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Existingmissile guidance strategies are traditionally basedon the separation theorem,whichhasneverbeenproven

valid in realistic guidance scenarios. In such cases, only the general separation theorem may be applied, implying a

separately designed estimator and a guidance law accounting for the conditional probability density function. A new

general-separation-theorem-compliant geometry-based approach is proposed to fusion of estimation and guidance.

The conventional notion of reachability sets is extended, facilitating the introduction of miss-sets. A stochastic

guidance strategy is proposed that aims at maximizing the pursuer’s single-shot kill probability by driving its own

miss-set to optimally cover the evader’s miss-set (in a probabilistic sense). Information-based trajectory shaping is

employed, when applicable, to enhance the scenario’s observability, thereby reducing the evader’s miss-set

uncertainty. Computationally efficient sequential Monte Carlo methods are employed to estimate the evader’s miss-

set and implement the guidance scheme. A numerical simulation study is used to demonstrate the proposed

methodology’s robustness and accuracy in a realistic stochastic engagement. The performance of the proposed

strategy is comparedwith that of an advanced perfect-information guidance law, addressing (in particular) real-time

implementation issues and constraints. Proof-of-concept simulations demonstrate that the method is real-time

amenable using present-day technology.

I. Introduction

G UIDING a pursuer toward an evader has traditionally been

regarded as a perfect-information deterministic problem. Most

notably, guidance laws like proportional navigation and augmented

proportional navigation [1], the optimal guidance law [2], and

differential-game-based guidance laws [3,4] were formulated using

this approach. The case of perfect but delayed information was

addressed in [5]. The differential game approachwas also used in [6],

where information on target orientation was utilized, and in [7],

which integrated the estimation delay compensated law of [5] with a

time-varying game model.

In the absence of complete information, a separately designed

estimator has to be incorporated to provide the missing information

about the evader’s state. There are many options for such an

estimator, and most of them assume some knowledge about the

evader’s dynamic model. When this knowledge is limited, more

complicated estimation tools such as multiple-model adaptive

estimation [8], the interacting multiple model [9], interval Kalman

filtering [10], and particle filtering [11] can be incorporated. All of

these estimation methods provide some information about the

conditional probability density function (PDF) of the evader’s state,

given themeasurements. This conditional PDF is based, of course, on

the knowledge the pursuer holds. In the case of particle filtering [11],

the outcome of the estimator is a particle-based representation of the

conditional PDF.

The practice of matching a perfect-information deterministic

guidance law with a separately designed estimator (that provides this

information) in effect assumes that the separation theorem [12] is
applicable. Unfortunately, as was also mentioned in [13], due to
nonlinearities as well as non-Gaussian noises, this theorem has never
been proven valid for realistic guidance scenarios. Moreover, many
works in the field of guidance (see, e.g., [14,15]) have already pointed
out the need for integration of guidance with estimation.
Based on information pattern theory, a general separation theorem

(GST) was derived in [16]. The GSTassumes only a causal discrete-
time system (possibly nonlinear, possibly non-Gaussian), resulting in
a classical information pattern [16]. Under these assumptions, the
GST states that the estimator may be designed separately from the
guidance law; yet, when designing the guidance law, the posterior
PDF of the target’s state needs to be addressed. In cases where the
separation theorem is not applicable, as is the case in guidance, the
GST predicts that disregarding this conditional PDF when designing
the guidance law will result in degraded performance. Cases in point
are [17,18], which addressed a linear problem with Gaussian noises
where the separation theorem is not applicable because of an
acceleration saturation. In [17], the nonlinear saturation element was
replaced by a linear representation through which the conditional
PDF affects the guidance. On the other hand, [18] attempted to solve
the stochastic Hamilton–Jacobi–Bellman equations directly,
including the nonlinear saturation effect. Either way, both papers
showed that careful consideration of the conditional PDF improves
performance.
A simplified and intuitive approach to the linearized Gaussian

problem was presented in [19]. Expanding upon and consolidating
the results of [20–22], the present paper presents a novel, unified
approach to integrating guidance with estimation in a generalized
nonlinear non-Gaussian framework. The new integrated estimation/
guidance methodology is compliant with the GST. Furthermore, this
methodology addresses the estimation needs by automatically
shaping the pursuer’s trajectory to improve observability. Based on
the GST guideline, the proposed methodology integrates the
estimated conditional PDF into the guidance algorithm.A key feature
of the new methodology is the introduction of the notions of pursuer
and evader miss-sets, which follow from an extension of the
conventional notion of reachability set [23].
The methodology presented herein is developed in three stages.

In the first stage, developed in Sec. III, a deterministic approach is
taken, in the sense that the evader’s state is assumed to be perfectly
known. Through this approach, necessary conditions to guarantee a
capture are derived, resulting in what we term the miss-set inclusion
theorem. In the second stage, Sec. IV, the approach is modified to
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accommodate stochastic features and uncertainties due to estimation
errors. By this modification, it is shown that capture cannot be
guaranteed, yet the optimal guidance law is a result of a global
optimization. In the last stage, Sec. V, we derive a suboptimal
guidance law, termed the maximum-inclusion guidance law, which
can be implemented in a feedback control configuration.
The remainder of this paper is organized as follows. The system

model is defined and the problem is mathematically formulated in
the next section. The underlying methodology for integrating
estimation and guidance is presented and discussed in Secs. III–V.
Using sequential Monte Carlo (SMC) methods [11], a numerical
procedure for implementing the proposedmethodology is presented
in Sec. VI. A simulation study demonstrating the application of the
proposed guidance methodology in a three-dimensional (3-D)
nonlinear engagement scenario is presented in Sec. VII. Special
attention is given to computational aspects, including real-time
implementability using onboard processors and accuracy
degradation due to the use of approximate Monte Carlo methods
with a small number of particles. Concluding remarks are offered in
the final section.

II. Problem Formulation

A nonlinear non-Gaussian pursuer–evader interception problem is
addressed. The equations of motion (EOMs) of both sides are
given by

_xP�t� � fP�xP�t�; uP�t�; t�; uP�t� ∈ UP�t� (1a)

_xE�t� � fE�xE�t�; uE�t�; wE�t�; t�; uE�t� ∈ UE�t� (1b)

where xP�t�, uP�t�, andUP�t� are the pursuer state, control, and set of
feasible controls at time t, respectively; xE�t�, uE�t�, and UE�t� are
the respective evader variables at time t; and wE�t� is a white noise
processwith a knownPDFpwE having a bounded supportWE�t�. The
distributions of the initial states are assumed to be known and to have
bounded supports. It is assumed that uP�t� is a piecewise-constant
function, being constant on time segments of length Δt. For
simplicity, let tk denote kΔt and let uPk denote uP�tk�.
It is assumed that the pursuer possesses knowledge regarding the

evader’s dynamics (in particular, in Sec. VII, it is assumed that the
pursuer knows the evader’s acceleration time constant and
acceleration bounds). Although this assumption is commonplace
(see, e.g., [24–26]), we assess, in Sec. VII, the sensitivity of our new
methodology to this assumption, and we show that, when the pursuer
has a less precise knowledge of the evader’s dynamics, a graceful
degradation of performance can be expected.
The pursuer acquires partial noisy measurements of the evader’s

state every Δt s according to

zPk � hP
�
xPk ; x

E
k ; tk

�
� vPk (2)

where vPk is the measurement noise with a known PDF. The pursuer
alsomeasures its own current state. Relative to the uncertainties in the
measurements of the evader’s state, these measurements may be
assumed noise free. Hence, the pursuer’s current state is
assumed known.
Let ZP

k be the pursuer’s observation history augmented with the
initial conditions. Using (for example) particle filtering methodol-
ogy, an estimator that generates the evader’s current state conditional
PDF pxE

k
jZP

k
can be constructed.

The engagement termination time tf is defined by

tf ≜ arg inf
s>t

r
�
xP�s�; xE�s�

�
(3)

where r�xP�s�; xE�s��, which is the distance between the evader and
the pursuer at time s, is given by

r
�
xP�s�; xE�s�

�
�

��L�xP�s�� − L�xE�s��
��
2

(4)

In Eq. (4), L�xP�s�� and L�xE�s�� are the location coordinate

vectors of the states xP�s� and xE�s� in 3-D space, respectively. Note
that tf is a function of the current time t because it depends on the

current evader and pursuer states.
The goal of this work is to devise a feedback control law that

conforms with the guidelines of the GST, i.e., of the form

uPk � C
�
xPk ; pxE

k
jZP

k

�
(5)

that would be optimal in the sense of interception effectiveness. The
best outcome for a pursuer, in a perfect-information interception

engagement, is capture, which is defined by r�xP�tf�; xE�tf�� � 0.
Yet, as shown in Sec. IV, demanding capture in a stochastic
engagement is too challenging, and a relaxed goal should be posed.

The interception outcome can be defined by the single-shot kill
probability (SSKP), which is a function of the miss distance and the

lethality function of the warhead. To do that, we use the following

simplified form for the lethality function [27]:

ϒr0�η� �
�
l for η ≤ r0
0 otherwise

(6)

where 0 < l ≤ 1 is the given lethality of the warhead, and r0 is the
effective range of thewarhead. Then, in a stochastic environment, the

performance index to bemaximized by the pursuer andminimized by
the evader is the SSKP, given by

J�r0� ≜ E
h
ϒr0�r�xP�tf�; xE�tf���

i
� l Pr

h
r�xP�tf�; xE�tf�� ≤ r0

i
(7)

III. Stage 1: Deterministic Approach

The approach adopted in this section is deterministic in the sense

that the evader’s state is assumed to be perfectly known. Through this
approach, the conditions needed to satisfy a capture of the evader by

the pursuer are investigated.
Let the pursuer reachability set RP�xP�t�; t� ⊂ R3 × R�, where

R� denotes the real positive numbers, be the set

RP�xP�t�; t� ≜ f�L�xP�s��; s�jxP�s� � ΦP
τ�t→s�xP�t�; uP�τ��; s ≥ tg

(8)

for all pursuer control functions uP�τ�τ�t→s, such that u
P�τ� ∈ UP�τ�

∀ τ ∈ �t; s�; and ΦP
τ�t→s�·; ·� is the nonlinear state transformation

from time t to time s resulting from Eq. (1a). Thus, at time t, the set of
all points reachable by the pursuer from time t onward [RP�xP�t�; t�]
is an extrapolation in time from a given current state xP�t� for all
possible future inputs. Notice that this definition of reachability set
constitutes an extension of the common definition found in the

literature (e.g., [23]) because it poses no time limit on the

extrapolation.
Based on Eq. (1b), and analogous to the definition ofRP�xP�t�; t�,

let the evader reachability setRE�xE�t�; t� ⊂ R3 × R� be defined as

RE�xE�t�; t�
≜ f�L�xE�s��; s�jxE�s� � ΦE

τ�t→s�xE�t�; uE�τ�; wE�τ��; s ≥ tg
(9)

for all evader control functions uE�τ�τ�t→s such that u
E�τ� ∈ UE�τ�

∀ τ ∈ �t; s� and all wE�τ� process noise realizations.
The engagement’s possible outcome set at a given time t

(i.e., all possible termination locations of both players in 3-D space

and the associated termination times) is expressed with regard to
the reachability sets by the miss-set M�xP�t�; xE�t�; t� ⊂ R3 ×
R3 × R�, which is defined as
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M�xP�t�; xE�t�; t� ≜
8<
:�L�xP�s��; L�xE�s��; s�

������
�L�xP�s��; s� ∈ RP�xP�t�; t�;
�L�xE�s��; s� ∈ RE�xE�t�; t�;
s:t: �xP�s�; xE�s�; s� ∈ T ; s ≥ t

9=
; (10)

where T is the termination set imposed by Eq. (3). In the case of a
single pass by (i.e., no second chance for the pursuer), T may be
defined as

T ≜
�
�xP�tf�; xE�tf�; tf�

���� _r�x
P�s�; xE�s�� < 0 for s < tf;

_r�xP�s�; xE�s�� � 0 for s � tf

�

(11)

The evader and pursuer miss-sets, i.e., their terminal location sets
[ME�xP�t�;xE�t�;t�⊂R3×R� and MP�xP�t�;xE�t�;t�⊂R3×R�,
respectively] are defined as

ME�xP�t�;xE�t�;t�≜f�L�xE�s��;s�j∃xP�s�
s.t.�L�xP�s��;L�xE�s��;s�∈M�xP�t�;xE�t�;t�;s≥tg (12)

MP�xP�t�;xE�t�;t�≜f�L�xP�s��;s�j∃xE�s�
s.t.�L�xP�s��;L�xE�s��;s�∈M�xP�t�;xE�t�;t�;s≥tg (13)

Notice that the evader and pursuer miss-sets result from the
projection of M�xP�t�; xE�t�; t� onto their respective R3 × R�
spaces.ME�xP�t�; xE�t�; t� describes the evader’s terminal location
and the time when it is achieved in all the scenario outcomes that are
possible from given xP�t�, xE�t�, and t. The setMP�xP�t�; xE�t�; t� is
defined analogously for the pursuer.
For notational conciseness, we omit in the ensuing the explicit

dependence on the current state, where this does not hinder
readability. In particular, we replace the notation RP�xP�t�; t� by
RP�t�, RE�xE�t�; t� by RE�t�, M�xP�t�; xE�t�; t� by M�t�,
MP�xP�t�; xE�t�; t� by MP�t�, and ME�xP�t�; xE�t�; t� by ME�t�.
Observation 1:

MP�t� ⊂ RP�t� ∀ t < tf (14)

ME�t� ⊂ RE�t� ∀ t < tf (15)

The observation follows from noting that, in order for any point to
be included in a player’s terminal location set, it must be reachable by
that player.
Observation 2 (inclusion property): The reachability sets and

terminal location sets satisfy

RE�s� ⊂ RE�t� ∀ t < s < tf (16)

RP�s� ⊂ RP�t� ∀ t < s < tf (17)

ME�s� ⊂ ME�t� ∀ t < s < tf (18)

MP�s� ⊂ MP�t� ∀ t < s < tf (19)

Recalling the reachability set definition [Eq. (9)], the inclusion
property for the evader results from observing that, in generating
RE�xE�s�; s�, only the information (i.e., control function uE and
process noise realization wE) on the time interval �s; tf� is used;
whereas in generating RE�xE�t�; t�, in addition to that information,
the information on the time interval �t; s� is used as well. Noting that
there exists a control function that propagates the evader from state
xE�t� to xE�s�, we conclude that any point in RE�xE�s�; s� also
belongs to RE�xE�t�; t�. The converse is not true, however. To see

this, let a different control function on �t; s� propagate xE�t� to a

different evader state at time s: say, xE�s�0 . Then, as we have already
shown, any point in RE�xE�s�0 ; s� is also in RE�xE�t�; t�. Since
xE�s� 0 ≠ xE�s�, then RE�xE�s� 0; s� ≠ RE�xE�s�; s�, which means

that there exist points in RE�xE�t�; t� that do not belong to

RE�xE�s�; s�. The inclusion property forRP�t�,ME�t�, andMP�t�
may be deduced by a similar reasoning. Graphically depicting the

miss-setmethodology to be presented in the ensuing, Fig. 1 illustrates

the inclusion property stated in Observation 2. In Fig. 1, the locations

at times tk and tk�1 of the pursuer (P) and evader (E) are depictedwith
the resulting reachability sets and miss-sets
Theorem 1: A capture is guaranteed if

ME�t� ⊂ RP�t� ∀ t ≤ tf (20)

Proof: That Eq. (20) constitutes a sufficient condition for

guaranteeing a capture follows upon observing that it implies that all

evader terminal locations are always reachable by the pursuer.Hence,

for any evader terminal location, there exists a pursuer control

function that defines a pursuer trajectory through that possible evader

terminal location. □

A necessary and sufficient condition is next stated in the following

theorem.
Theorem 2: A capture is guaranteed if, and only if,

ME�t� ⊂ MP�t� ∀ t ≤ tf (21)

Proof: To prove sufficiency, one needs only observe that the set

MP�tf� is a singleton (i.e., all scenarios starting in a capture situation
end immediately because the termination criterion is satisfied).

Similarly,ME�tf� possesses the same property. Equation (21) gives

ME�tf� ⊂ MP�tf�. Because both sets are singletons, they must be

identical, indicating a capture.
To prove necessity, let ζ ∈ R3 be any capture location. By

definition, there exists a time T ≥ t such that �ζ; T� ∈ ME�t� and
�ζ; T� ∈ RP�T�. (Notice that T is the termination time for a scenario

starting at the current state and having ζ as the evader termination

location.) The inclusion property (Observation 2) implies that

�ζ; T� ∈ RP�t�. Using Eqs. (10) and (13), we have �ζ; T� ∈ MP�t�.

Fig. 1 Graphical illustration of the miss-set inclusion methodology.
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The theorem then follows upon recalling that ζ is an arbitrary capture
location. □

Assuming that the pursuer control function is applied at discrete
times tk, k � 1 : : :∞, let Rγ

P�tk�, Mγ�tk�, and Mγ
P�tk� be

constructed in a manner similar to RP�tk�, M�tk�, and MP�tk�,
respectively,where the first control value in all feasible sets fuPi g∞i�k is
fixed at γ, i.e., uP�tk� � γ. Then, using Theorem 2, a methodology
can be derived for guaranteeing a capture. Illustrated in Fig. 1, this
methodology is summarized in the following theorem.
Theorem 3 (miss-set inclusion):Any control function u

�P
k , selected

such that

Mu
�P
k

P �tk� ⊃ ME�tk� ∀tk ≤ tf (22)

guarantees a capture.
Proof: By Observation 2 and by setting uPk � u

�P
k , it follows that

ME�tk�1� ⊂ ME�tk� ⊂ Mu
�P
k

P �tk� (23)

Observation 1 yields

Mu
�P
k

P �tk� ⊂ Ru
�P
k

P �tk� (24)

Noticing thatRu
�P
k

P �tk� � RP�tk�1� (Observation 2), Eqs. (23) and
(24) yield

ME�tk�1� ⊂ RP�tk�1� (25)

Becauseu
�P
k is selected such that Eq. (22) holds, Eq. (25) is satisfied

for all k, hence guaranteeing capture by Theorem 1. □

Let the pursuer admissible control set be defined as

U�
P�tk� ≜ fu�Pk ∈ UP�tk�jMu

�P
k

P �tk� ⊃ ME�tk�g (26)

Using this definition, we next show that, under some conditions,
the control function defined byTheorem 3may not be unique, andwe
state these conditions.
Observation 3: If the closure ofUP

k is a perfect set andu
�P
k ∈ U�

P�tk�
satisfies

∂ME�tk� ∩ ∂Mu
�P
k

P �tk� � ∅ (27)

where ∂S denotes the boundary of the set S, then u
�P
k is not unique.

To understand Observation 3, notice that each control value uPk ∈
UP

k generates a different miss-set in the next time step. Because of

Eq. (27), and the requirement that the closure of UP
k be a perfect set,

there exists a control γ ≠ u
�P
k sufficiently close to u

�P
k , for which

Eq. (27) still holds. The impact of Observation 3 is most felt when the

setMu
�P
k

P �tk� is much larger than the setME�tk�. In that case, Eq. (27)
may be maintained for a wide range of controls, and the demand that

the closure of UP
k be a perfect set may be relaxed.

Observation 3 facilitates trajectory shaping. That is, because the
control u

�P
k is not unique, it can be chosen from the set of controls that

satisfies Theorem 3. If implemented, each of these controls will
produce a different trajectory. Given a performance measure by
which each of these trajectories can be rated, the optimal trajectory
can be selected. Under the terms of Theorem 2, trajectory shaping has
a little value, because all trajectories end in a capture, but when
measurement uncertainties are introduced (as seen in the next
section), this situation dramatically changes.

IV. Stage 2: Stochastic Guidance

To apply the proposed methodology, the reachability sets and,
specifically, the miss-setM�tk� need to be estimated by the pursuer.
The evader state xEk is not known to the pursuer, but it can be estimated
by it to some degree of accuracy. Thus, the evader reachability set can

be estimated by replacing, in Eq. (9), the true state xEk by its estimate

x̂Ek , rendering the following estimate of the evader reachability set:

R̂E�x̂E�tk�; tk� ≜ f�L�x̂E�s��; s�jx̂Ek ∼ pxE
k
jZP

k
;

x̂E�s� � ΦE
τ�tk→s�x̂Ek ; ûE�τ�; wE�τ��; s ≥ tkg

(28)

where the control process ûE�τ�τ�tk→s is defined according to prior

knowledge that the pursuer holds on the evader’s dynamics, either in

the form of acceleration bounds or as a probabilistic model of the

target acceleration command. In the latter case, the resulting set ûE�τ�
can be regarded, for estimation needs, as a random process as well.
In much the same fashion as Eq. (10), the estimated miss-set is

M̂�tk�

�
8<
:�L�xP�s��;L�x̂E�s��;s�

������
�L�xP�s��;s�∈RP�tk�;
�L�x̂E�s��;s�∈ R̂E�tk�;
s:t: �xP�s�; x̂E�s�;s�∈T ;s≥ tk

9=
;
(29)

fromwhich M̂E�tk� and M̂P�tk� are constructed in the samemanner

as Eqs. (12) and (13), respectively. Note that, relative to the

knowledge the pursuer holds on the evader’s state, its knowledge of

its own state is assumed perfect; hence, RP�tk� is assumed known

in Eq. (29).
Observation 4: In the presence of noisy measurements, a capture

cannot be guaranteed.
Noting that ME�tk� ⊂ M̂E�tk�, it would seem, similarly to

Theorem 2, that a capture could be guaranteed if only the condition

M̂E�tk� ⊂ M̂P�tk� ∀ tk (30)

could have been maintained. However, in contrast with Theorem 2, it

is impossible to maintain Eq. (30). To see this, notice thatRP�tf� is a
singleton (the pursuer knows its own location at game termination)

but, due to the uncertainty in x̂Ek , R̂E�tf� is not a singleton, i.e., the
pursuer does not know the exact location of the evader.Hence, at best,

Eq. (30) may be maintained up to some time tG ≤ tf, i.e.,

M̂E�tk� ⊂ M̂P�tk� ∀ tk ≤ tG < tf (31)

This result is a generalization of the result presented in [28], which

illustrated this point in a linear problem setup for a line-of-sight rate

steering missile.
By Eq. (31), it is evident that, for all t > tG, it would be desirable to

place the pursuer miss-set so that it would cover the most probable

locations inwhich the evader terminal locationmay be found, i.e., the

evader miss-set. To quantify this statement, the following definitions

are introduced.
Define Ω ≜ R3 × R�. Denote T E�t� ∈ Ω and T P�t� ∈ Ω as the

terminal position and time pairs for the evader and pursuer,

respectively, estimated by the pursuer at time t. Obviously, T E�t� is
random because it depends on the future evader control function that,

for the pursuer, is assumed as a random input process in addition to

the process noise already assumed in the dynamics equation.
LetF be a σ-field of subsets ofΩ, and letPM̂E�t� be an appropriate

probability measure defined on F such that PM̂E�t��A� is the

probability that, at time t, the evader terminal location is in A,

∀ A ∈ F ; that is,

PM̂E�t��A� � Pr�T E�t� ∈ A� (32)

The triplet �Ω;F ; PM̂E�t�� is a probability space. One possible

construction for such a probability space is provided in Appendix A.
Define the guaranteed miss event, estimated by the pursuer,

denoted by G�t� ∈ F, as the set of all feasible evader terminal

locations that render a miss; that is,
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G�t� ≜ M̂E�t� \ M̂uP�t�
P �t� (33)

Also, define G⋆�t� as the set of all feasible evader terminal

locations that do not guarantee a miss; that is,

G⋆�t� ≜ M̂E�t� ∩ M̂uP�t�
P �t� (34)

Equations (33) and (34), and the definition of PM̂E�t�, yield

Pr�T E�t� ∈ G�t�� � PM̂E�t��M̂E�t� \ M̂uP�t�
P �t�� (35a)

Pr�T E�t� ∈ G⋆�t�� � PM̂E�t��M̂E�t� ∩ M̂uP�t�
P �t�� (35b)

It is easy to verify that G�t� and G⋆�t� are a partition of M̂E�t�,
whence

Pr�T E�t� ∈ G�t�� � Pr�T E�t� ∈ G⋆�t�� � 1 (36)

Theguaranteedmiss eventG�t� evolveswith time. It is of a particular

interest to examine how G�t� evolves from some past time s to the

current time t. This evolution is schematically depicted in Fig. 2.
The following partition of G�t� given some past time s is

introduced.
Lemma 1 (guaranteed miss-set partition): Define G1�t; s� and

G2�t; s� as

G1�t; s� ≜ M̂E�t� ∩ G�s� ∀ s < t (37)

G2�t; s� ≜ M̂E�t� ∩ fM̂uP�s�
P �s� \ M̂uP�t�

P �t�g ∀ s < t (38)

Then, for all s < t, G1�t; s� and G2�t; s� constitute a partition of

G�t�; hence,

G�t� � G1�t; s� ∪ G2�t; s� ∀ s < t (39)

Proof: The proof is provided in Appendix B. □

Applying Lemma 1 to Eq. (35a) results in

Pr�T E�t�∈G�t���Pr�T E�t�∈G1�t;s���Pr�T E�t�∈G2�t;s�� ∀ s< t
(40)

Using the definition of PM̂E�t� and Eqs. (33) and (37) gives

Pr�T E�t� ∈ G1�t; s�� � PM̂E�t��fM̂E�s� \ M̂uP�s�
P �s�g ∩ M̂E�t��

� PM̂E�t��M̂E�s� \ M̂uP�s�
P �s�� ∀ s < t

(41)

By the inclusion property (Observation 2), we have

Pr�T E�t�∈G2�t;s���PM̂E�t��M̂E�t�∩fM̂uP�s�
P �s�\M̂uP�t�

P �t�g�
�PM̂E�t��M̂

uP�s�
P �s�\M̂uP�t�

P �t��
�PM̂E�t��M̂

uP�s�
P �s��−PM̂E�t��M̂

uP�t�
P �t�� ∀s<t

(42)

Notice that only G2�t; s� is affected by the pursuer control function
over the time range �s; t�, whereas G1�t; s� is unaffected by the

pursuer control function over this time range.
Now, let mG⋆ �t� be the estimated maximum achievable miss

distance given that the evader does not guarantee a miss at time t.
Thus,

mG⋆ �t� ≜ max
τ≥t

max
�L�xP�τ��; τ� ∈ M̂P�t�
�L�xE�τ��; τ� ∈ G⋆�t�

r�xP�τ�; xE�τ�� (43)

The inclusion property (Observation 2) yields that

mG⋆�s� ≥ mG⋆�t� ∀ s < t (44)

Notice that equality in Eq. (44) holdswhen the evader performs the

optimal evading maneuver on the time segment �s; t� and the pursuer
performs the worst maneuver on the same time segment. This is due

to Observation 2, which indicates that each player can control the

location of its miss-set at time t within its miss-set at time s by an

appropriate control function selection over this time segment.
Recalling that T P�t� and T E�t� denote the possible engagement

outcomes at time t (terminal position and time for the pursuer and

evader, respectively), the law of total probability gives

Pr�r�T P�t�;T E�t��≤mG⋆ �t���
�Pr�r�T P�t�;T E�t��≤mG⋆ �t�jT E�t�∈G�t��Pr�T E�t�∈G�t��
�Pr�r�T P�t�;T E�t��≤mG⋆ �t�jT E�t�∈G⋆�t��Pr�T E�t�∈G⋆�t��
�Pr�r�T P�t�;T E�t��≤mG⋆ �t�jT E�t�∈=M̂E�t��Pr�T E�t�∈=M̂E�t���
�Pr�r�T P�t�;T E�t��≤mG⋆ �t�jT E�t�∈G�t��Pr�T E�t�∈G�t��
�Pr�r�T P�t�;T E�t��≤mG⋆ �t�jT E�t�∈G⋆�t��Pr�T E�t�∈G⋆�t��

(45)

where r�T P�t�; T E�t�� is the distance between the terminal points.

The definition of mG⋆ �t� renders

Pr�r�T P�t�; T E�t�� ≤ mG⋆�t�jT E�t� ∈ G⋆�t�� � 1 (46)

Hence, recalling that Pr�T E�t� ∈ G⋆�t�� � PM̂E�t��G⋆�t��, Eq. (45)
renders

Pr�r�T P�t�;T E�t�� ≤ mG⋆ �t�� ≥ PM̂E�t��G⋆�t�� (47)

Assume that r0, the warhead effective radius defined by Eq. (6), is
large enough to ensure that, at some time, denoted by tϒ,

mG⋆ �tϒ� � r0 (48)

Using the law of total probability, Eqs. (47) and (7) yield

Fig. 2 The relationship betweenM̂E (solid fill),M̂uP

P (thin lines), andG
(thick dashed/solid line) at times s and t > s. The partition sets G1�t;s�
and G2�t;s� are marked by hatch patterns.
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J�r0� � l Pr�r�T P�0�; T E�0�� ≤ r0�
≥ l Pr�r�T P�0�;T E�0�� ≤ r0jT E�0� ∈ M̂E�tϒ�; T P�0� ∈ M̂P�tϒ�� × Pr�T E�0� ∈ M̂E�tϒ�; T P�0� ∈ M̂P�tϒ��
� l Pr�r�T P�tϒ�;T E�tϒ�� ≤ r0� Pr�T E�0� ∈ M̂E�tϒ�; T P�0� ∈ M̂P�tϒ��
≥ lPM̂E�tϒ��G⋆�tϒ��Pr�T E�0� ∈ M̂E�tϒ�; T P�0� ∈ M̂P�tϒ��
� lPM̂E�tϒ��G⋆�tϒ�� Pr�T E�0� ∈ M̂E�tϒ�jT P�0� ∈ M̂P�tϒ�� Pr�T P�0� ∈ M̂P�tϒ��
� lPM̂E�tϒ��G⋆�tϒ��PM̂E�0��M̂E�tϒ��Pr�T P�0� ∈ M̂P�tϒ�� (49)

where the fact that M̂E�tϒ� is independent ofM̂P�tϒ� has been used.
Notice that Pr�T P�0� ∈ M̂P�tϒ�� � 1, since the pursuer terminal
position is, by definition, always within its miss-set. Also, recalling
Eq. (36) renders

J�r0� ≥ l�1 − PM̂E�tϒ��G�tϒ���PM̂E�0��M̂E�tϒ�� (50)

Analyzing Eq. (50), we notice that, at the beginning of the game,
the pursuer has no control over the termPM̂E�0��M̂E�tϒ�� but can only
affect thevalue of the first term.As such, the optimal control function,
in the sense of Eq. (7), can be expressed as stated in the following
Theorem.
Theorem 4: The optimal pursuer control function, in the sense of

Eq. (7), minimizes PM̂E�tϒ��G�tϒ��.
Notice that, if r0 is not sufficiently large to ensure the existence of

the condition expressed by Eq. (48), then

lim
t→∞

PM̂E�t��G⋆�t�� � 1 (51)

meaning a miss, almost surely.
To use Theorem 4, the pursuer needs to carry out a global

optimization process. Furthermore, in order to perform this global
optimization, the pursuer needs to know M̂E�tϒ�. That is, at the start
of the engagement, the pursuer needs to know the evader control
function from the initial time until tϒ. This kind of knowledge is not
readily available to the pursuer at the start of the engagement. To
circumvent this difficulty, a feedback configuration guidance law,
which constitutes a local optimization at each time step (and, hence, is
suboptimal), is presented next.

V. Stage 3: Maximum Inclusion Guidance Law

To implement a guidance law based on Theorem 4, a feedback
configuration form of the guidance law needs to be stated first. As
seen in Theorem 4, the evader’s control function needs to be known.
To compensate for this lack of information, we have the pursuer adopt
a conservative, hence suboptimal, approach.
Proposition 1 (maximal inclusion guidance law): Subject to a

feedback configuration form, the optimal [in the sense of Eq. (7)]
pursuer control function is

u
�P
k � arg max

uP
k
∈UP

k

PM̂E�tk�
�
M̂

uP
k

P �tk�
�

(52)

Proof: First, notice that, if M̂E�tk� ⊂ M̂
uP
k

P �tk�, then

PM̂E�tk��M̂
uP
k

P �tk�� � 1, whence Proposition 1 degenerates to

Theorem 3 (miss-set inclusion), thereby proving that Proposition 1
is a more general form of the guidance law.
Recalling Eq. (50), and since J�r0� ≤ l from Eq. (7), maximizing

the lower bound will ensure a maximal SSKP for the pursuer. Also,
noticing that PM̂E�0��M̂E�tϒ�� does not depend on the pursuer’s
actions yields that minimizing PM̂E�tϒ��G�tϒ�� means maximizing
the SSKP. The pursuer is to achieve this goal through a series of
decisions separately made at each time step. Recalling Eq. (39), we
have that, over the time segment �tk−1; tk�, the guaranteed miss-set
G�tk� is composed of the following two subsets: 1)G1�tk−1; tk�, which

is solely affected by the evader control function over the time segment
�tk−1; tk�; and 2) G2�tk−1; tk�, which is the only subset of the
guaranteed miss event, G�tk�, the pursuer can affect by the choice of
its control function. Adopting a conservative approach, the pursuer
assumes that the evader acts to maximize PM̂E�tk��G1�tk−1; tk��. This
approach resembles the differential game approach, in which each
player applies the optimal, from its own perspective, guidance law,
whereby any deviation from it serves its opponent’s benefit. To
minimizePM̂E�tk��G�tk��, the pursuer is to select its control function by

u
�P
k � arg min

uP
k
∈UP

k

PM̂E�tk��G�tk��

� arg min
uP
k
∈UP

k

fPM̂E�tk��G1�tk−1; tk�� � PM̂E�tk��G2�tk−1; tk��g

� arg min
uP
k
∈UP

k

fPM̂E�tk��G2�tk−1; tk��g

� arg min
uP
k
∈UP

k

fPM̂E�tk��M̂
uP
k−1

P �tk−1�� − PM̂E�tk��M̂
uP
k

P �tk��g

(53)

where we have used the fact that

PM̂E�tk��M̂E�tk� ∩ A� � PM̂E�tk��A� ∀ A ⊂ R3 × R� (54)

The proposition follows from noticing that onlyPM̂E�tk��M̂
uP
k

P �tk��
is affected by the choice of uPk . □

Notice that the guidance law of Proposition 1 is only suboptimal in
the global sense of Eq. (7), as there is no guarantee that the global
minimum value of PM̂E�tϒ��G�tϒ�� is reached through this steepest
descent approach.

VI. Guidance Law Implementation

Theorem 2 states the conditions under which a hit can be
guaranteed in perfect-information cases where only the general
separation theorem is applicable, e.g., the case of nonlinear dynamics
and non-Gaussian process noises. In contrast, in the case of partial
information, a hit cannot be guaranteed (see Theorem 4), and a
suboptimal guidance law is stated in Proposition 1. Furthermore,
Observation 3 indicates that the guidance law is nonunique, thus
facilitating trajectory shaping. The ensemble of these elements
provides the foundation for the proposed implementation approach
for guiding a pursuer toward an evader in the presence of partial
information, nonlinear dynamics, and non-Gaussian noises.
The proposed approach comprises the following steps:
1) The posterior density pxE

k
jZP

k
is constructed using a particle

filter [11].
2) The set of admissible control functions U�

P�tk�, which satisfies
Theorem 3 with M�tk� replaced by M̂�tk�, is determined using a
sequential Monte Carlo method (presented next).
3) If U�

P�tk� ≠ ∅, the control function is selected by complying
with an additional constraint. Two such possible constraints are
presented in the following,with each shaping the pursuer trajectory in
a different manner.
4) If U�

P�tk� � ∅, the control function is found according to
Proposition 1.
These steps are detailed in the ensuing.
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A. Determination of U�
P�tk�

Since each of the two miss-sets is represented by a set of particles,

it is extremely difficult to determine if the inclusion property holds.
Due to this difficulty, the procedure detailed in the following attempts
to directly determine if γ ∈ U�

P�tk�.
In the case ofmissile guidance, and assuming that the control is the

missile acceleration perpendicular to the velocity vector, we have

γ ≜ �ac1�tk�; ac2�tk��T , which is the immediate time step acceleration
command. The following definition and assumptions are applicable:
Definition 1 (time-invariant control set): Define the pursuer time-

invariant control set as

uP�τ� � δ; ∀ τ ≥ t (55)

where δ ∈ UP�τ� is a constant.
Again, in missile guidance, we have δ ≜ �ac1; ac2�T , which are the

two time-invariant acceleration commands perpendicular to the
velocity vector.
If the feasible control set UP�t� is not time invariant, then a time-

invariant control function should be stated by factors on the feasible
control values at each time. For example, in a scalar example where

UP�t� � �umin�t�; umax�t��, redefine the control function to be
δ�t� ∈ �0; 1�, where the actual control function value is then given
by uP�t� � umin�t� � δ�t��umax�t� − umin�t��. In this case, a time-

invariant control function set is defined as δ�t� � δ � const:
Observation 5: Assuming an acceleration control function, any

point inRP�t� is reachable by a time-invariant control set, provided
that the pursuer location is a smooth function of uP�t� and the closure
of UP�t� is a perfect and convex set for all k.
Observation 5 results from the fact that all points on the boundary

of the setRP�t� are achieved by having the control function fixed at
an extremal admissible value. For example, if uP�t� is scalar, then the
admissible set of control function is the intervalUP�t� � �umin; umax�
and the reachable set RP�t� lies on a hyperplane in R3 × R� (since
there is only one degree of freedom to control the location of the

pursuer). Setting uP�t� � umin for all t results in a trajectory along
one boundary of the setRP�t�, whereas setting uP�t� � umax for all t
results in a trajectory along the other boundary of the setRP�t�. Since
the closure of UP

k is perfect and convex, any time-invariant control
function set between umin and umax is feasible. Furthermore, since the
system equation [Eq. (1a)] is continuous with respect to uP�t�, all
time-invariant control function sets between umin and umax result in a
trajectory between the two formerly stated trajectories.
The direct procedure attempts to find, for each evader particle, a

possible pursuer future control set that would cause the pursuer to
intercept that evader particle. Define the pursuer front corresponding
to time tk as

F k�s; γ� ≜ fL�xp�s��j�L�xp�s��; s� ∈ Rγ
P�tk�g (56)

and propagate it simultaneously to the propagation of the evader
particles. Notice that F k�s; γ� describes a surface in R3 that evolves
with time for s ≥ tk. The procedure seeks the impact locations of all

evader particles on the front. Specifically, let κj�γ� be the location
where the trajectory of the jth evader particle intercepts the front
F k�s; γ�. From Observation 5, any point on the front F k�s; γ� is

reachable by a pursuer control function of the form

uPi � Ck�γ; δ� ≜
�
γ for i � k
δ i > k

(57)

Thus, for every κj�γ�, there is a matching δj�γ� such that a pursuer
driven by a control function Ck�γ; δj�γ��will hit κj�γ�. This procedure
is illustrated graphically in Fig. 3.
The front surface is extended, at its edges, by a surface that is set to

be tangent to the front. Let I�Ck�γ; δ�� be an indicator function
defined as

I�Ck�γ; δ�� ≜
�
1 δ ∈ UP

i ; i ≥ k� 1

0 otherwise
(58)

If it is feasible for the pursuer to reach the impact locations of all

evader particles, given that γ is applied as the current control value,

then,

1

Np

XNp

j�1

I�Ck�γ; δj�γ��� � 1 (59)

where Np is the number of evader particles. In this case, since all

evader particles are reachable by the pursuer, it is obvious that the

miss-set inclusion condition posed byTheorem3 ismet. By repeating

this procedure for all values of γ ∈ UP�tk�, it is possible to map

U�
P�tk�. Thus,

U�
P�tk� �

�
γ ∈ UP�tk�

���� 1

Np

XNp

j�1

I�Ck�γ; δj�γ��� � 1

�
(60)

If U�
P�tk� � ∅, the front procedure provides a method for finding

the control value according to Proposition 1. Specifically, it gives a

measure for the portion of the evader’s miss-set that is reachable by

the pursuer. That is,

PM̂E�tk��M̂
γ
P�tk�� ≈

1

Np

XNp

j�1

I�Ck�γ; δj�γ��� (61)

The procedure to find the admissible set consists of a simple grid

search on the feasible control set, carried out at each time step. Each

grid point provides a possible control function value γ, for which the
procedure to evaluate if γ ∈ U�

P�tk� is as follows:
1) Generate Np particles to represent the current evader state. The

evader state is generated according to the estimated conditional PDF
of xE�tk�jZP�tk�.
2) Generate Np possible evader control function input sets

uE�τ�τ�t→∞ according to the assumed probabilistic model of the
evader control policy.
3) Generate m particles to represent the current pursuer

feasible front.
4) For each of them pursuer particles, generate a control set of the

form

fuPi g∞i�k � fγ; δj; δj; δj; : : : δj; : : : g; j � 1; : : : ; m (62)

where δj are evenly distributed on UP�tk�, thus mapping the front,
possibly in a grid manner. For example, in Fig. 3, m � 25 and the
pursuer particles create the front surface vertices depicted in the
figure.

Fig. 3 Illustration of the front procedure, showing the impact location of
evader particle j with the front, the corresponding pursuer trajectory,
and the pursuer extremal trajectories.
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5) Propagate both sets of particles in time using the system’s
equation of motion [Eq. (1)] until all evader particles intercept the
pursuer front. It is assumed that the pursuer front extends linearly
beyond the edge of feasible front and that any evader particles
intercepting this extension indicate a miss.
6) Evaluate Eq. (60) and, when needed, Eq. (61).
In Fig. 4, the interception points on the front for all particles are

displayed for various candidate current control function values. An
interception point on the front is expressed by the pursuer time-
invariant control function that will bring the pursuer to intercept that
specific evader particle. As can be seen from Fig. 4, a nonuniqueness
situation, as noted by Observation 3, occurs in this example,
demonstrating the ability and need to introduce an additional
constraint. This is the degree of freedom used, in what follows, to
shape the pursuer’s trajectory.

B. Optimal Control Nonuniqueness

When M̂u
P�tk� is large enough to contain the set M̂E�tk�, it is

obvious that the admissible set U�
P�tk� will include more than one

element. In such a case, an additional constraint is introduced in order
to select a control value from the admissible set. Two such constraints
are presented next.

1. Zero-Effort Evader Particle Trajectory Shaping

Let the zero-effort evader particle (ZEP) be an evader particle
propagated with zero input command from the evader’s estimated
state. Let the ZEP’s trajectory impact location on the frontF k�s; γ� be
κZEP�γ�. Let δZEP�γ� define a pursuer control policy Ck�γ; δZEP�γ��
that guides the pursuer to hit κZEP�γ�.
The following additional constraint is proposed:

u
�P
k � arg min

γ∈U�
P�tk�

��δZEP�γ���2 (63)

Notice that the pursuer trajectory resulting from control policy
Ck�γ; 0� describes the pursuer’s zero-effort trajectory starting at the
next time step. Thus, δZEP�γ� � 0 implies that applying γ as the
current pursuer control function value will position the pursuer at the
next time step on a zero-effort trajectory that intercepts the evader’s
ZEP trajectory. Adopting the terminology used in differential game-
based guidance laws, δZEP�γ� � 0 implies that the zero-effort miss
(ZEM) distance at the next time step will be zero. As such, when
U�
P�tk� � UP�tk�, the resulting guidance law resembles the

differential game guidance law with first-order dynamics, termed in
[4] DGL/1. But, when UP�tk� \ U�

P�tk� ≠ ∅, the resulting guidance
law differs from the DGL/1 law because the actual pursuer command

that would render a zero ZEMmay not be admissible by the miss-set
inclusion theorem (Theorem 3). We term this proposed guidance law
zero-effort evader particle trajectory shaping, and we use the
shorthand notation ZTS in the ensuing.

2. Observability-Enhancing Trajectory Shaping

We propose to choose from the admissible set U�
P�tk� the control

function that will improve the observability of the evader’s state by
the pursuer’s measurements. This is done by selecting from U�

P�tk�
the control function that maximizes the expected Fisher information
matrix (FIM) in the next time step. Adopting the FIM measure from
[29], we have

u
�P
k � arg max

γ∈U�
P�tk�

det l γ�tk�1� (64)

where l γ�tk�1� is the FIM evaluated at one time step into the future,
i.e.,

l γ�tk�1� � E

��
∂
∂θ

lnpζk�1
�ζk�1jx̂Ek�1; x

P
k�1�

	

×
�
∂
∂θ

lnpζk�1
�ζk�1jx̂Ek�1; x

P
k�1�

	
T
	

(65)

where ζk�1 and pζk�1
are the measurement vector and PDF,

respectively; θ is the vector of evader state components for which we
wish to improve the observability; xPk�1 is the pursuer state
propagated one step forward assuming that γ is the current control
function value; and x̂Ek�1 is the estimated evader’s state. All these
variables are assessed from the particles used in the procedure to
determine U�

P�tk�, described previously. We term this proposed
guidance law observability-enhancing trajectory shaping, and use the
shorthand notation OTS in the ensuing.
In a situation where heading toward the evader will result in an

observability problem for the pursuer, OTS will choose to maneuver
away. It will continue to do so until the evader’s miss-set edge is
tangent to the pursuer’smiss-set, at which pointOTSwill need to start
maneuvering back toward the evader in order to comply with
Theorem 3 for as long as possible.

VII. Simulation Study: Performance, Robustness,
and Computational Aspects

A simulation study is presented to indicate the expected gain from
the proposed OTS and ZTS approaches and to demonstrate their
viability. The proposed approaches are compared with the perfect-
information-based DGL/1 guidance law. The section also addresses
the issue of performance robustness with respect to parameter
uncertainties, as well as computational aspects (efficiency and
accuracy) involved with real-time implementation.

A. Scenario Description

The example consists of a highly nonlinear 3-D engagement
scenario in which a pursuer having first-order delay dynamics
engages an evader. Both the pursuer and evader maintain constant
speeds; thus, their acceleration commands are perpendicular to their
current velocities. The pursuer maximal acceleration is aPmax � 60 g,
whereas the evader maximal acceleration is aEmax � 20 g. The
acceleration time constants of both the pursuer and evader are
τP � τE � 0.2 s, respectively. The evader does not estimate the
pursuer’s state but is aware of the pursuer at the beginning of the game
(in the present study, all engagements start at the beginning of the
simulation). Thus, it applies a random bang–bang evasion maneuver
that is known to be optimal for a blind target (see [14]).
The numerical study consists of two scenarios: 1) a head-on

engagement, and 2) a flyby engagement. In the head-on engagement,
the initial range between the pursuer and the evader is 10.8 km and the
pursuer and evader speeds are 1500 and 1200 m∕s, respectively,
amounting to a nominal engagement time of 4 s. The flyby
engagement situates the pursuer in an initial course that will cross
(intercept) perpendicularly the evader’s initial path with the same
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Fig. 4 Mapping the time-invariant future control functions for various
candidate control values γ. The control feasibility bounds are marked by
the dark square.
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nominal engagement time of 4 s. For a flyby engagement, [30] notes
that, with a bearing-rate-only measurement, the target maneuver
observability is minimal. Since our range measurement quality is
poor, we may expect observability issues in the flyby engagement.
Two coordinate systems are defined: an inertial system, where the

origin and axis directions are arbitrarily selected; and a pursuer body
system. The body system’s origin is located at the pursuer center of
gravity, with its x axis pointing along the current pursuer velocity
vector, its z axis pointing down, and its y axis completing a right-
hand-rule system. The pursuer’s initial motion direction is set on a
collision course with the evader’s initial location and velocity.
The pursuer dynamics is given using quaternion representation;

thus, the pursuer state

xP ≜ �XP; YP; ZP; qP; aPq ; a
P
r �T (66)

is composed of its inertial position coordinates, a rotation quaternion
qP ≜ �λP; ρPx ; ρPy ; ρPz �T specifying the rotation from the inertial
reference frame to the body system, and its pitch and yaw
accelerations, respectively. The pursuer’s equations of motion are

2
4 _XP

_YP

_ZP

3
5 �

2
4 λ2 � ρ2x − ρ2y − ρ2z

2�ρxρy − λρz�
2�ρxρz � λρy�

3
5kVPk (67a)

2
6664
_λP

_ρPx
_ρPy
_ρPz

3
775 � 1

2
��VP

��

2
6664

0 0 −aPq −aPr
0 0 −aPr aPq
aPq aPr 0 0

aPr −aPq 0 0

3
7775

2
6664
λP

ρPx
ρPy
ρPz

3
7775 (67b)

�
_aPq
_aPr

	
� −

1

τP

�
aPq
aPr

	
� 1

τP
uP (67c)

where VP is the current pursuer velocity, and uP ≜ �aqPc ; arPc �T is
the (bounded) pursuer command vector (kaqPc k ≤ aPmax and
karPc k ≤ aPmax).
The evader state, xE ≜ �XE; YE; ZE; VE

x ; V
E
y ; V

E
z ; a

E
q ; a

E
r �T , is

composed of its inertial position coordinates, velocity components,
and pitch and yaw accelerations, respectively. The evader’s EOM is

_xE �
2
4 03×3 I3×3 03×1
03×3 03×3 Fac�xE�
01×3 01×3

−1
τE
I2×2

3
5xE �

�
06×2
1
τE
I2×2

	
uE (68)

where uE ≜ �aqEc ; arEc �T is the (bounded) evader acceleration
command vector perpendicular to its own velocity (kaqEc k ≤ aEmax

and karEc k ≤ aEmax), τ
E is the evader’s acceleration time constant, and

Fac�xE� is given by

Fac�xE� �
1
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(69)

The pursuer is modeled as having an imaging IR seeker providing
the pursuer with a measurement of the line-of-sight (LOS) rates, _Λ1

and _Λ2, and the relative range R. The LOS rate measurements are
contaminated by an additive noise uniformly distributed on the
interval �−0.1; 0.1� deg ∕s. The relative range measurement is
contaminated by an additive noise uniformly distributed
on �−10; 10� m.
The measurements are fed into an interacting multiple-model

particle filter (IMM-PF) [11] that uses 1000 particles to estimate the
evader state. The filter comprises four models (modes), with each
describing an evader command option (e.g., “turning left and

upward”). The filter is aware of the evader’s maximal acceleration
capability and acceleration time constant. Using the estimated state

and mode,Np particles are selected and extrapolated forward in time
in order to find their impact location on the pursuer front.
In the numerical example, the search procedure to find the

admissible set U�
P�k� is implemented as a crude two-dimensional

grid search, performed in each of the time steps of the 60 Hz rate
guidance law computation (notice that the pursuer’s acceleration
time constant of 0.2 s amounts to an autopilot bandwidth of about

0.8 Hz). The grid points are �−1; 0; 1�aPmax for both acceleration
commands. The Achilles heel of all SMC methods is the computer
power that they demand, since a large number of simulations needs
to be carried out. Although the proposed approach may be naturally

implemented in a parallel computing environment, the required
computational demands need to be taken into account. In light of
this, the 1000 IMM-PF particles are resampled so that only
NP � 100 particles are used to represent the evader and m � 25
pursuer particles are used to represent the front for each grid point

evaluation of U�
P�tk�. A detailed discussion on computational

aspects (serial vs parallel implementation and performance
sensitivity as a function of computational power required) is given
in a latter part of this section.

B. Single-Run Analysis: Flyby Engagement

The trajectories of both the pursuer and evader in a single flyby
engagement are shown in Fig. 5. Three different trajectories are
shown for the pursuer, with each corresponding to a different active

guidance law in the pursuer steering loop. For all three trajectories, all
scenario random variables (namely, initial conditions, evader
maneuvers, and measurement noises) are kept identical.
As shown in Fig. 5, the trajectory corresponding to the ZTS

guidance law greatly resembles the one corresponding to the DGL/1
law (confirming the analysis of Sec. VI.B.1). Nevertheless, as seen in
Table 1, DGL/1 achieves a miss distance of only 3.5 m, whereas ZTS

reduces the miss distance to about 1.1 m. Observing the estimation
errors at the end of the interception, also shown in Table 1, we see that
the better performance of the ZTS guidance law (relative to that of the
DGL/1 law) is achieved in spite of a significantly larger estimation
error at the end of the game: 14.9 m for the ZTS law vs 0.8 m for the

DGL/1 law. To understand these seemingly contradictory results, we
turn to Figs. 6 and 7, which show the three position estimation errors
(and associated standard deviation envelopes) as obtained in the runs
depicted in Fig. 5when the ZTS andDGL/1 guidance laws are active,

respectively. Superimposed on these figures are the IMM-PF particle
distributions, in each case, shown as histograms every 0.5 s. Recall
that the pursuer is modeled as a first-order system with an
acceleration time constant of 0.2 s. Due to this inherent delay, its

achievable miss distance is mostly affected by the information
provided to it by the estimator at about 1 s (five time constants) before
impact. As can be seen from Figs. 6 and 7, for both guidance laws, at

0
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Fig. 5 Single run trajectories in a flyby engagement scenario.
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about 1 s prior to impact, the estimator appears to yield two equally

plausible estimates. This phenomenon, which is due to the poor

observability characterizing this scenario, is manifested in the

particle dual-peaked (and, thus, non-Gaussian) distributions

observable at t � 3.5 s. The ZTS guidance law attempts to hold all

probable evader locations, as indicated by the distribution at that

time, reachable for as long as possible (given its limited

maneuverability resources). By properly maneuvering to do that, it

further sacrifices observability, which results in even larger

estimation errors, but it maintains the target reachable and guides the

pursuer toward the center of the evader’s miss-set, which finally

results in a relatively small miss distance. In a sense, the ZTS law

maintains a proper balance between estimation performance (which

is, obviously, not themain goal of the guidance loop) and interception

performance (miss distance) while taking into account maneuver-

ability constraints. In contradistinction, the DGL/1 guidance law

does not account for estimation errors and treats the estimate as

perfect information. When the estimate begins to diverge, at about

t � 3.5 s, the guidance law interprets this estimator divergence as an

evasion maneuver and “greedily” steers the pursuer toward the

(wrong) evader’s position. By doing that, it does create a trajectory

that enhances observability, which results in smaller estimation

errors. However, the better estimation performance cannot be fully

Table 1 Guidance laws performance in a flyby engagement
(single run)

Miss distance, m Terminal estimation error, m

DGL/1 3.5 0.8
ZTS 1.1 14.9
OTS 0.7 0.1
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Fig. 6 IMM-PF position estimation error in flyby engagement (mean,�1σ envelope, and particle histogram). ZTS guidance law.
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exploited by the pursuer because it arrives too late (given the
pursuer’s inherent dynamic delay), and the resulting miss distance is
more than three times larger than that of the ZTS-guided pursuer.
The OTS guidance law renders a distinctly different trajectory, as

can be seen from Fig. 5. In this example, the OTS achieves a miss
distance of about 0.7 m. The estimation performance of the particle
filter with OTS in the loop is presented in Fig. 8. As can be seen from
this figure, the estimation error is almost nullified within the final 1 s
before impact.

C. Monte Carlo Analysis

A Monte Carlo (MC) simulation study is carried out to test the
performance of the proposed guidance law. In each simulation, all
simulated measurement noise histories are generated beforehand and
replayed three times: each time with a different guidance law in the
loop. The MC study consists of 1000 such simulation sets.

Figures 9 and 10 show the cumulative distribution function (CDF)
of the resulting miss distance for the head-on and flyby scenarios,
respectively. By comparing the size of the warhead required to
guarantee a kill with a given probability for each law, it can be
concluded that both proposed laws outperform DGL/1. In the head-

on scenario (Fig. 9), both ZTS and OTS require an effective warhead
radius of about 0.4 m to guarantee an SSKP of 0.9, in comparison to
an effective radius of about 1.0 m for the DGL/1 law. The
performance of OTS resembles the performance of ZTS, indicating
that there are no observability problems in a head-on engagement. In
the flyby scenario (Fig. 10), in order to sustain an SSKP performance
of 0.9, effective warhead radii of 0.5, 2.2, and 7.1 m for OTS, ZTS,
and DGL/1, respectively, are required. Notice the severe degradation

inDGL/1 performance due to the inherent uncertainty accompanying
the evader’s state. In the proposed approach, this uncertainty is
addressed twice: first when calculating the guidance command, and
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Fig. 7 IMM-PF position estimation error in flyby engagement (mean,�1σ envelope, and particle histogram). DGL/1 guidance law.
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second by activelymaneuvering tominimize this uncertainty through
the creation of a favorable engagement geometry. ZTS addresses only
the former issue, whereas OTS addresses both issues, thus boasting
the superior performance exhibited in Fig. 10.

D. Sensitivity to Parameter Uncertainty

Thus far we have assumed, as is commonplace in the literature
[24–26], that the evader’s acceleration time constant and acceleration
bound are known to the pursuer. This information is required by the
pursuer for 1) estimating the evader state (via the IMM-PF), and
2) estimating the evader’s miss-set. Obviously, in real life, this
information is not readily available to the pursuer. However, it should
be safe to assume that the pursuer possesses information on the
bounded intervals within which both parameters should lie. Selecting
values from these intervals will affect the pursuer’s estimate of the
evader’s miss-set. Thus, it is reasonable for the pursuer to adopt a
conservative approach and assume that the evader has a smaller time

constant and a larger acceleration limit (i.e., that the evader is, most

likely, more agile than it really is). This assumption will render the

pursuer’s estimate of the miss-set equal to or larger than the actual

evader miss-set.

To evaluate the performance of the proposed approaches in the

presence of parameter variations, we introduce uncertainties to the

example used in the previous subsection. The uncertainties are listed in

Table 2. For each of the 1000 MC runs, appropriate values for the

evader’s true parameters are uniformly selected from these ranges.

The pursuer adopts the conservative approach described herein and

uses the values τE � 0.1 s and aEmax � 25 g for miss-set estimation.

As in the previous example, it has τP � 0.2 s and aPmax � 60 g.
Figures 11 and 12 present the results of 1000MC runs for the head-on

and flyby engagement geometry configurations, respectively. In

comparison with Figs. 9 and 10, we see that, in the presence of model

parameter uncertainties, the proposed guidance laws maintain

performance integrity, exhibiting a graceful performance degradation.
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Fig. 8 IMM-PF position estimation error in flyby engagement (mean,�1σ envelope, and particle histogram). OTS guidance law.
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E. Runtime Analysis

Any SMC-based computational method naturally gives rise to

questions regarding the required computational power and the

method’s implementability in real-time applications. Our proposed

approach is no exception, and the problem is even further

compounded by the fact that the scenario on hand is a high-speed

interception scenario characterized by a typical duration of a few

seconds. It is, therefore, of interest to assess the computational

requirements of the method, in order to be able to make some

statements regarding real-life real-time implementability.

We checked runtime performance in the flyby engagement

scenario using a consumer-gradeMac Pro computer, equippedwith a

single 12-Core Intel Xeon E5 CPU running at 2.7 GHz and using a

non-real-time-compliant operating system. The simulation was first

written (by a nonprofessional programmer) as a serial code in

MATLAB 2009/Simulink, with the following three elements

implemented in C and interfaced with MATLAB through the

MATLABMEXmechanism: 1) the IMM-PF evaluation, 2) the front

procedure [analyzing if a given control function is admissible, i.e., if

γ ∈ U�
P�tk�; Eq. (60)]; and, in the OTS case, 3) the FIM

calculation; Eq. (65).

Computed using 1000MC runs, Fig. 13a presents the code runtime

performance as a function of NP, which is the number of evader

particles used in the front computation procedure. The IMM-PF is

implemented with a fixed number of 1000 particles. Code runtime
performance is measured by its runtime factor, defined as the ratio of

“wall clock” time to “simulation clock” time. As Fig. 13a shows, the

serial code is not real-time compatible, as its runtime factor is greater

than one (this threshold is shown in the figure as a horizontal black
line). Nevertheless, a runtime factor value of about three (on average),

obtained in the described environment, serves as a good indication

that much can be done to bring it below the real-time threshold in a

professional environment (featuring, e.g., professional program-
ming, a real-time operating system, and dedicated real-time

hardware). In particular, we note that, as is well known, SMC

methods are highly amenable to parallel computation that, in a real-

life application, would mean mechanization in a multiprocessor
environment.
To roughly evaluate the computation speed enhancement potential

of parallel implementation of the proposed method, we made an

initial naive attempt at parallelizing the code by using the OpenMP

v2.5 utility [31]. The simulation was rewritten (by a nonprofessional
programmer) to get the front-procedure code running on 9 (out of the

12 available) cores our test computer provided. Only the front-

procedure code was parallelized; all other elements in the simulation
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Fig. 9 Miss distance CDF in a head-on scenario.
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Fig. 10 Miss distance CDF in a flyby scenario.

Table 2 Parameter uncertainty ranges

Parameter Uncertainty range

Acceleration time constant τE, s 0.1–0.3
Acceleration bound aEmax, g 15–25
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Fig. 11 Miss distance CDF in a head-on engagement with model
uncertainties.
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Fig. 12 Miss distance CDF in a flyby engagement with model
uncertainties.

414 SHAVIVAND OSHMAN

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
A

pr
il 

19
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

03
60

 



remained in a serial configuration. Figure 13b presents the resulting

parallel simulation runtime performance. As demonstrated, at NP �
100 our naive attempt at a parallel code implementation was almost
sufficient to make the simulation run at real-time speeds, and a very

minor reduction in the number of guidance particles got the

simulation running faster than real-time. We note that, given the

environment used to generate these numbers, it is obvious that these
results should not be taken literally as the basis for practical algorithm

design. The real message these results convey is that, adopting a

professional approach to parallel SMC implementation (e.g., [32]),

the new method should be real-time amenable using present-day

technology.

F. Performance Versus Computational Load

As shown in Sec.VII.E, the computational load associatedwith the

proposed algorithm grows roughly linearly with NP, which is the

number of evader particles used in the front procedure. Aviable way
to reduce the load is, therefore, to reduce NP, which gives rise to a

question regarding the sensitivity of the newmethod toNP. To assess

this sensitivity, we repeat the MC study of the flyby engagement

scenario (the nominal results of which are shown in Fig. 10): this time
varyingNP. In allMC runs, the number of particles used by the IMM-

PF is fixed at 1000, whereas NP ∈ f10; 20; 60; 100g.
Showing the miss distance CDF in each case, Figs. 14 and 15

depict the performance of the OTS and ZTS guidance laws,

respectively, as a function of NP. As can be seen, the OTS law
exhibits robust performance down toNP � 20 particles but suffers a
severe performance deterioration at NP � 10 particles. In contrast,
the performance of the ZTS law is insensitive toNP within the tested
range, as can be seen in Fig. 15. The sensitivity discrepancy between
the OTS and ZTS guidance laws is rooted in the different goals that
they strive to accomplish. The OTS law aims at estimating the miss-
set region edges, which is a task that cannot be reliably donewhen the
number of particles is reduced below a certain threshold. On the other
hand, the ZTS law forgoes miss-set edge estimation, and it aims just
at centering the evader’smiss-set within the pursuer’smiss-set, which
is a less demanding task that can be accomplished with far fewer
particles.

VIII. Conclusions

A novel approach to the problem of guidance in an uncertain
scenario is presented. The new approach is compliant with the
general separation theorem. Using a geometry-based approach, a
perfect-information guidance law guaranteeing capture (in the
deterministic sense) is formulated. This guidance law is based on the
notion of miss-sets, which the pursuer has to estimate. When perfect
information is not available, it is shown that a capture cannot be
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Fig. 13 Runtime factor vs NP (IMM-PF fixed at 1000 particles):
minimum,maximum, and average times. 1000-runMC study usingOTS,
ZTS and DGL/1 guidance laws, flyby scenario.
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Fig. 14 OTS miss distance performance vs NP (IMM-PF fixed at 1000
particles), flyby scenario.
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Fig. 15 ZTS miss distance performance vs NP (IMM-PF fixed at 1000
particles), flyby scenario.
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guaranteed. However, the proposed approach demonstrates how the
guidance law can accommodate estimation needs in order to minimize
the miss distance. The performance of the proposed approach is
compared to the performance of the DGL/1 guidance law, representing
the best a player can do provided it has full and perfect information.
A simulation study is presented that demonstrates the viability of

the proposed approach in a realistic, nonlinear non-Gaussian 3-D
interception scenario. The study shows that a significant performance
improvement can be achieved relative to an existing perfect-
information differential-game-based law in the presence of partial
information and non-Gaussian measurement noises. In addition, it is
demonstrated that, in an imperfect-information scenario, the
traditional head-on engagement is not the most challenging scenario.
The computational efficiency and accuracy of the method are

explicitly addressed. Special attention to the IMM-PF implementa-
tion enables a mechanization with only 1000 particles to estimate the
evader’s full state. In addition, a crude proof-of-concept parallel
implementation is used to convincingly demonstrate that the
proposed approach can operate in real-time on present-day
multiprocessor onboard computers. Furthermore, it is shown via
simulations that, should real-time constraints limit the number of
particles that can be used in the guidance scheme, themethod exhibits
exceptional robustness with respect to the number of particles.
Finally, it is noted that, in keeping with the state of the art, the

pursuer is modeled as having full knowledge of the evader’s
acceleration time constant andmaximal acceleration limit.When this
knowledge is missing, it may be safely assumed that the pursuer
knows, at least, interval bounds on these parameters. Adopting a
conservative approach to the pursuer’s construction of the evader’s
miss-set, the current extensive numerical simulations show that the
sensitivity of the proposed method to uncertainties in these
parameters is minor, and the method exhibits a graceful performance
degradation as these uncertainties grow.

Appendix A: Probability Space Construction

In this appendix, we show a possible construction for the

probability space mentioned in Sec. IV. Recall thatΩ isR3 × R� and
F is the σ-field of subsets of Ω. We provide herein a procedure to
construct a probability measure on F , PM̂E�t�, which is needed to

defined the probability space �Ω;F ; PM̂E�t��.
Define an evader particle PE as

PE ≜ fx̂E�t�; uE�τ�τ�t→tf ; w
E�τ�τ�t→tfg (A1)

where the conditional PDF of xE�t� is pxE�t�jZP�t�, uE�τ�τ�t→tf is an

evader control function such that uE�τ� ∈ UE�τ� ∀τ ∈ �t; tf�, and
wE�τ�τ�t→tf is a process noise sample function such that wE�τ� ∼
pwE ∀ τ ∈ �t; tf�. By the definition of R̂E�t�, this particle describes an
evader trajectory. Likewise, define a pursuer particle as

PP ≜ fxP�t�; uP�τ�τ�t→tfg (A2)

where uP�τ�τ�t→tf is a pursuer control function such that uP�τ� ∈
UP�τ� ∀ τ ∈ �t; tf�. Thus, by the definition of RP�t�, this particle

describes a pursuer trajectory.
By Eq. (11), the terminal locations of the pursuer and evader,

imposed by particles PP and PE, are found. Let ξP ∈ Ω and ξE ∈ Ω
be these terminal locations, respectively. Notice that ξP is a point in
M̂P�t� and ξE is a point in M̂E�t�. Let dha; bi, a; b ∈ Ω, be the
conventional Euclidean distance on Ω, and let Bϵ�a�, a ∈ Ω, define
an ϵ-ball in Ω:

Bϵ�a� ≜ fξ ∈ Ωjdhξ; ai < ϵg (A3)

For a given ϵ > 0 and a threshold probability value 0 < Π ≪ 1, we
can randomly generate NE pairs of particles such that

NE � argmin
N

n
Pr
h
ξE ∈= ∪

N

i�1
Bϵ�ξiE�

i
< Π

o
(A4)

where ξiE is an evader terminal location imposed by the ith pair of
particles, and ξE is a possible evader terminal location.
Notice that the probability of generating a random pair of particles

with an evader terminal point that is not coverable by

∪NE

i�1 Bϵ�ξiE�

is less than Π, which is a given small number. Furthermore, when
pxE

k
jZP

k
has a bounded support, the set M̂E is bounded. This may be

deduced from the fact thatUE�t�,UP�t�, andWE�t� are all bounded,
rendering a boundedmiss-set for a given initial state. If the initial state
is distributed on a bounded support, then the union of all miss-sets
generated by each of the initial states defined by the bounded support
(i.e., the estimated miss-set [Eqs. (28) and (29)]), is also bounded.
Since every bounded set in Rn is compact, there is a finite cover for
this set. Thus, if pxE

k
jZP

k
has a bounded support, then it is possible to

have a finite value for NE where Π � 0 for any value ϵ > 0.
Given fBϵ�ξiE�gN

E

i�1 as defined previously, define a counting
measure PM̂E�t� as follows:

PM̂E�t��A� ≜ 1

NE

XNE

i�1

I�A;Bϵ�ξiE�� ∀ A ∈ F (A5)

where I�A;B� is an indicator function defined as

I�A;B� �
�
1 B ∩ A ≠ ∅
0 otherwise

(A6)

Notice thatPM̂E�tk��Ω� � 1; hence,PM̂E�tk� is a probability measure,

rendering the triplet �Ω;F ; PM̂E�tk�� a probability space.

Appendix B: Proof of Lemma 1

Proof: The sets G1�t; s� and G2�t; s� are disjoint because

G1�t; s� ∩ M̂uP�s�
P �s� � M̂E�t� ∩ G�s� ∩ M̂uP�s�

P �s�
� M̂E�t� ∩ �M̂E�s� \ M̂uP�s�

P �s�� ∩ M̂uP�s�
P �s�

�∅

and

G2�t;s�∩M̂uP�s�
P �s��M̂E�t�∩

n
M̂uP�s�

P �s� \M̂uP�t�
P �t�

o
∩M̂uP�s�

P �s�

�M̂E�t�∩
n
M̂uP�s�

P �s� \M̂uP�t�
P �t�

o
�G2�t;s� (B1)

To see that G1�t; s� and G2�t; s� compose G�t�, notice that

G1�t; s� ∪ G2�t; s� � �M̂E�t� ∩ G�s��
∪ �M̂E�t� ∩ fM̂uP�s�

P �s� \ M̂uP�t�
P �t�g�

� �M̂E�t� ∩ �M̂E�s� \ M̂uP�s�
P �s���

∪ �M̂E�t� ∩ fM̂uP�s�
P �s� \ M̂uP�t�

P �t�g� (B2)

Recalling Observation 2 and analyzing the first term, we have
M̂E�t� ⊂ M̂E�s�; hence,

M̂E�t� ∩ �M̂E�s� \ M̂uP�s�
P �s��

� M̂E�t� \ M̂uP�s�
P �s� � M̂E�t� ∩ M̂uP�s�

P �s� (B3)

where �A denotes the complementary set of set A. Substituting
Eq. (B3) into Eq. (B2) yields
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G1�t; s� ∪ G2�t; s� �

� �M̂E�t� ∩ M̂uP�s�
P �s�� ∪ �M̂E�t� ∩ fM̂uP�s�

P �s� \ M̂uP�t�
P �t�g�

� �M̂E�t� ∩ M̂uP�s�
P �s�� ∪ �M̂E�t� ∩ M̂uP�s�

P �s� ∩ M̂uP�t�
P �t��

� M̂E�t� ∩ �M̂uP�s�
P �s� ∪ M̂uP�s�

P �s� ∩ M̂uP�t�
P �t��

� M̂E�t� ∩ M̂uP�t�
P �t� � M̂E�t� \ M̂uP�t�

P �t� � G�t�
(B4)
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