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Abstract

A new decoding method is presented for analog encoders enabling major improvements in both accuracy and resolution. A

simulation study and experiments with real, industrial-grade, equipment demonstrate the performance improvement of the proposed

method, revealing that the new method can generate position estimates with accuracy about three times better than that of standard

methods. Moreover, in some special cases, the resulting position accuracy can reach sub-nanometer levels, thus enabling further size

reduction in the semiconductor industry. The proposed algorithm also yields velocity estimates better by about two orders of

magnitude than those obtained with standard methods.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Linear analog encoder is a very common sensor in the
semiconductor industry. Its main use is as a feedback
sensor in X–Y or X–Y–Z tables that hold the wafer
against a vision instrument like a high-resolution camera
or an electronic microscope. In such applications the
resolution requirements are extremely stringent, reach-
ing few nanometers or even less than one nanometer.
Existing decoding algorithms are limited because they
are based on solving the geometrical problem only and
do not attempt to improve the accuracy by applying
some filtering strategy.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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The analog encoder generates sine and cosine signals
that are related to its linear translation. Like in any
other real-world device, the encoder’s measured signals
are corrupted by common error sources, such as
electronic noise or quantization error, which, in turn,
reduce the accuracy of the encoder. The noise issue
becomes even more important when bearing in mind
that the encoder, a position sensor by its nature, is also
commonly used to estimate velocities by a straightfor-
ward numerical differentiation of its output. To the best
of the authors’ knowledge, the idea of implementing
state filtering techniques to confront the effects of the
measurement error sources has not appeared in the open
literature up to this date. Furthermore, only a few
published works relate to the general problem of
encoder measurement noise alleviation. Yang, Rees,
and Chuter (2002) address only deterministic error
sources, arising from mechanical installation errors, in
an analog encoder. They develop a mathematical model
of the resulting error and use a Kalman filter,
implemented off-line, to estimate the model parameters.
This model, in turn, is used to recalculate the measured
position. The work of Venema (1994) is of a similar
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nature, using the filtering algorithm off-line for the sole
purpose of calibrating the analog encoder. Other
researchers (Hagiwara, Suzuki, & Murase, 1992; Mayer,
1994) deal only with the issue of calculating the encoder
angle from the sine and cosine signal by applying inverse
trigonometric functions.

This paper deals with the accuracy issue of analog
encoders by applying on-line filtering to the measured
signals. Using the extended Kalman filtering (EKF)
framework, a novel decoding algorithm is developed
and verified. The new algorithm enables improved
position estimation and a dramatic improvement in
velocity estimation, relative to commercially available
existing algorithms.

The remainder of this paper is organized as follows.
In the next section the operational principles of an
analog encoder are described and the measurement
model is constructed. The system model is then
developed and both models are put together within the
framework of an EKF. The following section presents a
simulation study through which the filter’s performance
is verified, and a discussion of the results. Some of the
more interesting and promising aspects of the proposed
decoding method are pointed out. Next, the proposed
algorithm is experimented with real industrial hardware
and confronted with a conventional algorithm. Con-
cluding remarks are offered in the final section.
2. Encoder model

2.1. Principle of operation

The encoder’s principle of operation is schematically
depicted in Fig. 1. A scale, having gold-made triangular
facets, reflects the light of an infra-red LED light source,
through an index grating, unto a photo-detector. Due to
the periodic pattern of both the scale and the index
grating, sinusoidal interference fringes are produced on
the detection plane of the photo-detector. Whenever the
moving parts are in motion, i.e., the light source, the
index grating and the photo detector move relative to
the static scale, the fringes move along the detection
plane. Using a special assembly, the photo detectors
provide signals related to the motion of the fringes. An
electronic circuit amplifies and combines the photo
detectors’ signals to generate two sinusoidal waveforms
of equal amplitude and period (equaling the scale
period), separated by a 90 degrees phase shift. The
interested reader is referred to (Webster, 1999; Re-
nishaw, 1998) for further details.

2.2. Measurement model

The most accurate scales now commercially available
have resolutions of a few micrometers. To obtain
sub-micron resolution, as required by production
systems, the analog signals must be sampled and
decoded. The measurement vector z 2 R2 can be
described as follows:

z9
zð1Þ

zð2Þ

" #
¼

V sinð2pf sxðtÞÞ

V cosð2pf sxðtÞÞ

" #
, (1)

where f s is the scale spatial frequency, V is the signal
amplitude and xðtÞ is the position.

Most manufacturers use the following equation to
estimate the position from the measured signals
(Venema, 1994):

x ¼
atan2ðzð1Þ; zð2ÞÞ

2pf s

, (2)

where atan2ð�; �Þ is the 4 quadrant inverse tangent
function. Some manufacturers increase the estimation
accuracy by normalizing the signals and applying an
arcsine or an arccosine function, depending on the signal
absolute value, as follows:

x ¼

arcsinðzð1Þ=kz kÞ

2pf s

; jzð1Þjpjzð2Þj;

arccosðzð2Þ=kz kÞ

2pf s

; jzð2Þjojzð1Þj:

8>>><
>>>:

(3)

This procedure increases the signal-to-noise ratio (SNR)
by taking the information from the more sensitive
regions in the signal harmonic.

All of the above algorithms do not apply any filtering
procedure to the signal, i.e., they do not use any prior
information regarding the signal to weigh it against the
current measured information. In the presence of
measurement noise, the algorithm’s output, i.e., the
estimated position, becomes noisy as well. Furthermore,
the estimated velocity signal, calculated by numerically
differentiating the (noisy) position signal, is subject to
much higher noise levels.

To account for the sampling operation that trans-
forms the continuous signal xðtÞ to its sampled version
xðk þ 1Þ; and for the contamination of the measurement
by the measurement noise, Eq. (1) is rewritten as

z ðk þ 1Þ ¼ h ðxðk þ 1ÞÞ þ v ðk þ 1Þ

¼
V sinð2pf sxðk þ 1ÞÞ

V cosð2pf sxðk þ 1ÞÞ

" #
þ v ðk þ 1Þ, ð4Þ

where v ðk þ 1Þ is the measurement noise. There are
several sources for measurement noise (Venema, 1994),
but the most dominant one is introduced by an
electronic noise within the sampling operation (ground
noise of the analog-to-digital (A/D) converter). The
measurement noise is assumed to be a white, zero-mean
Gaussian stationary sequence:

v�N 0;Rð Þ. (5)
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Fig. 1. Analog encoder principle of operation.
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Eq. (4), relating the measurement vector z to the desired
position signal x, is nonlinear. The filtering algorithm
used is, therefore, the well-known EKF. The state
equation, needed also in the EKF framework, is
discussed next.

2.3. State space model

Two basic concepts for the state space model are
possible:
(1)
 a full dynamic model, which takes into account the
mechanical structure, material property, actuators
and sensors location and actuated forces,
(2)
 a kinematic model, which take into account just the
kinematic relation between the state variables.
Although it is conceivable that the full dynamic model
would yield better estimation performance than the
kinematic model because of its better description of the
true system, the latter model was chosen in the present
work because of the complexity of the dynamic model
and its inherent sensitivity to the quality of its under-
lying mathematical model.

Following Bar-Shalom and Fortmann (1988) a kine-
matic model of a linear system driven by a white noise
was adopted. The state variables are the position, the
velocity and the acceleration of the system. The state
vector is, thus

x ¼ ½x _x €x�T (6)

and the state equation is

_x ¼ A x þ w ¼

0 1 0

0 0 1

0 0 �a

2
64

3
75x þ

0

0

w

2
64

3
75, (7)

where w is assumed to be a white, zero-mean Gaussian
process with intensity s2m; and a is the inverse
decorrelation time (pole) of the acceleration. Eqs. (4)
and (7) comprise the full (nonlinear) continuous model
of the analog encoder, to be used in the sequel as a basis
for the EKF formulation.
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3. EKF implementation

Similar to (Bar-Shalom & Fortmann, 1988) a discrete-
time model of the system is derived as follows:

x ðk þ 1Þ ¼ F x ðkÞ þ w d ðkÞ, (8)

where the state transition matrix is

F ¼ eA T ¼

1 T
aT � 1þ e�aT

a2

0 1
1� e�aT

a
0 0 e�aT

2
666664

3
777775 (9)

and T is the sampling time. The symmetric covariance
matrix Q d of the discrete-time process noise w d has the
following components:

q11 ¼
s2m
a4

1� e�2aT þ 2aT

�

þ
2a3T3

3
� 2a2T2 � 4aTe�aT

�
, ð10aÞ

q12 ¼
s2m
a3
½e�2aT þ 1� 2e�aT

þ 2aTe�aT � 2aT þ a2T2�, ð10bÞ

q13 ¼
s2m
a2
½1� e�2aT � 2aTe�aT �, (10c)

q22 ¼
s2m
a2
½4e�aT � 3� e�2aT þ 2aT �, (10d)

q23 ¼
s2m
a
½e�2aT þ 1� 2e�aT �, (10e)

q33 ¼ s2m½1� e�2aT �. (10f)

The EKF mechanization equations are standard and
can be found in many textbooks, e.g., (Mendel, 1987).
Let x̂ ðk þ 1 j kÞ denote the predicted estimate at time
tkþ1 based on k measurements, and let H x denote the
Jacobian matrix of the measurement function, calcu-
lated at the predicted state:

H xðk þ 1Þ9
qh

qx

����
x̂ ðkþ1 j kÞ

¼
2Vpf s cosðx̂ðk þ 1 jkÞÞ 0 0

�2Vpf s sinðx̂ðk þ 1 jkÞÞ 0 0

" #
. ð11Þ

The EKF is then formulated as follows:
�
 Time update:

x̂ ðk þ 1 j kÞ ¼ F x̂ ðk j kÞ, (12)

P ðk þ 1 j kÞ ¼ F P ðk j kÞF T þQ d . (13)
Measurement update:
�
x̂ ðk þ 1 jk þ 1Þ ¼ x̂ ðk þ 1 jkÞ þ K ðk þ 1Þ½z ðk þ 1Þ

� h ðx̂ ðk þ 1 j kÞÞ�, ð14Þ

K ðk þ 1Þ ¼ P ðk þ 1 j kÞH xðk þ 1ÞT½H xðk þ 1Þ

�P ðk þ 1 j kÞH xðk þ 1ÞT þ R ��1, ð15Þ

P ðk þ 1 j k þ 1Þ

¼ ½I � K ðk þ 1ÞH xðk þ 1Þ�P ðk þ 1 jkÞ

�½I � K ðk þ 1ÞH xðk þ 1Þ�T

þ K ðk þ 1ÞR K ðk þ 1ÞT. ð16Þ
4. Simulation study

A MATLAB simulation was constructed to evaluate
the performance of the proposed algorithm and to
compare it with that of standard decoding methods. The
simulation, described schematically in Fig. 2, consists of
a signal generator that generates the true position signal,
an encoder block, a sampler (A/D) and a processing
block that implements either the proposed algorithm or
a standard decoding method, based on inverse-trigono-
metric functions.

The encoder block simulates the sine and cosine
signals of an analog encoder according to a preset scale
resolution. The signals are then sampled by the sampler
block that enables also setting of the converter resolu-
tion and of the electronic noise level, simulated as an
additive Gaussian white noise. The parameters (dynamic
range, resolution) of the analog-to-digital converter are
set in accordance with standard commercial compo-
nents. These parameters are detailed in Table 1. The
electronic noise level was specified by a leading
manufacturer of X–Y table controllers and verified
with real data.

The processing block comprises two different func-
tions. The ‘coarse position’ function counts full cycles of
the encoder scale and is identical for the standard and
the proposed algorithms. The ‘fine position’ function is
the heart of the decoding process and calculates the
position within the scale cycle according to the sine and
cosine signals of the encoder. This function implements
either the standard inverse-trigonometric algorithm of
Eq. (3), or the proposed EKF-based algorithm.

The tuning of an EKF is a delicate matter regarded by
many engineers as an art more than a science. Two
tuning parameters exist in this case: the process noise
intensity s2m and the inverse decorrelation time a: Both
parameters control the bandwidth of the filter. The
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Fig. 2. Simulation block diagram.

Table 1

Simulation parameters

Parameter Value

Sampler dynamic range (V) �1:25
Sampler resolution (bits) 12

Sampling frequency (kHz) 20

Signal amplitude (V) 1

Encoder scale cycle (mm) 4

Electronic noise 1s (mV) 8

Acceleration pole (a) (rad/s) 200p
Process noise intensity (s2m) ((m/s3)2) 10�5
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following considerations are taken into account when
tuning the EKF:
�
 The filter’s bandwidth has to be tuned to match the
expected signal frequencies;

�
 High filter bandwidth results, typically, in noisier

estimates and larger estimation error, whereas low
bandwidth can result in bad tracking performance
(higher estimation delay and, even, filter divergence);

�
 Precautions should be taken to ensure sufficient signal

power to account for the expected accelerations in the
system.

In general, lower values of the s2m parameter result in
lower values of the P matrix. But, if set too low, then
the estimation becomes delayed and the estimation error
tends to become sinusoidal (for sinusoidal inputs).
Lower a values enable setting lower s2m values, thus
permitting a lower error standard deviation, but at the
expense of lowering the bandwidth of the filter.

Having in mind a closed loop bandwidth of about
10–20Hz, as is common in industrial X–Y tables, the
filter was tuned with a ¼ 200p to account for accelera-
tion bandwidth of at least 100Hz. The filter was tuned
to perform well with signals having amplitudes on the
order of a few microns, which represent normal
requirements for such systems. The sampling frequency
was set to 20 kHz. The performance was compared to
that of the standard inverse trigonometric method by
calculating the point-wise position and velocity errors
and the standard deviations of the errors for both
algorithms.

The algorithms are tested either by generated
sinusoidal position inputs with various frequencies, or
by position ramp (constant velocity) inputs. These
signals are different than those assumed in the kinematic
model that lies in the basis of the EKF. Moreover, the
model assumes only additive measurement noise
whereas the simulated measurements are affected by
sampling, quantization and an additive random noise.
The estimation errors, generated by the two decoding
algorithms, are compared for the various input signals.
In addition, the new method’s estimation error standard
deviation is compared to the theoretical value computed
from steady state values of the filter covariance matrix,
to verify filter consistency.

Fig. 3 presents the true position signal vs. the
estimated one, on a magnified time scale. Fig. 4 shows
the difference between those signals, i.e., the estimation
error of the two decoding algorithms. These figures
show the improvement in position estimation due to the
use of the new decoding algorithm. When using the
proposed algorithm the errors are clearly smaller and
the high-frequency (noisy) components are significantly
attenuated. Table 2 presents the standard deviation of
the position error generated by the two decoding
algorithms, for various driving signals. Remarkably,
the new method’s error standard deviation is kept close
to 1.5 nm even when the amplitude or the frequency of
the position signal is varied. Tracking of a constant
velocity motion is also handled well by the filter, with
the same level of accuracy.

A dramatic improvement is achieved in the velocity
estimation, as could be expected. This is mainly due to
the fact that standard methods estimate velocity by
numerically differentiating the noisy position estimate,
whereas the proposed algorithm estimates it as part of
the state vector. The results shown in Table 3 and in Fig.
5 clearly demonstrate the huge improvement in velocity
estimation (note the different scales of the vertical axes
in Fig. 5).
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Fig. 3. True vs. estimated position, EKF (top) and inverse trigonometric (bottom) decoding methods.
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Fig. 4. Position estimation error, EKF (top) and inverse trigonometric (bottom) decoding methods.

Table 2

Position 1-s error (nanometer) for sinusoidal signals (designated by frequency and amplitude) and constant velocity signal (designated by amplitude)

Decoding method 5Hz 2Hz 10Hz 5Hz 5Hz Constant velocity

1mm 1mm 1mm 2mm 0:5mm 2mm/s

Inverse trigonometric 5.17 5.15 5.15 5.16 5.15 5.13

EKF 1.57 1.54 1.67 1.54 1.56 1.53

Y. Zimmerman et al. / Control Engineering Practice 14 (2006) 337–350342
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Table 3

Velocity 1-s error ðmm=sÞ for sinusoidal signals (designated by frequency and amplitude) and a constant velocity signal (designated by amplitude)

Decoding method 5Hz 2Hz 10Hz 5Hz 5Hz Constant velocity

1mm 1mm 1mm 2mm 0:5mm 2mm/s

Inverse trigonometric 146.2 145.4 144.9 145.1 145.4 144.5

EKF 1.77 1.69 2.29 1.84 1.72 1.69
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Fig. 5. Velocity estimation error, EKF (top) and inverse trigonometric (bottom) decoding methods (notice the different vertical scales).
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Fig. 6. Predicted error standard deviation calculated from the EKF covariance matrix. Position (top) and velocity (bottom).
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Fig. 6 presents the predicted error standard deviation
as calculated from the EKF error covariance matrix.
Note the good correlation of the accuracy predicted by
the filter, 1.7 nm in position and 2:6mm=s in velocity,
with the actual results shown in Tables 2 and 3. Note
also the fast convergence of the filter and its quasi-static
behavior.

In some special cases, wafer production and inspec-
tion systems are subject to very low amplitudes in
position (quasi-static behavior). When simulating such
Table 4

Simulation results—sub-nanometer accuracy, 2Hz signals (position and velo

Signal amplitude s2m Frequenc

ðmmÞ ((m/s3)2) (kHz)

0.1 10�9 20

1 10�5 100

1 10�5 20

Real−Time Interface

Matlab/Simulink

Sine Channel

Cosine Channel

MASTER PPC

Host Computer

dSPACE DS1103

DS1103

DS1103 ADC

DS1103 ADC

Fig. 7. Schematic diagram o
cases results of sub-nanometer position accuracies were
obtained by using the proposed algorithm. This is
mainly due to the fact that the low values of acceleration
enable tuning of the filter with relatively low values of
s2m; as shown in Table 4. Accuracy is also commonly
improved by raising the sampling frequency. To-date
commercial controllers are limited to sampling fre-
quency of about 20 kHz, but future hardware develop-
ment will surely enable higher rates. Table 4
demonstrates that sub-nanometer accuracy can be
city errors are 1-s values)

y Position error Velocity error

(nm) ðmm=sÞ

0.6 0.08

0.81 1.22

1.54 1.69

Y Axis

X Axis

Z Axis

Anorad "EVEREST" Multi−Axis Precision Stage

Analog Encoder

Analog Encoder

Analog Encoder

Renishaw RG2

Renishaw RG2

Renishaw RG2

f experimental setup.
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achieved by raising the sampling frequency to 100 kHz.
The two cases are compared to the normal setting of the
filter (third row of Table 4). Note that the accuracy of
the standard inverse trigonometric decoding method is
independent of the above setting and remains ca. 5 nm.
4

5

6

7

8

9

10
x 104

S
am

pl
es
5. Experimental validation

In the previous section the performance improve-
ments associated with the new algorithm were demon-
strated via a simulation study. To further validate the
simulation and demonstrate the capability of the
method, an experiment using real data, acquired via
an operative industrial system, has been carried out. The
experiment was performed at the Mechatronics Labora-
tory of the Technion—Israel Institute of Technology’s
faculty of mechanical engineering. The testbed centers
on an ‘‘EVEREST’’ industrial X–Y–Z precision stage
assembled by Anorad Ltd., using RG-2 linear analog
encoders made by Renishaw Ltd., as the position
sensors. The stage is normally used for wafer inspection,
which requires resolution of 40 nm. A dSPACE data
acquisition system with real-time interface (dSPACE,
2001, 2003) was connected to the X -axis encoder, thus
enabling precise data recording. Fig. 7 depicts schema-
tically the experimental setup. The hardware parameters
Table 5

Experimental setup parameters

Parameter Value

Sampler dynamic range (V) �10

Sampler resolution (bits) 12

Sampling frequency (kHz) 20

Signal amplitude (V) 5.45

Encoder scale cycle ðmmÞ 20

Fig. 8. Anorad-assembled ‘‘EVEREST’’ multi-axis precision stage

used for the experimental investigation.
are detailed in Table 5. Fig. 8 shows a picture of the
Anorad Ltd. ‘‘EVEREST’’ multi-axis precision stage.

The experiments consisted of applying a series of
motion profiles to the X -axis of the testbed. The
resulting encoder signals were recorded and the pro-
posed algorithm applied to the acquired data. The
results were compared to the ones obtained when
applying a conventional algorithm to the same data.
The recorded data were first analyzed to determine noise
parameters, important for a successful implementation
of the proposed algorithm.

The experiments comprised the following two stages:
(1)
1

S
am

pl
es

(a)

(b)

Fig.

enco
static tests, in which the X -axis was held in some
constant position,
(2)
 dynamic tests, where several dynamic motion
profiles were executed.
-5 -4 -3 -2 -1 0 1 2 3 4 5
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Sine channel
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Cosine channel

9. Noise histograms and corresponding Gaussian PDFs in both

der channels: (a) Sine channel; (b) cosine channel.
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The former tests facilitate an assessment of the noise
statistical properties due to the table’s known constant
position and zero velocity, both serving as reference
signals for comparison. The latter tests were executed in
order to verify and demonstrate the ability of the
proposed algorithm to track dynamic motion profiles.
0 1000 2000 3000 4000 50
10-7

10-6

10-5

Freque

V
2 /H

z

10-7

10-6

10-5

V
2 /H

z

Cosine

0 1000 2000 3000 4000 50
Freque

Sine c

(b)

(a)

Fig. 10. Experimental PSDs of measurement noise in both e
5.1. Noise statistics assessment

The statistical parameters of the measurement noise
associated with each encoder channel (sine, cosine) were
assessed from data acquired in the static tests, where all
variations from the mean constant position are assumed
00 6000 7000 8000 9000 10000
ncy [Hz]
 channel

00 6000 7000 8000 9000 10000
ncy [Hz]

hannel

ncoder channels: (a) Sine channel; (b) cosine channel.



ARTICLE IN PRESS
Y. Zimmerman et al. / Control Engineering Practice 14 (2006) 337–350 347
to be noise. Assuming ergodicity of the noise process, a
qualitative assessment of the noise distribution in each
encoder channel is obtained by plotting the noise
histogram, giving a rough estimate of the first-order
probability density function (PDF) of the process, and
comparing it with the corresponding Gaussian PDF
having the same mean and variance. The measured
histograms and the corresponding normal PDFs thus
obtained are compared in Fig. 9. The noise histograms
are in good qualitative match with the corresponding
Gaussian PDFs, thus justifying the hypotheses made in
Section 2. Computed using the measured data, the noise
standard deviations were found to be 1.5 LSBs (7.5mV)
for the sine channel and 1 LSB (5mV) for the cosine
channel of the encoder. These values were used in the
noise covariance matrix of the EKF. Notice that these
values are in good correspondence with the simulation
parameters (see Table 1).

The power spectral densities (PSDs) of the sine and
cosine signals were also computed, to qualitatively verify
the whiteness of the signals. Fig. 10 depicts the
respective PSDs. In general, both experimentally derived
PSD functions demonstrate excellent consistency with
the standard Kalman filter’s white noise assumption,
except for a 50Hz peak, more evident in the cosine
signal, which clearly corresponds to the 50Hz alternat-
ing current signal in the power lines. Note also that the
cosine channel’s PSD is lower than that of the sine
channel, which is in agreement with the respective
standard deviations.
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Fig. 11. Position estimation error in the static experiment: EKF
5.2. Static experiment

In the next stage of the experiment, the proposed
algorithm, tuned to perform well in both static and
dynamic conditions, was applied to the data recorded
during the static tests. The results are compared to the
reference position, taken as the mean of the recorded
(noisy) readings and the reference velocity, taken to be
zero in this stage. Note that the hardware parameters
are different than the ones in the simulation section (see
Table 1 vs. Table 5). In particular, the encoder scale in
the simulation is five times smaller than that of the
experimental setting, calling for less accurate results.
Nevertheless, the accuracy improvement, in both posi-
tion and velocity estimates, is clearly evident.

Fig. 11 shows the position estimation errors obtained
by both the standard and the proposed decoding methods.
Lacking an independent, sufficiently accurate measure-
ment of the position that could serve as a reference for this
test, the mean value of the measured position is taken as
representing the true position. As can be seen from Fig.
11, the position estimate generated by the EKF-based
method is much smoother than the standard method’s
corresponding result. The position estimation error
standard deviation is reduced by the new method from
a value of 6.6 nm, corresponding to the standard
algorithm, to 2.4 nm. The improvement is almost three-
fold, as predicted by the simulation in Section 4.

Fig. 12 presents the corresponding comparison for the
velocity estimates. The value of the true velocity is taken
0.15 0.2 0.25
sec]

0.15 0.2 0.25

(top) vs. inverse trigonometric (bottom) decoding methods.
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Fig. 12. Velocity estimation error in the static experiment: EKF (top) vs. inverse trigonometric (bottom) decoding methods (notice the different

vertical scales).

Table 6

Position and velocity 1-s estimation errors in static experiment

Decoding method Position error Velocity error

(nm) ðmm=sÞ

Inverse trigonometric 6.6 182.0

EKF 2.4 2.0
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Fig. 13. A typical motion profile executed during the dynamic

experiment.
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as zero in the static test, which serves as the reference to
which both estimates are compared. As can be seen from
Fig. 12, the velocity estimation error is reduced by the
new method by more than an order of magnitude (notice
the different scales of the vertical axes). The estimation
error standard deviation corresponding to the new
method is 2:0mm=s; vs. a value of 182:0mm=s corre-
sponding to the inverse trigonometric decoding method.
Again, these values are in good agreement with the
results of the simulations presented in Section 4. Table 6
summarizes the position and velocity 1� s errors of
both algorithms in the static experiment.

5.3. Dynamic experiment results

In the last stage of the experiment, the new estimation
algorithm was applied to data acquired when the table
was in motion, in order to verify the algorithm’s ability
to track dynamic motion profiles. The same tuning
parameters used during the static tests were employed
during this stage. A typical motion profile is presented in
Fig. 13. Fig. 14 presents estimates of this motion profile
as computed by both the proposed EKF-based decoding
method and the conventional one. As can be clearly
observed, the estimates obtained using the proposed
algorithm are much smoother than those obtained using
the standard method. Although the accuracy of the
estimates cannot be quantitatively determined in this
test due to the absence of an independent, accurate
reference signal, it can be safely stated that the smooth
position and velocity estimates computed by the new
method are in much better agreement with the table’s
dynamics, which is low-pass in nature.

Finally, Fig. 15 presents the velocity estimates during
a typical dynamic motion test. As evident from Fig. 15,
the standard algorithm generates an extremely coarse
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Fig. 14. Position estimates as computed by the new method (top figure) and the standard algorithm (bottom figure) during the dynamic experiment.
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Fig. 15. Velocity estimates as computed by the new method (top figure) and the standard algorithm (bottom figure) during dynamic motion of the

table.
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velocity estimate, which is virtually useless for the
purpose of driving a feedback control loop. In clear
contradistinction, the newly proposed method generates
a much smoother estimate that can be considered a good
source for a control feedback signal, without presenting
too much risk of loop stability. It should be noted that
although low-pass pre-filtering of the velocity estimate is
possible, the amount of filtering needed to smoothen the
conventional algorithm’s velocity estimate is so large
that it is bound to introduce significant delays.
6. Conclusions

A new decoding method is presented for analog
encoders. Based on the EKF technique, the new method
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enables major improvements in accuracy and resolution.
The algorithm can be easily implemented in multi-axis
table controllers and other applications using analog
encoders (linear or otherwise). The position accuracy is
normally three times better than that of a standard
inverse trigonometric decoding method and, in some
special cases, can reach sub-nanometer levels, thus
enabling further size reduction in the semiconductor
industry while using off-the-shelve, commercially avail-
able sensors and hardware. Another important benefit
of the proposed algorithm is its inherent velocity
estimation capability, with velocity estimates better by
two orders of magnitude than those obtained with
standard methods. Guidelines regarding the filter tuning
are also provided. Experiments using industrial hard-
ware show good correspondence with simulated results
and further point out the possibilities enabled using the
proposed algorithm.
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