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the first four statistical moments of the measured signals 
in different regions of the wake and comparing them with 
corresponding moments of the Gaussian distribution. The 
experimental data are used to evaluate the sensitivity of the 
method to the distribution of the measured signal, and the 
method is demonstrated to possess some robustness with 
respect to deviations from the Gaussian distribution.

1 Introduction

Hot-wire anemometry is used to measure the fluid local 
velocity with high temporal resolution and fine scales of 
velocity fluctuations. It is used extensively in experimen-
tal studies of fluids (Stainback and Nagabushana 1993). 
The output of the hot-wire probe is analogue voltage that 
is related through a nonlinear mapping to the flow velocity. 
Thus, before using the hot-wire probe for measuring fluid 
velocity, it should be calibrated. Commonly, this calibration 
is done using an accurate Pitot probe. The measured veloc-
ity V obtained by the Pitot probe is related to the output 
voltage E as measured by the hot-wire probe at (theoreti-
cally) identical flow conditions (temperature and location). 
The calibration curve is fitted to the data points and used 
as a mapping function g, that transforms the voltage signal, 
measured by the probe, to velocity signal, i.e., V = g(E) 
(e.g., Jørgensen 2012).

There are several techniques to obtain the fitting func-
tion g. The first is polynomial curve fitting, where, usually, 
a polynomial of fourth order is used to fit the data points. In 
this case, the fitting error is less than 1%. For polynomial 
fitting of nth order, we need at least n + 1 points. Inappro-
priate spacing between the data points or excessive-order 
fitting may generate a fitting curve that oscillates between 
the data points. The second method is a power law fitting:
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where A and B are constants that depend on the fluid and 
sensor physical properties and operating temperatures, 
and n is a constant that depends on the sensor dimen-
sions and satisfies 0.45 ≤ n ≤ 0.52. This fitting function is 
based on King’s Law (King 1914) that provides a relation-
ship between power, dissipated in a hot-wire anemometer 
through convection, and the resulting temperature differ-
ence between the wire and the ambient fluid.

In both techniques, to obtain the fitting function g, N 
data points {(Ei,Vi)}

N
i=1

 should be acquired throughout the 
desired velocity range, where, for each data point, Ei is the 
output voltage corresponding to the introduced velocity Vi. 
These N data points are then plotted on the V vs. E plane. 
For proper calibration of the hot-wire probe, it is common 
to use N ≥ 6 data points, although N ≥ 10 data points are 
recommended in Jørgensen (1996), where N is chosen 
according to the velocity range for which the probe is used 
for.

In long-duration experiments, the nonlinear mapping of 
the hot-wire sensor may vary due to changes in the experi-
mental conditions and sensor drifts, thus requiring recali-
bration during the experiments. This recalibration can be 
done outside the test section, but, as is well-known, it is 
always preferable (if possible) to calibrate the hot-wire 
probe within the same test section of the wind tunnel where 
it would eventually be used, thus saving valuable time and 
introducing less interference into the experimental setup. 
On the other hand, recalibration in situ can be a time-con-
suming process, even with modern, computer-controlled 
wind-tunnel experiments, because it requires adjusting the 
wind-tunnel velocity to obtain all required calibration data 
points. These issues render the calibration process costly in 
terms of time and resources, and motivate the search for a 
fast and less demanding calibration method.

Several fast methods have been proposed for recalibra-
tion of a sensor that was initially properly calibrated prior 
to conducting the experiments, via applying a correction 
to the initial calibration. Hultmark and Smits (2010) have 
proposed a recalibration method designed to handle tem-
perature drift during the experiment. Recently, Talluru 
et  al (2014) have demonstrated an on-the-fly recalibration 
method which is not restricted to only correct temperature 
drift. Based on a single recalibration point, this method is 
used to correct sensor drift in boundary layer measurements 
by placing the probe in the freestream in between experi-
mental samples. Relying upon the existence of an accurate 
initial calibration, these methods are sensitive to severe 
sensor degradation, which might render the initial calibra-
tion irrelevant. Thus, to avoid calibration errors, complete 
calibration (as opposed to recalibration via correction) of 
the hot-wire during long experiments is preferable.

(1)E2 = A + BVn,
In this paper, we introduce a novel fast statistical calibra-

tion method that requires only two calibration data points, 
i.e., N = 2. Being fast and relatively undemanding, the 
method proposed herein provides a complete calibration 
of the hot-wire sensor without relying on prior calibra-
tion, and, therefore, it can be repeated, in situ, as often as 
required, e.g., in cases where multiple calibrations should 
be performed due to varying conditions and long durations.

The method relies on the statistical properties of turbu-
lent flow. Accordingly, we consider a statistical method for 
recovering the nonlinear relation between the input velocity 
and the output voltage of a hot-wire sensor located inside 
a turbulent flow regime under certain conditions. In turbu-
lence, one may consider the instantaneous velocity V(t), 
measured by the hot-wire probe, as the sum of random 
velocity increments carried by fluid elements arriving from 
random displacements of small eddies. These incremental 
changes can be considered to be independent and identi-
cally distributed random variables  (Tennekes and Lumley 
1972). Consequently, by the well-known central limit the-
orem (CLT)  (Trotter 1959), and assuming some technical 
conditions, the random variable V(t) can be assumed to be 
nearly Gaussian distributed for all t based on the classi-
cal eddy model of turbulence (Lumley 1972). It should be 
noted that perfect Gaussian distributions should not, in gen-
eral, be expected in homogeneous turbulent flows (Jimenez 
1998). In the case of hot-wire anemometry, the nonlinear 
mapping f transforms the distribution of V. Consequently, 
the transformed random variable E = f (V) is “less Gauss-
ian” than the original function V. The following proposed 
method of calibration is based on this insight.

2  Calibration method

2.1  Mathematical foundation

The method of Gaussianization is based on the following 
well-known property of the cumulative distribution func-
tion (cdf) of any random variable.

Consider the random variable X, having FX as its cdf. 
Then, the random variable U ≜ FX(X) is uniformly distrib-
uted on [0, 1] (Rohatgi 1976).

In particular, the standard (zero-mean, unit variance) 
Gaussian cdf (the Laplace function) Φ(u) transforms the 
standard Gaussian variable to the uniform random variable 
U([0, 1]). Therefore, Φ−1(U([0, 1])) is the standard Gauss-
ian random variable.

Consider the random variable:

Obviously, Z is a standard Gaussian random variable. 
Because Z is obtained from V through E = f (V), and V is 

(2)Z ≜ Φ−1(FE(E)).
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Gaussian, it is clear that both Gaussian random variables 
are linearly related, that is

for some constants a and b. These constants can be deter-
mined using two calibration data points.

It should be noted that the method can be easily general-
ized for distributions other than the Gaussian one. Consider a 
random variable V, with a given cdf FV. We can find Z from 
E by preforming,

Notice, however, that the usage of Eq. (4) relies on know-
ing FV, which, typically, requires some physical insights 
into the problem on hand.

2.2  Calibration procedure

We now present the method to obtain the nonlinear map-
ping of the velocity signal recorded by a hot-wire probe. 
Our goal is to do it with only two known (calibrated) veloc-
ities, V1 and V2, corresponding to voltage outputs E1 and E2, 
respectively, in the recorded turbulent signal range.

The method consists of the following steps:

1. Provide two calibration data points (E,V)1 and (E,V)2 
within the measured voltage range [Emin, Emax] of the 
recorded hot-wire signal that is assumed to be Gauss-
ian. That is, Emin < E1 < E2 < Emax.

2. Find the signal Z(t) from signal E(t) using Eq.  (2), 
where FE(E(t)) is computed from E(t) ∈ [Emin, Emax].

3. Use the two known (calibration) data points from step 
1 to evaluate the coefficients a and b in Eq. (3).

4. Retrieve the estimated signal V(t) from Z(t) using 
Eq. (3). Denote the retrieved value of V by V̂ .

After preforming the above steps, one obtains Z(t) and the 
estimated velocity V̂(t) corresponding to the measured volt-
age E(t). To estimate the nonlinear mapping function g, we 
consider first a 4th-order polynomial fitting of nine voltage 
samples Ei (equally spaced sample values extracted from 
the signal E in the range Emin < Ei < Emax) to their corre-
sponding Zi values. This results in five polynomial coeffi-
cients pZ,k (k = 0, 1,… , 4), that is

Second, we use the obtained coefficients a and b from 
Eq. (3) together with polynomial coefficients pZ,k to obtain 
the polynomial coefficients pĝ,k that represent the function 
ĝ, which is the estimate of the function g, that is

(3)Z = aV + b,

(4)Z = F−1
V
(FE(E)).

(5)Zi =

4∑

k=0

pZ,kE
k
i
, i = 1, 2,… , 9.

where

and

2.3  Main features of the method

The proposed method has several distinct advantages, 
which we discuss below. First, it can be used when the 
calibration data points are provided in a limited narrow 
velocity range, whereas the measurements are acquired in a 
wider velocity range that extends beyond the range spanned 
by the provided calibration data. Such cases occur, e.g., 
when a Pitot probe can only measure a limited velocity 
range, or when the required range of measured velocities 
is below the operational range of the wind tunnel, as is the 
case with measurements in boundary layers, or wakes. In 
such cases, our method can be used to extend the calibra-
tion curve beyond the provided calibration points, assum-
ing that a velocity signal of a known distribution can be 
provided that covers the extended range.

Second, the new method takes advantage of present 
day’s virtually unlimited data acquisition rates by relying 
on the statistical convergence of measured data. In experi-
ments where the statistical properties of the turbulent flow 
are known, one can use the method after the turbulent 
velocity field has been acquired, or in between experimen-
tal samples as a recalibration method, without running sep-
arate experiments to refine or correct an existing calibra-
tion. The two calibration data points can then be obtained 
in the freestream flow, during or after the experiments 
themselves.

Third, in certain cases, the measured data are used to 
only obtain normalized differential values of measured 
velocities, e.g., when measuring the normalized standard 
deviation field of the flow. In such cases, knowing the abso-
lute velocity field is not required, which obviates the need 
for providing the two calibration points, and the measured 
experimental signals are sufficient to estimate the probe’s 
nonlinear mapping. Avoiding the need to obtain the two 
calibration data points leads, obviously, to considerable 
time and resource savings.

Finally, the new calibration method can also be used 
for studying new flow-fields where the distribution of 
the velocity signal is not known a priori. In such cases, 

(6)V̂i = ĝ
(
Ei

)
=

4∑

k=0

pĝ,kE
k
i
, i = 1, 2,… , 9,

(7)pĝ,0 =
1

a
(pZ,0 − b)

(8)pĝ,k =
1

a
pZ,k, k = 1, 2, 3, 4.
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an auxiliary setup for generating velocity signals having 
known distributions is required. The auxiliary setup should 
be mounted inside the wind-tunnel test section, such that it 
will not interfere with the studied flow during the experi-
ments, or, in case it is impossible to eliminate such interfer-
ence, the setup should be designed to be easily removable 
so that it can only be used in between long-duration experi-
mental segments. As an example, a certain bluff body 
with known and mapped turbulent wake properties can 
be positioned at a certain location in the test section that 
renders it both accessible to the probe and non-interfering 
with the studied flow. After acquiring the two calibration 
data points with the aid of the bluff body, the hot-wire is 
traversed back to the investigated region of the new flow-
field. This procedure, that can be automated and computer-
controlled, should be faster than a conventional calibration 
procedure that requires varying the wind-tunnel velocity 
multiple times for obtaining sufficiently many calibration 
data points.

3  Validation

To validate the method, we compare it with standard cali-
bration methods using hot-wire data acquired in the Techn-
ion’s wind-tunnel laboratory. An example of a calibrated fit 
is presented in Fig. 1. Hot-Wire Anemometry system of A. 
A. Lab Systems is used. The probe itself is a tungsten wire 
of 5 μm diameter and 1.25 mm length (probe model: DAN-
TEC, type 55P11, straight prongs). The wire is calibrated in 
the freestream of the wind tunnel using a Pitot-static tube 
in a velocity range up to 10 m/s, at a temperature of 20 °C. 
To these data points we fit and plot a 4th-degree polyno-
mial to obtain the calibration curve V = g(E).

To generate the desired Gaussian velocity signal V(t), 
we place the probe downstream of a cube-shaped body in 
a freestream of air flow. The idea is to place the probe in 
a certain region of the generated wake downstream of the 
body, where we can achieve the desired signal properties 
for testing our calibration method. The specific properties 
we are looking for are:

1. The statistical distribution of the signal should be as 
close to Gaussian as possible.

2. The signal should cover the desired velocity range 
that should be calibrated, i.e., it should possess a suf-
ficiently large standard deviation.

The experimental setup with the corresponding coordi-
nate system is shown in Fig. 2. The cube is made of per-
spex with edge equal to ac = 20  mm. The cube is placed 
inside the test section of the wind tunnel at a fixed loca-
tion, mounted on a fixed rod connected to one of the cube 
side edges. The rod is placed on the side wall to enable 
placing the hot-wire probe behind the cube at a certain 
downstream location of its wake. The rod length and thick-
ness are selected to be as thin as possible (approximately 
1.65 mm thick, 40 mm long) to reduce its effect on the cube 
wake, but rigid enough to avoid oscillations of the cube due 
to freestream flow velocities up to 15  m/s. We choose to 
demonstrate our method on a 20  mm cube-shaped body, 
because it is easy to manufacture, and its associated Reyn-
olds number is sufficiently high, so that it generates highly 
fluctuating signals.

Before testing the proposed method of calibration, 
we study the statistical properties of the generated wake. 
Three-dimensional (3D) mappings of the spatial struc-
ture of the wake flow-field of the cube-shaped body are 

Fig. 1  Calibration data points (asterisks) and calibration curve 
(dashed line) obtained using 4th-degree polynomial fitting

Fig. 2  Experimental setup: cubical body placed in a wind-tunnel test 
section. The origin of the associated coordinate system is at the center 
of the downstream face of the cube
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obtained by hot-wire measurements of the streamwise 
velocity component. For this purpose, the probe is mounted 
on a three-axis traversing mechanism, having a resolution 
of 5 μm in the vertical direction, and 1 mm in the stream-
wise and spanwise directions. The positioning of the probe 
within the wake region at a given downstream station is 
done automatically using the computer to drive the step-
ping motors through the LabVIEW software. The flow is 
sampled at 1210 locations: 11 downstream locations in the 
range x ∈ [5, 105] mm with 10 mm step size, 11 spanwise 
locations in the range z ∈ [−25, 25]  mm, and 10 vertical 
locations in the range y ∈ [−20, 25] mm with 5 mm step 
size in both y and z directions to cover the wake. The 6 s 
velocity record is digitized at 1  kHz rate, giving 6 × 103 
measurement points for each (x,  y,  z) location. That a 

number of measurement points along with probe spatial 
resolution were found to be adequate for obtaining reliable 
high-order statistical moments and well-converged proba-
bility density functions (pdfs). The spatial resolution issues 
are discussed in detail in Hutchins et al. (2009). The probe 
wire length determines the attenuation levels of the smaller 
scale fluctuations of the flow, which plays a role in the 
acquired signal spectra appearance and its distribution. The 
probe used in our experiments is less than 1.25 mm long. 
According to Ligrani and Bradshaw (1987) this wire length 
is in the range that should be used for measuring kurtosis 
and skewness factors, as well as energy in wall turbulence 
measurements.

The wake measurement is conducted with three dif-
ferent freestream velocities: U∞ = 5, 7, 9  m/s. For each 

Fig. 3  Isometric view of x–y, x–z, and y–z slices of first four statisti-
cal moments of the wake of a cube with edge length of ac = 20 mm, 
at freestream velocity U∞ = 5  m/s: a mean velocity �V normalized 

by freestream velocity U∞. b Standard deviation � normalized by 
freestream velocity U∞. c �1(V). d �2(V)
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experiment, we calibrate the probe by the traditional 
technique at the beginning and at the end of the experi-
ment, to ensure that the hot-wire does not drift dur-
ing the experiment. For each experiment, we com-
pute the first four statistical moments of the acquired 
signals. These moments are: the mean �V = �[V(t)], 
the standard deviation �V = [�(V − �V )

2]0.5, the skew-
ness �1(V) = �[(V − �V )

3]∕�3

V
, and the kurtosis, 

�2(V) = �[(V − �V )
4]∕�4

V
. A Gaussian signal should have 

skewness �1 = 0 and kurtosis �2 = 3 (Krishnan 2006).
In Fig. 3, we show the results obtained at a freestream 

velocity of U∞ = 5  m/s, i.e., at Reynolds number 
Rea = 6.4 × 103, based on the cube edge length ac and kin-
ematic viscosity of � = 1.57 × 10−5 m2∕s. At these moder-
ate Reynolds numbers, Fig. 3 shows that in the region just 

downstream the cube, the first statistical moment values, 
i.e., the mean velocity values, are lower than the freestream 
velocity. The regions of high shear can be identified by 
high �V values. The highest values occur approximately 
along the lines z, y = ±0.25ac and reach their maximum at 
about x = 2ac. In the near field, the wake is highly unsta-
ble, resulting in skewed signals with kurtosis far from its 
Gaussian value. At downstream distances greater than 
x = 3ac, the measured signal in the wake core has skewness 
and kurtosis close to the Gaussian values �1 = 0 and �2 = 3, 
i.e., the far wake core can be considered to consist of homo-
geneous turbulent flow. This region is suitable for apply-
ing our proposed calibration method. Similar results are 
obtained for freestream velocities U∞ = 7 m/s and U∞ = 9 

Fig. 4  Streamwise variation of the first four statistical moments of measured voltage E (crosses), and velocity V (circles) along the wake at 
y = 0.25ac, z = −0.25ac and U∞ = 5 m/s. �1 = 0 and �2 = 3 are denoted by dashed (red) line
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m/s, for which the corresponding Reynolds numbers are 
Rea = 8.9 × 103 and Rea = 1.15 × 104, respectively.

The desired signal properties for testing the new calibra-
tion method are obtained by placing the hot-wire probe at 
ac∕4 distance from the cube upper and side faces, i.e., at 
z, y = ±0.25ac on the y–z plane at a certain downstream 
location where x > 3ac. In Fig. 4, we plot the variation of 
the first four statistical moments of the measured veloc-
ity V along the downstream direction of the wake for 
(y, z) = (0.25a,−0.25a) and U∞ = 5  m/s. It is evident that 
for x > 3ac, the values of skewness and kurtosis are close to 
the Gaussian ones.

To apply our method of calibration, we place the sen-
sor at a downstream location x = 3.75ac and y = 0.25ac, 
z = −0.25ac. The measured velocity signal at this location 
is shown in Fig.  5a. The corresponding measured voltage 
signal is shown in Fig. 5b. This output voltage signal, along 
with two measured calibration data points (E1,V1), (E2,V2) 
(marked by red circles in Fig. 6), is used to estimate the hot-
wire calibration curve using the method of Gaussianization.

The obtained signal Z and the estimated result, denoted 
as V̂ , are displayed in Fig. 6. In Fig. 7, we present the pdfs 
of the measured signals V(t) and E(t), together with the 
pdf of the corresponding signal Z(t) obtained by Eq.  (2) 
and the pdf of the estimated signal V̂  obtained by Eq. (3). 
From Fig. 6, it can be seen that the method preforms very 
well, and successfully estimates the calibration curve of the 
hot-wire sensor in the region of the measured signal, which 
appears to be almost Gaussian as can be seen from Fig. 7. 
Similar results have been obtained for other velocity ranges 

and locations in the wake where the values of skewness 
and kurtosis of the velocity signal are almost equal to the 
Gaussian ones.

For homogeneous turbulence, it is noted in Jimenez 
(1998) that the CLT does not necessarily hold, i.e., the 
probability distributions of the components of the turbulent 
velocity fluctuations are not necessarily Gaussian. Thus, 
the new method’s sensitivity to the distribution assumption 
is studied next.

Fig. 5  a Calibrated hot-wire signal V(t) and b measured voltage sig-
nal E(t) obtained at (x, y, z)/ac = (3.75, 0.25,−0.25) and U∞ = 5 m/s. 
ti is a discrete time sample out of N samples. The green broken lines 

are the mean values, each of the solid green lines represents an offset 
of 2.5� from its mean value, and the black dash-dot lines are bounda-
ries of the calibration range (shown in Fig. 1)

Fig. 6  Estimated velocity calibration curve V̂  (red solid line) vs. cal-
ibration curve obtained by the standard method (black dashed line) 
based on the measured data points (asterisks). The two provided cali-
bration data points are marked by the red circles. The obtained signal 
Z is shown by the red dashed line
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4  Robustness to method assumptions

In this section we study the sensitivity of the proposed 
method to the assumption that the turbulent flow velocity 
signal is normally distributed. In addition, we study the 
difference between the results obtained by our method and 
those obtained using the traditional methods.

The estimation error between V = g(E) and V̂ = ĝ(E) 
is measured by the mean-squared error (MSE), defined as 
follows:

(9)MSE ≜
1

m − l + 1

m∑

i=l

SEi,

where SEi is a local squared error, that is

and El = min[E(t)], Em = max[E(t)].
In Figs.  8, 9, and 10, we show SE and MSE of 

the obtained V̂  for U∞ = 5, 7, 9  m/s, respectively, at 
(y, z)∕ac = (0.25,−0.25) at a selected downstream loca-
tion x determined by the smallest MSE. We observe that 
the edge regions off the V̂  curve contribute to the most to 
the MSE. This is attributed to the lack of samples in these 
regions which corresponds to the tails of the pdf of the sig-
nal V(t).

(10)SEi =
[
g
(
Ei

)
− ĝ

(
Ei

)]2
, i = l,… ,m,

Fig. 7  Pdf’s of V (black solid line), E (black dashed line), 
Z (red dotted line), and V̂  (red dash-dot line), measured at 
(x, y, z)/ac = (3.75, 0.25,−0.25) and U∞ = 5 m/s

Fig. 8  a Plot of V(E) (black dashed line) and V̂(E) (red 
solid line). b Corresponding SE. Blue dashed lines indicate 
±2.5� bounds for V (horizontal lines) and E (vertical lines). 
(x, y, z)∕ac = (3.75, 0.25,−0.25), U∞ = 5 m/s

Fig. 9  a Plot of V(E) (black dashed line) and V̂(E) (red 
solid line). b Corresponding SE. Blue dashed lines indicate 
±2.5� bounds for V (horizontal lines) and E (vertical lines). 
(x, y, z)∕ac = (4.25, 0.25,−0.25), U∞ = 7 m/s

Fig. 10  a Plot of V(E) (black dashed line) and V̂(E) (red 
solid line). b Corresponding SE. Blue dashed lines indicate 
±2.5� bounds for V (horizontal lines) and E (vertical lines). 
(x, y, z)∕ac = (4.75, 0.25,−0.25), U∞ = 9 m/s
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It can be seen that the method performs well in the 
bounded range �V ± 2.5�V of the signal V(t), in which 
MSE < 0.01 for the three freestream velocities tested.

In addition, because Z is linearly related to V̂  (Eq. (3)), 
we test the quality of the estimation by evaluating the cor-
relation coefficient � between Z and V,

In each of Figs.  11, 12, and 13, we plot 4 charts: charts 
(a) and (b) show the variations of � and MSE, respec-
tively, along the wake for (y, z) = (0.25a,−0.25a) on the 
y–z plane for freestream velocities of U∞ = 5, 7, 9  m/s. 
From these charts, we see that signals obtained at down-
stream distances x > 3ac are characterized by 𝜌 > 0.98 and 

(11)� ≜
cov(V , Z)

�V�Z
, |�| ≤ 1.

MSE < 0.05, demonstrating the good performance of our 
calibration method. Chart (c) shows the relation between 
MSE and �. It can be seen that, in general, as � approaches 
1, the MSE tends to 0, except for some localized regions.

To study the sensitivity of the proposed method to the 
assumption that the turbulent flow velocity signal is nor-
mally distributed, we study the effect of the skewness, 
�1(V(t)), and kurtosis, �2(V(t)), of the velocity signal V(t) 
on the performance of the method. The fourth chart (d) in 
each of Figs. 11, 12, and 13 shows the MSE values obtained 
for specific skewness and kurtosis values of the measured 
velocity V signals obtained at (y, z) = (0.25a,−0.25a) 
on the y–z plane for different downstream locations. It is 
shown that MSE < 0.05 is obtained for skewness and kur-
tosis values close to their Gaussian values within deviations 

Fig. 11  a Variation of � along the streamwise direction (� = 0.98:

red dashed line). b Variation of MSE along the streamwise direc-
tion (MSE = 0.05: red dashed line). c MSE vs. �. d MSE as func-

tion of �1(V) and �2(V). (MSE < 0.05: black asterisks, MSE < 0.01: 
red circles). All signals measured at y = 0.25ac, z = −0.25ac, and 
U∞ = 5 m/s
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of approximately ±0.15. These values are sufficient to gen-
erate a nearly Gaussian distribution which is sufficient to 
estimate Z. For larger deviations of �1 and �2, the perfor-
mance of the method degrades.

5  Concluding remarks

We have presented a statistical method for recovering the 
nonlinear relation between the input velocity and the out-
put voltage of a hot-wire sensor. The method uses as input 
a measured sequence of voltage samples, correspond-
ing to unknown flow velocities in the desired operational 
range, together with only two measured voltages along 
with their known associated flow velocities. In addition to 

the calibration obtained over the range spanned between 
the two calibration data points, the new method can pro-
vide an extended range of calibration, covering velocities 
below and above the calibration data points. To this end, a 
velocity signal having a known distribution has to be pro-
vided that covers the extended velocity range. The method 
is based on a Gaussianization technique which works very 
well if the velocity signal is normally distributed. Normal 
velocity distributions can be achieved if the hot-wire sensor 
is placed in a turbulent flow regime under certain condi-
tions. Therefore, the method relies on the spatial resolution 
of the probe and the existence of sufficiently many data 
samples, in order to obtain a converged pdf of the measured 
signal.

Fig. 12  a Variation of � along the streamwise direction (� = 0.98: 
red dashed line). b Variation of MSE along the streamwise direc-
tion (MSE = 0.05: red dashed line). c MSE vs. �. d MSE as func-

tion of �1(V) and �2(V). (MSE < 0.05: black asterisks, MSE < 0.01: 
red circles). All signals measured at y = 0.25ac, z = −0.25ac and 
U∞ = 7 m/s
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It has been demonstrated that the method performs well 
even for signals that are only approximately Gaussian, as 
long as the deviations from the assumed Gaussian distribu-
tion are not too large. In general, the method can be easily 
modified to accommodate distributions other than Gaussian 
and will perform well if the flow distribution is known.

The cube wake, which has been used in this paper, is a 
good candidate for demonstrating the performance of the 
proposed method in a real flow case, but this configura-
tion is by no means unique, and one can consider any other 
geometry of a bluff body with different surface roughness 
under varying flow regimes (Reynolds numbers). We have 
shown that varying the Reynolds numbers of the cube-
shaped body in the range of 6.4 × 103–1.15 × 104 does not 

affect the statistical distributions required for applying the 
method, provided that the hot-wire probe is placed at a 
downstream distance larger than 3 diameters of the cube. 
The method can be directly applied in many flow cases, 
e.g., turbulent wakes of bluff bodies, such as cubes and 
spheres, turbulent flow past a grid, or any flow for which it 
is possible to obtain consistent known pdfs of the turbulent 
velocity signal.

Finally, to estimate the nonlinear mapping of the hot-
wire sensor by the proposed method in a certain veloc-
ity range, the recorded velocity signal should cover this 
range. Thus, to increase the calibration range, the velocity 
input signal should be highly turbulent, with large velocity 
fluctuations.

Fig. 13  a Variation of � along the streamwise direction (� = 0.98: 
red dashed line). b Variation of MSE along the streamwise direc-
tion (MSE = 0.05: red dashed line). c MSE vs. �. d MSE as func-

tion of �1(V) and �2(V). (MSE < 0.05: black asterisks, MSE < 0.01: 
red circles). All signals measured at y = 0.25ac, z = −0.25ac and 
U∞ = 9 m/s
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