extreme value theorem, JZ attains a minimum

in at least one point in Sb
θ̂

(the cost at all such points is, of course, identical). Henceforth denoting any of these minimum
points as ψ̂, the first part of the lemma states that JZ(ψ̂) < JMS. To show this, we notice that

∥ζ̂(1)∥ ∨ ∥ζ̂(2)∥ = ∥θ̂MS∥ ∨ c < b0 (101)

so that ζ̂ ∈ (Sb0
θ̂
)o, where we use the notation Ao for the interior of A, and, consequently, ζ̂ ∈ (Sb

θ̂
)o. Since JZ(ψ̂) ≤ JZ(ζ̂),

the first part of the lemma follows upon invoking (98).
Continuing to the second part of the lemma, we now prove, by contradiction, that ψ̂ satisfies (27). If it does not, then either

1) it is an interior point where JZ is non-differentiable, or 2) it is located along the boundary of Sb
θ̂

. We contradict each case
separately.

We first show that none of the minimum points can be located at an interior point where JZ is non-differentiable. Let

Y ≜
{
θ̂ ∈ Θ×Θ | θ̂(1) = θ̂(2)

}
. (102)

Each point in Y is a pair of estimates for which JZ is non-differentiable. Assume that ψ̂ ∈ (Sb
θ̂
)o ∩ Y . Then ψ̂(1) = ψ̂(2),

giving

JZ(ψ̂) = φ(ψ̂(1)). (103)

Now set ξ̂(1) ≜ ψ̂(1) and ξ̂(2) ≜ cbeθ1 with c ∈ (0, 1) such that ξ̂(2) ̸= ψ̂(1). Obviously, ξ̂ ̸∈ Y , and

∥ξ̂(1)∥ ∨ ∥ξ̂(2)∥ = ∥ψ̂(1)∥ ∨ cb < b (104)

so that ξ̂ ∈ (Sb
θ̂
)o. Analogously to (98) and using (103) we have

JZ(ξ̂) < φ(ξ̂(1)) = φ(ψ̂(1)) = JZ(ψ̂), (105)

contradicting the assumption that JZ has a minimum at ψ̂ ∈ (Sb
θ̂
)o.

Now assume that ψ̂ is located along the boundary of Sb
θ̂

. Then ψ̂ ̸∈ Sa(ϵ)

θ̂
, and, according to Lemma 1, JZ(ψ̂) > JZ(ζ̂).

Recalling that ζ̂ ∈ (Sb
θ̂
)o yields a contradiction to the assumption that ψ̂ is a minimum point of JZ in Sb

θ̂
.
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Returning to the proof of Theorem 1, let b0 be a number satisfying Lemma 2, and consider b ≥ b0 . Then, according to
Lemma 2, there exists at least one minimizer of JZ in Sb

θ̂
, at a point that satisfies (27). Denote the value of JZ at any such

minimum point as J∗
Z (recall that the costs at all minimum points are identical). Then, according to Lemma 2,

J∗
Z < JMS. (106)

Define
ϵ ≜ JMS − J∗

Z . (107)

According to Lemma 1, there exists a number a(ϵ) > 0 such that

JZ(θ̂) > JMS − ϵ = J∗
Z ∀θ̂ ̸∈ Sa(ϵ)

θ̂
. (108)

Now consider the set Sc
θ̂

with
c ≜ a(ϵ) ∨ b. (109)

According to Lemma 2 and based on (109), there is at least one minimum point in Sc
θ̂

, where the cost (which is identical for

all minimum points) does not exceed J∗
Z because Sa(ϵ)

θ̂
∈ Sc

θ̂
. At any such point, thus, the cost is strictly smaller than JMS

due to (106). Outside of Sc
θ̂

, JZ > J∗
Z due to Lemma 1 and (109).

APPENDIX B
PROOF OF THEOREM 2

Proof. Let T ⊂ Θ×Θ be defined as T ≜ {θ̂(1) = θ̂MS} ×Θ. In the hierarchical problem (3) the objective is to minimize a
restriction of the cost JZ , originally defined in (5) on Θ×Θ, to the subdomain T , that is

JZ↾T (θ̂
(2)) ≜ JZ(θ̂

(1) = θ̂MS, θ̂
(2)). (110)

As a restriction of JZ , JZ↾T is continuous everywhere and differentiable except at θ̂(2) = θ̂MS.
The proof of Theorem 2 follows the proof of Theorem 1 in a restricted form. We begin with the following lemma.

Lemma 3. For any number ϵ ∈ R>0 there exists a number a(ϵ) ∈ R>0 such that if ∥θ̂(2)∥ > a(ϵ) then JZ↾T (θ̂
(2)) > JMS − ϵ.

Proof. Because JZ↾T is a restriction of JZ , Proposition 3 applies with θ̂(1) = θ̂MS; hence, there exists a number L(ϵ) ∈ R>0

such that if D > L(ϵ) then JZ↾T > JMS − ϵ. Set

a(ϵ) ≜ 1 + L(ϵ) + ∥θ̂MS∥ (111)

and assume that ∥θ̂(2)∥ > a(ϵ). The lemma follows upon observing that

D ≥ 1 + L(ϵ) > L(ϵ). (112)

Lemma 4. There exists a number b0 ∈ R>0 such that for any b ≥ b0, JZ↾T attains a minimum in {θ̂(2) ∈ Θ | ∥θ̂(2)∥ ≤ b},
at a point where JZ↾T < JMS. This point satisfies (32).

Proof. The proof follows the proof of Lemma 2 in restricted form, where JZ is replaced by JZ↾T , Sb
θ̂

by its subset Sb
θ̂
∩

{∥θ̂(1)∥ = ∥θ̂MS∥}, Lemma 1 by Lemma 3, and (27) by (32).

Having these two lemmas on hand, the proof of Theorem 2 follows the proof of Theorem 1 in a restricted form, where JZ
is replaced by JZ↾T , the domain Θ × Θ by the subdomain T , Lemma 1 by Lemma 3, Lemma 2 by Lemma 4, and (27) by
(32).

APPENDIX C
THE GAUSSIAN ALTRUISM EQUATIONS

This Appendix investigates equations (31) and (35), the heterarchical and hierarchical altruism equations, respectively, in
the Gaussian case. Recall that both equations are scalar, algebraic equations, that depend on ûm.

In the sequel we define x to be the realization of the random variable ûm corresponding to the realization z of the measurement
vector Z. Furthermore, given the realization z, we define the conditional random vector Y as

Y ≜ u1 | Z = z (113)

and assume that Y ∼ N
(
µY , σ

2
Y

)
.
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A. Heterarchical Altruistic Estimation

For a given realization z of Z, and using the definition (113), the heterarchical altruism equation (31) reduces to

x =
1

2
[E(Y | Y < x) + E(Y | Y > x)]. (114)

Let X be the standardized version of Y
X ≜

Y − µY

σY
(115)

with probability density function and cumulative density function ϕ and Φ, respectively. Then, letting χ be the realization of
X corresponding to the realization x of Y , we have [10, Theorem 19.2]

E(Y | Y > x) = µY + σY
ϕ(χ)

1− Φ(χ)
(116a)

E(Y | Y < x) = µY − σY
ϕ(χ)

Φ(χ)
. (116b)

Using equations (116) in (114) yields
ϕ(χ)

2[1− Φ(χ)]
− ϕ(χ)

2Φ(χ)
− χ = 0. (117)

It is easy to see that χ = 0 is a solution of (117). Noting (115), this solution of the realization-based (117) is equivalent to
(39), the solution of the general equation (31), thus proving Proposition 1. In the following lemma we prove that this solution
is unique.

Lemma 5. χ = 0 is the only solution of (117).

Proof. To prove the lemma we define the function

fHT(χ) ≜
ϕ(χ)

2[1− Φ(χ)]
− ϕ(χ)

2Φ(χ)
− χ (118)

and show that χ = 0 is its only zero. Since fHT is an anti-symmetric function, it is sufficient to prove that it does not vanish
in (0,∞). We do this by proving that fHT(χ) < 0 for all χ > 0.

Defining

f
(1)
HT (χ) ≜ − ϕ(χ)

2Φ(χ)
+ ϕ(0)− χ

2
(119)

and

f
(2)
HT (χ) ≜

ϕ(χ)

2[1− Φ(χ)]
− ϕ(0)− χ

2
(120)

yields
fHT(χ) = f

(1)
HT (χ) + f

(2)
HT (χ). (121)

We thus proceed to prove, separately, that both

f
(1)
HT (χ) < 0 ∀χ > 0 (122)

and
f
(2)
HT (χ) < 0 ∀χ > 0. (123)

To prove (122) we recast it as
g
(1)
HT (χ) < 0 ∀χ > 0 (124)

where
g
(1)
HT (χ) ≜ −ϕ(χ) + 2ϕ(0)Φ(χ)− χΦ(χ). (125)

The definition (125) gives
g
(1)
HT (0) = 0. (126)

Since g
(1)
HT (χ) is a continuous function of its argument over (0,∞), it suffices to show that it is monotonically strictly decreasing

in that interval. To this end, we calculate its derivative

g
′(1)
HT (χ) = 2ϕ(0)ϕ(χ)− Φ(χ) (127)
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and notice that, since ϕ(χ) < ϕ(0) and Φ(χ) > 1
2 in (0,∞),

g
′(1)
HT (χ) < 2ϕ(0)2 − 1

2
≈ −0.1817 ∀χ > 0. (128)

For illustrative purposes, the function g
(1)
HT (χ) and its first derivative are depicted in Fig. 3.
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Fig. 3: The function g
(1)
HT (χ) (solid line) and its first derivative (dashed line).

To prove (123), we recast it as
g
(2)
HT (χ) < 0 ∀χ > 0 (129)

where
g
(2)
HT (χ) ≜ ϕ(χ)− 2ϕ(0) + 2ϕ(0)Φ(χ)− χ[1− Φ(χ)]. (130)

The proof rests on the continuity of g
(2)
HT (χ) and its derivatives over [0,∞). Calculating the first three derivatives of g

(2)
HT (χ)

yields

g
′(2)
HT (χ) = Φ(χ) + 2ϕ(0)ϕ(χ)− 1 (131)

g
′′(2)
HT (χ) = ϕ(χ)[1− 2ϕ(0)χ] (132)

g
′′′(2)
HT (χ) = ϕ(χ)[2ϕ(0)(χ2 − 1)− χ]. (133)

Clearly, χ2 ≜ 1
2ϕ(0) is the single zero of g′′(2)HT (χ) in its entire domain. Since g

′′′(2)
HT (χ2) = −2ϕ(0)ϕ(χ2) < 0, χ2 is the single

maximum point of g′(2)HT (χ), and we compute
g
′(2)
HT (χ2) ≈ 0.04. (134)
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We now investigate the behavior of g′(2)HT (χ) on both sides of its single extremal point. Clearly, g′(2)HT (χ) → 0 as χ → ∞. Since
χ2 is the only extremal point of g

′(2)
HT (χ), this yields that g′(2)HT (χ) > 0 for all χ ≥ χ2, from which we conclude that g(2)HT (χ)

does not have any extremal point in [χ2,∞).
Turning our attention to χ < χ2, we first notice that g

′(2)
HT (0) ≈ −0.1817. Since g

′(2)
HT (χ2) > 0, the mean value theorem

yields that g′(2)HT (χ) must have a zero in (0, χ2). Moreover, since χ2 is the only extremal point of g
′(2)
HT (χ), we conclude that

g
′(2)
HT (χ) is monotonically strictly increasing in (0, χ2), so that its zero in (0, χ2) is unique. Denote that zero as χ1. Clearly,
χ1 is a unique minimum point of g

(2)
HT (χ) in [0, χ2], since g

′(2)
HT (χ) < 0 for 0 ≤ χ < χ1 and g

′(2)
HT (χ) > 0 for χ1 < χ ≤ χ2.

Noting that g(2)HT (0) = 0 and g
(2)
HT (χ2) ≈ −0.0336, we conclude that g(2)HT (χ) < 0 in (0, χ2].

To prove that g(2)HT (χ) < 0 also for χ > χ2, we observe that g(2)HT (χ) → 0 as χ → ∞, which follows from both

ϕ(χ)− 2ϕ(0) + 2ϕ(0)Φ(χ) → 0 as χ → ∞ (135)

and
χ[1− Φ(χ)] → 0 as χ → ∞ (136)

where the latter limit results from using L’Hôpital’s rule. Since g
(2)
HT (χ2) < 0, the proof then follows from our previous

conclusion that g(2)HT (χ) does not have any extremal point in [χ2,∞). This also concludes the proof of the lemma.
For illustrative purposes, the function g

(2)
HT (χ) and its first two derivatives are depicted in Fig. 4.
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Fig. 4: The function g
(2)
HT (χ) (solid line), its first derivative (dashed line), and its second derivative (dash-dotted line).

B. Hierarchical Altruistic Estimation
For a given realization z of Z the hierarchical altruism equation (35) reduces to

x =
1

2
[µY + E(Y | Y > x)] (137)
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which, using (116a), yields
ϕ(χ)

2[1− Φ(χ)]
− χ = 0. (138)

As opposed to its heterarchical counterpart (117), the hierarchical equation (138) does not lend itself to a closed form
solution. Resorting to numerical methods we find its solution to be

χ =
1

2
wHI (139a)

with

wHI ≈ 1.224. (139b)

Furthermore, this solution is unique, as proved in the following lemma. Noting (115), this solution of the realization-based
(138) is equivalent to (56), the solution of the general equation (35).

Lemma 6. (139) is the unique solution to (138).

Proof. Clearly, (138) cannot have a non-positive solution. To prove that it cannot have a positive solution other than (139),
we recast (138) as

gHI(χ) = 0 (140)

where
gHI(χ) ≜ ϕ(χ)− 2χ[1− Φ(χ)]. (141)

The rest of the proof relies on the continuity of gHI(χ) and its derivatives, the first three of which are calculated to be

g′HI(χ) = χϕ(χ)− 2[1− Φ(χ)] (142)

g′′HI(χ) = ϕ(χ)(3− χ2) (143)

g′′′HI(χ) = χϕ(χ2 − 5). (144)

To facilitate the ensuing development, we summarize in Table I the signs of gHI(χ) and its first three derivatives at χ = 0 and
at χ =

√
3. The only root of g′′HI(χ) in [0,∞) is χ =

√
3. Since g′′′HI(

√
3) < 0, it follows that this root is the only maximum

TABLE I: Signs of gHI(χ) and its first three derivatives at χ = 0 and χ =
√
3.

χ = 0 χ =
√
3

sgn gHI(χ) + −
sgn g′HI(χ) − +
sgn g′′HI(χ) + 0
sgn g′′′HI (χ) 0 −

point of g′HI(χ) in [0,∞), rendering g′HI(χ) monotonically non-increasing for χ >
√
3. Furthermore, since g′HI(

√
3) > 0 and

g′HI(χ) → 0 as χ → ∞, it follows that g′HI(χ) > 0 in [
√
3,∞), rendering gHI(χ) monotonically strictly increasing in that

interval. Now, using (136), it is easy to see that gHI(χ) → 0 as χ → ∞. Since gHI(
√
3) < 0, we conclude that gHI(χ) does

not possess any root in [
√
3,∞).

To complete the proof, we need to show that gHI(χ) does not possess any root in (0,
√
3) other than (139) (as Table I shows

that both 0 and
√
3 are not roots of gHI(χ)). Since g′HI(0) < 0 and g′HI(

√
3) > 0, and as g′HI(χ) does not possess an extremum

in (0,
√
3), it must be monotonically increasing in that interval, crossing zero at a single point in (0,

√
3). Thus, gHI(χ) can

have only a single extremal point in that interval. This extremal point is a minimum point since g′′HI(χ) > 0 in (0,
√
3). Since

gHI(0) > 0 and gHI(
√
3) < 0, we thus conclude that gHI(χ) can cross zero only once in (0,

√
3). This unique crossing is at

(139).
For illustrative purposes, the function gHI(χ) is depicted in Fig. 5.
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Fig. 5: The function gHI(χ). Superimposed is its numerically calculated root, χ ≈ 0.612 (circle).
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