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Spacecraft Angular Rate Estimation from Magnetometer Data
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A method is presented for fast estimation of the angular rate of a tumbling spacecraft in a low-Earth orbit from
sequential readingsofEarth’s magnetic � eld.Useful as abackupalgorithmincases of rate gyro malfunctionsor dur-
ingthe initialacquisitionphase, the estimatorconsists of an extended Kalman� lter, based onthe assumptionthat the
inertial geomagnetic � eld vector does not signi� cantly change during the short sampling time. As the external dis-
turbance torque is neglected, an analytic solution of Euler’s equations can be used in the � lter’s propagationphase,
allowing a signi� cant savings of computation time compared to numerical integration of Euler’s equations. Con-
trary to most existing angularrate estimators, the spacecraft’s attitude is neither used norestimated within the pro-
posed algorithm.Moreover, the body-referenced geomagnetic � eld observationsare not differentiated with respect
to time as an external pre� ltering procedure but are directly processed by the � lter. This processing gives rise to a
colored effective measurement noise, which is properly handledvia approximateMarkovmodelingand application
of Bryson and Henrikson’s reduced-order � ltering theory. A simulation study employing a standard tenth-order
International Geomagnetic Reference Field model is presented to demonstrate the performance of the algorithm.

I. Introduction

A NGULAR rate is a piece of critical information in most imple-
mentations of spacecraft (SC) attitude control systems, where

it is used for despin, rate damping, and attitude propagation in at-
titude estimation algorithms.1 Commonly, this information is pro-
vided by onboard rate gyros characterized,even those of the highest
grade, by their low reliability. A case in point is provided by the
Hubble space telescope(HST), which was put on safe hold mode on
13 November1999after fourof its six world-classrate gyros failed.2

(The HST was broughtback to life in December 1999 by the urgent
Hubble SM3A servicing mission [space shuttle Space Transporta-
tion System (STS-103) mission)]. Coupled with known cases of
unexpected satellite thrusters anomalies, which often result in haz-
ardous, tumbling situations(duringwhich the gyrosare saturatedby
the high SC angular rates), these factors motivate the need for the
development of alternative rate estimation algorithms. In addition,
small and inexpensivegyrolessSC, whichprovidesolutionsto many
of the space community’s current needs, obviously require angular
rate estimators that do not rely on the existence of onboard gyros.

In high angular rate scenarios, for example, a tumbling SC, or
during initial attitude acquisition, the only directional information
can be acquired by sun sensors or magnetometers. Moreover, for
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low-Earth-orbit (LEO) SC during sun eclipse, only Earth magnetic
� eld observations are available.

Several methods have been introducedin the past for angular rate
estimation of gyroless SC. Some of them estimate the body angu-
lar rates within an attitude/attitude rates estimator, where the mea-
surements are the three components of a body-referenced vector,
and make use of deterministic algorithms or � ltering techniques.3;4

Thus, in Ref. 3, Psiaki et al. developed an extended Kalman � l-
ter (EKF) for the estimation of SC attitude and angular rate from
three-axis magnetometer (TAM) readings. The method is based on
a known model for the Earth’s magnetic � eld, computed with the
assumption that the SC ephemeris is well known, takes about an or-
bit to converge, and yields only coarse accuracy (making it suitable
only for emergency modes). In Ref. 4, a two-stage estimator was
proposed, in which a slow deterministic algorithm that provides a
coarse estimate of the angular rate from magnetometer-only mea-
surements during one satellite orbit is used to initialize a Kalman
� lter that estimates the orientation and, as a byproduct, the angular
rate of theSC. The algorithmuses temporalderivativesof theEarth’s
magnetic � eld measurements,which are obtainedvia numericaldif-
ferentiation. The method is designed to work only in the steady-
state, operational mode of the SC and when the angle between
the satellite momentum and Earth’s magnetic � eld is larger than
15 deg.

In other methods,5¡8 SC angular rate components are estimated
separately, by the use of either deterministic- or � ltering-based al-
gorithms, but always by the use of independently known attitude
information. In Refs. 5–7, the attitude matrix is used to rotate the
inertial time derivativeof the reference vectors into the body frame.
Themethodpresentedin Ref. 5 is basedonanextensionof the subop-
timal interlacedKalman � lter scheme proposed in Ref. 9 and is able
to estimate the angular rates from two measured directionalvectors,
or from a single vector for the relatively short duration of eclipses.
In Ref. 6, two estimationmethodsare presented,basedon the ability
to decompose the SC dynamics, namely, Euler’s equations includ-
ing internal torque, into the product of an angular rate-dependent
matrix and the angular vector itself. In Ref. 7, a connection is es-
tablished among various methods, available in the literature, that
are aimed at estimating the SC angular rates. It is shown how the
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so-called derivative approach,where the attitude, in an arbitrary pa-
rameterization, is differentiated to relate it to the satellite angular
rate, and the estimation approach,where the raw measurements are
fed directly into a � lter, are both based on an equation relating the
attitude, its time derivative, and the angular rate.

In Ref. 8, the quaternion is used for attitude representation, and
two SC angular rate estimationmethods are proposed.The � rst uses
differentiated quaternion measurements to extract algebraically a
noisy estimate of the angular rate vector, which is successively fed
into two � lters similar to those presented in Ref. 6. In the second,
the raw attitudequaternionis fed directly into the � lters,whose state
vector is augmented to comprise the three angular rate components.

A new class of attitude rate estimation algorithms has recently
been introduced in Refs. 10–12. In Ref. 11, where the general ap-
proach of Ref. 10 is applied to the special case of geomagnetic
� eld measurements, no attitude knowledge is assumed and sequen-
tial readings of the geomagnetic � eld direction only are used, with
the assumption that this attitude reference vector is � xed in inertial
space. This renders its estimators completely independent of the
SC position and allows their operation without the mechanization
of a complicated spherical harmonics model of the Earth’s mag-
netic � eld. Thus, these algorithms are geared toward applications
such as detumbling, nutation damping, and momentum manage-
ment without using rate gyroscopes. Two algorithms are presented
in Ref. 11, a coarse, single-framedeterministicbatch estimator and
a high-accuracyEKF. Although the deterministicbatch estimator is
less accurate, it nevertheless cannot diverge, and its output can be
used to initialize the more sensitive EKF to avoid the latter algo-
rithm’s divergence. The disadvantage of the EKF presented in Ref
11 is that it is based on numerical differentiation of the observed
direction vector, which tends to reduce the achievable accuracydue
to measurement noise ampli� cation. Motivated by Ref. 11, Psiaki
and Oshman12 introducedimprovedversionsof both algorithmspre-
sented in Ref. 11. Thus, the deterministic algorithmof Ref. 12 uses
a global nonlinear least-squares solver to determine the unknown
angular momentum component along the magnetic � eld direction,
while the EKF is formulated to account for explicitly the normal-
ization constraint on the measured magnetic � eld direction vector,
and also estimates, in addition to the attitude rate vector, corrections
to � ve of the six inertia matrix elements, and two error states of
the measured magnetic � eld direction. However, the deterministic
estimator of Ref. 12 shares the same main disadvantage of Ref. 11
in that it, too, is based on explicitly differentiatingthe geomagnetic
� eld measurements.

Motivated by an idea introduced in Ref. 13, where the proposed
angular rate � lter makes use of an analytical expressionrelating the
temporal derivative of the magnetic � eld vector in the body frame
to the SC angular rate components, a new gyroless rate estimation
method is presented herein. With signi� cant improvement on the
results presented in an early conference version,14 the new method
belongs to the class of methods of Refs. 11 and 12 in that it, too,
assumes that the geomagnetic � eld vector is constant for the rel-
atively short duration of the estimation process, which renders its
estimator independent of the Earth magnetic � eld model and does
away with model errors, which typically constitute a major error
source (of about 300 nT or more). Another characteristicof the esti-
mation method proposed herein is that, similarly to Refs. 10–12, no
attitudeknowledge is assumed, which makes the algorithmsuitable
for tumbling and initial acquisition phases.

The main contributionof the proposed method is threefold. First,
using the extended Kalman � ltering methodology, the new algo-
rithm, like its predecessors,also processesdifferentiatednoisyTAM
observations.However, the fact that theeffectivemeasurementnoise
is colored is directly addressed in the new algorithm via a colored
noise model, to which Bryson and Henrikson’s reduced-order� lter-
ing theory15 is applied. Second, the propagation phase of the new
estimator is made computationallyef� cient by exploiting the obser-
vation that, because the external perturbing torque is neglected,one
can take advantage of the analytical solution of the rigid-body mo-
tion in the absence of external torque in terms of the Jacobian ellip-
tic functions.This strategyallows for signi� cant computationaltime

savingswith respect to numerical integrationof the Euler rigid-body
equationsacross a sampling interval.Because, as is well known, the
state propagation phase of the EKF is the most computationally
intensive stage of the algorithm, a signi� cant improvement of the
� lter ef� ciency is obtained. As a result, the TAM sampling rate can
be increased, thus, improving the estimator’s accuracyeven further.
Finally, the � lter is made robust with respect to uncertainty in the
satellite’s matrix of inertia by employing a batch calibration proce-
dure (allowing an almost real-time implementation),which is based
on the concept of statistically testing for � lter’s consistency.16

The remainder of this paper is organized as follows: In the next
section, a brief description of the mathematical model is presented.
This is followed by a description of the extended Kalman � lter,
which includes the proposed analytical time-propagationphase, the
measurement model, and the three options considered for handling
the effective colored measurement noise. A method to estimate cor-
rections to the matrix of inertia terms, which is based on statistical
processing of the innovations sequence, is then presented and dis-
cussed.A Monte Carlo simulationstudyis used to assessstatistically
the performanceof the new algorithmand to demonstrate its viabil-
ity via the presentation of numerical example results. Concluding
remarks are offered in the last section.

II. Mathematical Model
The satelliteis assumedto be in tumblingmode, such that thereare

no internaltorquesacting,and the only external torquesare the aero-
dynamic, gravity gradient, and residual magnetic dipole torques.
Because the attitude matrix is assumed unknown, the external dis-
turbance torques are represented in the mathematical model by a
zero mean stationaryprocess noise. When the common white noise
engineeringnotation is used, the vector stochastic differentialequa-
tion representing the dynamic model is given by Euler’s equations
of motion,

P! D J¡1 .¡! £ J!/ C » (1)

where ! is the SC angular rate vector, J is the matrix of inertia, and
» is a white zero-mean Gaussian process noise with power spectral
density Qc . Equation (1) is clearly a nonlineardifferentialequation,
which can be written in the form

Px D f.x; J/ C » (2)

where x ´ ! is the system’s state vector.
The observation model is based on the equation

db
dt

D @b
@t

C ! £ b (3)

where b is the Earth’s magnetic � eld vector, db=dt is the (total)
temporal derivative of the magnetic � eld vector, taken in inertial
reference frame, and @b=@ t is the (local) temporal derivative taken
in the body frame of reference.

For most orbits, the left-hand side of Eq. (3), which is generated
only by the change in position of the satellite (minimal during the
short sampling interval) and by the slow Earth rotation, is negligible
relative to both terms on the right-handside (RHS) of that equation.
Therefore, we can set db=dt ¼ 0, which yields

@b
@t

¼ ¡! £ b ´ [b£]! (4)

where the cross product matrix corresponding to the magnetic � eld
vector is de� ned as

[b£]
1D

2

4
0 ¡bz by

bz 0 ¡bx

¡by bx 0

3

5 (5)
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and the subscripts x, y, and z identify the vector components in
body axes. Equation (4) forms the basis for the � lter’s observation
equation, presented in the sequel. It relates the SC angular velocity
to the body-referencedtemporal derivativesof the Earth’s magnetic
� eld.

The approach selected herein for the observation model differs
from most of the previously proposed angular rate � lters in that it
avoids the estimation errors associated with the comparison of the
TAM readings to an onboard computed magnetic � eld model. As
a matter of fact, even when very high-order magnetic � eld models
are used, a typical residual error of about 1% has to be considered
at altitudes typical of low-Earth-orbitingsatellites.17 Moreover, be-
cause the proposed method makes use only of the body-referenced
TAM readings, it does not require independentknowledgeof the SC
attitude matrix.

The estimationerrorassociatedwith the assumptionthat,between
two successive samplings, the inertial direction of the Earth’s mag-
netic � eld is constant is discussed in Sec. V.

III. EKF Design
The proposedestimatorconsistsof a self-initializingEKF. The � l-

ter’s state vector x D [!x !y !z]T consists of the body-referenced
components of the SC angular rate with respect to an inertial refer-
ence frame.

State Propagation
When a sampling interval of 1t is assumed, the nonlinear state

equation (2) can be discretized as

xk C 1 D ©k xk C uk (6)

where ©k is the linearized dynamics state transition matrix and
the stationary white process noise sequence uk is distributed as
uk » N .0; Q/ with Q »D Qc1t .

Although the time propagation of the state estimate can be per-
formed via numerically integratingEuler’s equations between con-
secutive sampling times, an improved method is proposed herein,
which is basedonusing theanalyticalsolutionfor rigid-bodymotion
in the absence of external torques, in terms of the Jacobian ellip-
tic functions (see Ref. 18). Concisely summarized in the Appendix,
the computationalaspectsof this well-knownsolution(for example,
Ref. 19) are discussed here, to show how this solution improves the
EKF algorithm’s ef� ciency and accuracy.

Classical algorithmsfor Jacobianelliptic functionsevaluationare
given in Ref. 18, which use the arithmetic-geometricmean (AGM)
method, or Landen and Gauss transformations,or series expansion
in the parameter m (de� ned in the Appendix). An iterative algo-
rithm is described in Ref. 20. The computational burden of these
algorithms can be evaluated as the number of � oating point oper-
ations (FLOPs) required at each step of the iteration. Because the
algorithmrequires the evaluationof transcendentalfunctionsat each
step, the number of FLOPs depends strongly on the processor’s ar-
chitecture.Whereas in traditionalonboardprocessorsthe evaluation
of transcendental functions is based on series expansions or other
iterative methods, requiring a variable number of FLOPs, in most
modernprocessors the evaluationof transcendentaland trigonomet-
ric functions is implemented in hardware and can be performed in
a single clock interval. Thus, it is assumed here that the evaluation
of trigonometricand transcendentalfunctions requiresonly a single
FLOP. The AGM algorithmand the one described in Ref. 20 for the
evaluation of Jacobian elliptic functions require 7 FLOPs at each
iteration plus 4 FLOPs after convergence. On average, a total of 4
iterations are necessary,20 which means that, on average, 32 FLOPs
are needed for the evaluation of the Jacobian elliptic functions.

For the evaluationof the projectedaheadangularvelocitycompo-
nents, 50 FLOPs are needed according to the expressions (A1–A6)
given in Appendix. Thus, the analytical propagation requires, on
average, 82 FLOPS. This amount is, of course, independent of the
propagation time interval.

Comparison with numerical integration using a fourth-order
Runge–Kutta (RK) method is in order. It was found (see numer-

Table 1 Number of FLOPs for the overall EKF algorithm
1-Hz (sampling rate)

Method State propagation Filter Total

Numerical 18,000 200 18,200
Analytical 82 200 282

ical simulations in Sec. V) that a numerical integration step on the
order of 10¡3s is necessary to achieve accuracy comparable to that
of the analytical solution over a 1-s time interval. Thus, in practice,
1000 integration steps are required. Because the RK algorithm re-
quires 3 evaluationsof the function derivativesat each step, and the
evaluationof the RHS of Eq. (1) involves6 multiplications,one gets
a total of about 18,000 FLOPs per 1 time propagationstep using the
numerical integration method.

Thus, the computational effort for state propagation is reduced
by more than two orders of magnitude using the analytical solution
proposed earlier. The number of FLOPs involved in the EKF itself,
namely, covariancematrix propagationand innovationscalculation,
is roughly 200, for a third-order system such as the one at hand.

The numerical burden of the overall � ltering algorithm is shown
in Table 1, which compares numerical and analytical propagation.
Using the analytical solution reduces the number of operations to
almost 1/60th.

The analytical expressions (A1–A6) shown in the Appendix can
be furtherexploitedalso for the computationof the systemtransition
matrix.Equation (A7) shows that the numberof FLOPs required for
the computation of the � rst term of this matrix is about 15, a num-
ber that does not include the FLOPS required for the computation
of the 2 elliptic integrals of the second kind. For the evaluation of
these integrals, an ef� cient method is the one proposed by Carlson
(see Ref. 20), which requires, on average, about 120 FLOPs. In to-
tal, about 255 FLOPs are required for the evaluation of this term
and, because the two elliptic integrals (A8) and (A9) are in common
among all matrix terms, about 300 FLOPs are needed for the com-
putation of the whole analytical expression of the state transition
matrix. However, it is well known (for example, Ref. 21) that, if the
state transition matrix is used just for the error covariance matrix
time propagation, its accuracy is not crucial. As a matter of fact,
because the covariancecomputationaccuracy is not as important as
the accuracy of the state propagationacross the sampling interval, a
� rst-ordernumerical integrationgenerallysuf� ces for the state tran-
sition matrix. This is why the propagation of the error covariance
matrix Pk is performed herein using the linearized dynamics state
transition matrix, approximated as ©k ¼ I C Fk1t , where I is the
3 £ 3 identity matrix and the Jacobian matrix Fk is computed as

Fk D @ f
@x


x D Ox

D

2

64
0 .Jyy ¡ Jzz/ Ox3=Jx x .Jyy ¡ Jzz/ Ox2=Jx x

.Jzz ¡ Jx x / Ox3=Jyy 0 .Jzz ¡ Jx x / Ox1=Jyy

.Jx x ¡ Jyy / Ox2=Jzz .Jx x ¡ Jyy/ Ox1=Jzz 0

3

75

(7)

The computation of the state transition matrix using the � rst-order
approximation shown in Eq. (7) requires only 12 FLOPs, thus, an
additional reduction of the computational burden of the whole al-
gorithm is allowed, while incurring practically no loss of overall
estimation accuracy.

Measurement Model
The TAM reading at time tk is related to the true magnetic � eld

via

Qbk D bk C vk (8)

where the TAM stationary measurement noise is distributed as

vk » N .0; RTAM/ (9)
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and the covariance RTAM is known. To derive the � lter’s mea-
surement equation based on Eq. (4), the body-referenced temporal
derivative is approximated using a � rst-order backward � nite dif-
ference, computed using two successive TAM readings. Thus, the
observation equation is written as

zk D Hkxk C nk (10)

where Hk D [Qbk £ ]1t is the time-varying observation matrix, zk D
Qbk ¡ Qbk ¡ 1 is the effectivemeasurementvector, and nk is the effective
measurement noise

nk D vk ¡ vk ¡ 1 ¡ [vk£] 1t ¢ xk

D fI C [xk £] 1tg vk ¡ vk ¡ 1
1D Gk .xk / vk ¡ vk ¡ 1 (11)

which can also be viewed as an implied de� nition of the state-
dependent matrix Gk .

Notice that the differencing of magnetic � eld measurements,
which is performed to generate the effective measurement, renders
the effectivemeasurementnoise colored.Note also that this noise is
nonstationaryandstate dependent(throughthe matrix Gk /. The state
dependencyof the measurementnoise is handled in an approximate
manner, in accord with the usual practice in attitude estimationEKF
algorithms, by the substitution of the estimated values of the state
for the true values at each time instant. The procedure proposed to
handle the coloredmeasurementnoise in the contextof theproposed
EKF is outlined in the sequel.

Colored Noise Modeling
A � rst-order Markov process is used to model the colored mea-

surement noise

nk D ©c
knk ¡ 1 C wk ¡ 1 (12)

where the matrix ©c
k is related to the noise decorrelation time and

wk is a zero-mean white sequence, with assumed distribution

wk » N
¡
0; Rw

k

¢
(13)

To � nd the parameters ©c
k and Rw

k , notice that, from Eq. (12)

E
£
nknT

k ¡ 1

¤
D ©c

k E
£
nk ¡ 1nT

k ¡ 1

¤
(14)

where E is the mathematicalexpectation.De� ne the autocorrelation
matrix

C.i; j/ D E
£
ni nT

j

¤
(15)

Using Eqs. (9) and (11) yields

C.k; k/ D GkRTAMGT
k C RTAM (16a)

C.k ¡ 1; k ¡ 1/ D Gk ¡ 1RTAMGT
k ¡ 1 C RTAM (16b)

C.k; k ¡ 1/ D ¡RTAMGT
k ¡ 1 (16c)

From Eq. (14), and using Eqs. (16b) and (16c), we have

©c
k D C.k; k ¡ 1/C.k ¡ 1; k ¡ 1/¡1

D ¡RTAMGT
k ¡ 1

¡
Gk ¡ 1RTAMGT

k ¡ 1 C RTAM

¢¡1
(17)

To � nd the covarianceRw
k , we write, with use of Eq. (12)

E
£
nk nT

k

¤
D ©c

k E
£
nk ¡ 1nT

k ¡ 1

¤
©cT

k C Rw
k (18)

which, with use of Eqs. (15–17), yields

Rw
k D C.k; k/ ¡ ©c

kC.k ¡ 1; k ¡ 1/©cT

k D C.k; k/ ¡ C.k; k ¡ 1/©cT

k

D Gk RTAMGT
k C RTAM ¡ RTAMGT

k ¡ 1

£
¡
Gk ¡ 1RTAMGT

k ¡ 1 C RTAM

¢¡1
Gk ¡ 1RTAM (19)

Applying the matrix inversion lemma to the last two terms on
the RHS of Eq. (19), one can easily show that the covariance Rw

k is
invertible.

In principle,one couldproceedby augmenting the originalEKF’s
state vectorwith the three componentsof the effectivemeasurement
noise, which gives the new state vector as x̄k D [xT

k nT
k ]T . The new

state transition matrix is then partitioned as

N©k D
µ

©k 03 £ 3

03 £ 3 ©c
k

¶
(20)

while the observationmatrix becomes NHk D [Hk I3 £ 3] and the pro-
cess noise covariancematrix can be written as

NQ D
µ

Q 03 £ 3

03 £ 3 Rw
k

¶
(21)

However, the state augmentationprocedure,outlinedearlier,gen-
eratesa singularmeasurementmodel.One solution,commonlyused
by estimation practitioners, is to replace the singular measurement
noise covariance matrix by a small positive de� nite matrix in the
Kalman � lter mechanization equations. Whereas this solution ren-
ders acceptable results in many cases, a much better and more ef� -
cient solution is to implement a reduced-order � lter, using Bryson
and Henrikson’s methodof differencedmeasurements,15 as follows.

Note that the estimation of the vector nk is not of interest in this
application: A linear combination of zk C 1 and zk not containing nk

is formed by

³k D zk C 1 ¡ ©c
k zk D Hk C 1xk C 1 C nk C 1 ¡ ©c

k Hkxk ¡ ©c
knk

D Hk C 1©k xk C Hk C 1uk C wk ¡ ©c
k Hk xk D H¤

k xk C ´k (22)

where a modi� ed observation matrix has been introduced

H¤
k D Hk C 1©k ¡ ©c

kHk (23)

and the new measurement noise

´k D Hk C 1uk C wk (24)

is white and normally distributed

´k » N
¡
0; R¤

k

¢
; R¤

k D Hk C 1QHT
k C 1 C Rw

k (25)

but is correlated with the process noise

E
£
uk´

T
k

¤
D QHT

k C 1 (26)

To eliminate the cross-correlation between the two noise se-
quences, the state Eq. (6) is rewritten by adding a term [from
Eq. (22)] that is identically zero,

xk C 1 D ©k xk C uk C Tk

¡
³ k ¡ H¤

k xk ¡ ´k

¢
D

¡
©k ¡ Tk H¤

k

¢
xk

C uk ¡ Tk ´k C Tk³ k (27)

When the new process noise

u¤
k D uk ¡ Tk ´k (28)

and the modi� ed state transition matrix

©¤
k D ©k ¡ TkH¤

k (29)

are de� ned, Eq. (27) can be written as

xk C 1 D ©¤
k xk C u¤

k C Tk ³k (30)

where the matrix Tk is selected to nullify the cross correlation be-
tween the new measurement noise ´k and the new process noise
u¤

k ,

E
£
u¤

k ´T
k

¤
D E

£
.uk ¡ Tk´k /´T

k

¤
D QHT

k C 1 ¡ Tk R¤
k D 0 (31)
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Solving Eq. (31) for Tk yields

Tk D QHT
k C 1

¡
R¤

k

¢¡1 D QHT
k C 1

¡
Hk C 1QHT

k C 1 C Rw
k

¢¡1
(32)

The modi� ed state transition matrix is then

©¤
k D ©k ¡ QHT

k C 1

¡
Hk C 1QHT

k C 1 C Rw
k

¢¡1¡
Hk C 1©k ¡ ©c

k Hk

¢

(33)

and the new process noise covariance matrix is computed as

Q¤
k D E

£
u¤

k u¤T
k

¤

D E
£¡

uk ¡ QHT
k C 1

¡
R¤

k

¢¡1
´k

¢¡
uk ¡ QHT

k C 1

¡
R¤

k

¢¡1
´k

¢T ¤

D Q ¡ QHT
k C 1

¡
R¤

k

¢¡1
Hk C 1QT (34)

The differencedmeasurementgiven in Eq. (22) and the modi� ed
matricesde� ned in Eqs. (23), (33),and (34) canbe used in a standard
Kalman � lter, where the original dimensions of the state vector, its
state transition matrix, and the covariance matrices are preserved.
Note that, in practice, the modi� ed matrices used in the new � lter
for the purposeof covariancepropagationare approximatebecause,
as already explained, the true state, which appears through Gk , is
replaced at each time instant by its estimate. However, the modi� ed
state propagation equation [Eq. (30)] is not actually used because
the analytical procedure proposed in Sec. III is used to propagate
the angular velocities between two successive TAM readings.

IV. Batch Calibration of the Inertia Matrix Entries
A rate estimator employing Euler’s equation for its dynamic

model might be highly sensitive to mismodeled SC moments of
inertia. Past experience14 has shown that an error of a few percent
in one diagonal term of the matrix of inertia might even double the
estimation errors obtained when a perfect knowledge of the inertia
properties is assumed.

To alleviate this problem and ensure proper performance of the
angular rate � lter proposed in Sec. III, a batch procedure, where
� xed-length blocks of data are processed, is proposed for the cali-
bration of the diagonal entries of the inertia matrix. The calibrated
matrix of inertia is written as the sum of a nominal matrix and a
correction matrix,

Jcal D Jnom C Jcorr D

2

4
Jx x 0 0

0 Jyy 0

0 0 Jzz

3

5 C

2

4
1Jx x 0 0

0 1Jyy 0

0 0 0

3

5

(35)

Corrections to only two of the three diagonal elements of the ma-
trix of inertia are estimated because, if the inertia matrix is diagonal
[an assumption needed for the analytical propagation of the state
based on the Jacobian elliptic functions (Sec. III)], Euler’s equa-
tions become invariant relative to scaling the inertia matrix by a
scale factor, yielding that only two diagonal elements are indepen-
dent. Moreover, in Eq. (35) the off-diagonalentriesof the correction
matrix have been omitted because it is always possible to formu-
late the equations of motion in a frame of reference aligned along
the principal axes. A procedure to deal with the presence of small
nonzero off-diagonal entries in the inertia matrix, representing er-
rors in the computation of the principal axes, is described in the
sequel.

The proposedmethod is basedon the notionof statisticallytesting
for � lter consistency.16 The particular statistic chosen is the � lter’s
innovations time-averaged sample autocorrelation. Based on this
statistic, the cost function, which is computed and minimized with
respect to the two independent terms in the correction matrix, is
chosen as

J½ D j N½.l/j D
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Fig. 1 Three-dimensional plot of the tuning cost function J½, vs the
correction terms ¢Jxx and ¢Jyy .

Fig. 2 Contour plot of the tuning cost function J½ vs the correction
terms ¢Jxx and ¢Jyy .

where ik D ³ k ¡ H¤
k x̂k is the innovationssequenceand K is an index

large enough to render N½.l/ a normally distributed statistic. The
rationale for de� ning the cost function (36) is the following. As is
well known, the innovations sequence of an optimal (well-tuned)
Kalman � lter is white and Gaussian distributed. Thus, when l D 1
is set, which correspondsto computing the autocorrelationfunction
of the innovations sequence for a time lag of one step, and J½ is
minimizedover the two-dimensionalspaceof feasible inertiamatrix
correctionparameters, the minimum of J½ should be reached where
the calibrated inertia matrix is closest to the true inertia matrix.

Figure 1 is a three-dimensional plot of the behavior of J½ over
the search space (1Jx x , 1Jyy / for a set of simulated TAM data
(300s) where thenominalvaluesof thediagonalentriesof thematrix
of inertia match the true values (J D diagf500; 550; 600g kg ¢ m2).
Figure 2 is a contour plot of the same data, which shows that the
minimum of the cost function is located precisely at (0, 0), and
con� rms that J½ can be effectively used as a tuning measure for
estimating the corrections to the diagonal entries of the inertia ma-
trix. Correspondingly, Fig. 3 shows that the minimum of the root
sum square measure of estimation error 6err

1D
p

.¾ 2
x C ¾ 2

y C ¾ 2
z /

(where ¾i , i D x; y; z, is the 1-¾ error of the angular rate component
along the i axis) is also located near the point (0, 0).

The presence of small, unmodeled off-diagonal terms in the ma-
trix of inertia (Jx y , and Jx z and Jyz/ can be handled (up to a cer-
tain extent) by adjusting the entries of the process noise covariance
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Fig. 3 Contour plot of the estimation error measure §err vs the cor-
rection terms ¢Jxx and ¢Jyy .

Fig. 4 Estimation error measure §err vs the diagonal term ¾2
u of the

covariance matrix Q.

matrix Q. This 3£3 matrix can be assumed to take the form
Q D diagf¾ 2

u , ¾ 2
u , ¾ 2

u g rad2/s2 because its role is to account for sys-
tem modeling errors, which are certainly comparable for the three
components of the SC angular rate vector.

The innovationsautocorrelationfunction N½.1/, which is available
onboardfor thecalibrationof Jx x and Jyy , canalsobeusedas a tuning
statistic to adjust the value of ¾ 2

u . This method, already proposed
in Refs. 22 and 23, is demonstrated numerically by simulating a
set of TAM readings of a SC whose matrix of inertia contains off-
diagonal terms on the order of 5% of the diagonal ones. These data
are processed by a series of identical � lters differing only by the
value of the process noise covariance matrix Q. Figure 4 shows
that the lowest values of the rss estimation error measure 6err are
obtained in a wide range of the scalar ¾ 2

u . Correspondingly, Fig. 5
shows that the minimum of the cost function J½ is locatedwithin the
same range, thus, con� rming that the residualinformationcontained
in the statistic N½.1/, after estimation of the correction terms 1Jx x

and 1Jyy , can be used to tune the process noise covariance matrix.

V. Simulation Study
The performanceof theproposedestimationalgorithmsis demon-

strated through extensive Monte Carlo simulation studies. The SC

Table 2 Statistical results of the Monte Carlo
simulation study

Angular rate component Mean error 1-¾ error

!x (deg/s) ¡0.0011 0.1199
!y (deg/s) 0.0019 0.1406
!z (deg/s) ¡0.0021 0.1247

Fig. 5 Tuning cost function J½ vs the diagonal term ¾2
u of the covari-

ance matrix Q.

orbit and its initial position and attitude were randomly chosen (not
exceedingthe altitudeof 1000 km), and the magnitudeof the space-
craft initial angular velocity was sampled from a uniform distri-
bution over the interval [0, 30] deg/s. In the simulations, the real
spacecraft attitude motion was numerically integrated taking into
account the aerodynamic, gravity gradient, and residual magnetic
dipole torque in the Euler’s equations.The simulatedTAM readings
were � nally generated adding a zero-mean, white Gaussian noise,
with a standarddeviationof 50 nT, to the magnetic � eld vector com-
puted by a tenth-order International Geomagnetic Reference Field
model.

Perfect Model Knowledge
It is initially assumed that the SC matrix of inertia is diagonaland

that its entries are exactly known. A Monte Carlo simulation study,
consistingof 300 runs, each lasting for 300 s, where the TAM read-
ings are sampledat a frequencyof 2 Hz, is performedto characterize
the performanceof the algorithmin terms of the ensemble-averaged
mean and 1-¾ estimationerror.The matrix of inertiaof the simulated
spacecraft is J D diagf500; 550; 600g kg ¢ m2 .

The EKF is run in informationform, where the inverseof the error
covariance matrix Pk is updated using the inverse of the predicted
error covariancematrix P¡

k . This formulation allows initializing the
� lter with virtually no a priori information about the satellite state
by setting the initial value of the inverse covariance (information)
matrix to .P¡

0 /¡1 D I ¢ 10¡8 rad2/s2 . The � lter’s initial estimate is set
to x̂¡

0 D [03 £ 1] rad/s. Because the � lter is very robust, due to its in-
novative measurement model (described in Sec. III), this procedure
results in a very rapid � lter convergence rate, as has been veri� ed
for all initial SC angular rates used in a very extensive Monte Carlo
simulation study. Notice that, although this feature renders the use
of any particular initialization method unnecessary, batch estima-
tion methods (such as the one presented in Ref. 10) can still be used,
of course, for this purpose.

The statisticalresults of the � rst Monte Carlo simulationare sum-
marized in Table 2, which shows that excellent results are obtained
by using the measurement differencing approach: The ensemble-
averaged mean errors are on the order of 0.001 deg/s, yielding
a nearly unbiased � lter. Moreover, the 1-¾ errors are very close
to the limiting value of 0.12 deg/s, which represents the maxi-
mum value (in LEO) of Earth’s magnetic � eld inertial rotation rate.
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Fig. 6 Angular rate components in a typical run of the � rst Monte
Carlo simulation.

Fig. 7 Estimation errors in a typical run of the � rst Monte Carlo
simulation.

Because this rotation rate is neglected in Eq. (3), it can be stated
that the performance achieved by this implementation of the EKF
is close to the theoretical limit, dictated by the measurement equa-
tion based on Eq. (4). Figures 6 and 7 show the performanceof the
� lter in a typical run, where the initial angular velocity vector is
! D [5:45 ¡ 13:5 10]T ¡deg/s.

Analytical Propagation Versus RK Integration
Five additional Monte Carlo simulations, where the SC inertia

properties and initial conditions were selected as in the preceding
simulation, were performed to compare, in terms of their perfor-
mance and number of FLOPs, the analytical propagation to RK
integration of the state between two sampling times. The EKFs
used in all � ve Monte Carlo simulations are based on the col-
ored noise model described in Sec. III and the TAM readings were
sampled at a frequency of 1 Hz. On the other hand, for the pre-
dictor, four of these � lters use a standard fourth-order RK inte-
gration of the state with different integration steps (ranging from
0.1 to 0.001 s), whereas the � fth � lter makes use of the analyt-
ical state propagation proposed in this paper. For each EKF, the
associated process noise covariance matrix Q has been tuned to
yield the best estimation performance. The results of these simu-
lations are shown in Fig. 8, where the solid curve represents the
performance of the EKFs using RK integration. The symbols on
the curve correspond to the various integration steps used by the
EKFs: left to right (and top to bottom), these integration steps are

Fig. 8 Performance and computationalburden of the RK vs the ana-
lytical state propagation.

0.1, 0.05, 0.01, and 0.001s, respectively.Correspondingly,the num-
ber of FLOPs ranges from about 380 to about 18,200, respectively.
The dashed line represents the performance of the � lter making
use of the analytical state propagation proposed in this paper. The
circle corresponds to the number of FLOPs required for this � lter
(about 280). The line has been extended to the right for compar-
ison with the RK integration curve. Figure 8 shows that an EKF
using RK propagationcan achieve performance comparable to that
obtained using the analytical propagation only by employing an
integration step of 0.001 s. Remarkably, using the analytical prop-
agation reduces the number of FLOPs from about 2 £ 104 to only
2.8 £ 102.

Uncertain Model Knowledge
In the next stage of the numerical study, the assumptionsof an ex-

actly known and diagonal matrix of inertia were removed to test the
real-time calibration procedure proposed in Sec. IV. A long batch
(1200 s) of TAM readings is generated at a frequency of 2 Hz,
with off-diagonal terms Jx y D Jx z D Jyz D 25 kg ¢ m2 added to the
nominal,diagonalmatrix of inertiaJ D diagf500; 550; 600g kg ¢ m2 .
The estimator is initialized with wrong values of Jx x and Jyy (510
and 560 kg ¢ m2, respectively), and the procedures to � nd the cor-
rect 1Jx x , 1Jyy , and ¾ 2

u are used in a sequence where blocks
of 300 s are processed sequentially. The short length of these
blocks allows for an almost real-time implementation of the pro-
posed batch calibration procedure. In each block, only one pa-
rameter is adjusted (either 1Jx x , or 1Jyy , or ¾ 2

u /, running three
EKF in parallel, which use different values for the parameter
to be estimated. For each of these � lters, the cost function J½

is computed, and, according to a simple parabolic � t, the esti-
mated parameter value, minimizing J½ , is computed. This opti-
mization procedure is sequential by construction, and its rate of
convergence cannot be determined analytically. However, note,
in this regard, that the high number of runs performed in sev-
eral Monte Carlo studies has always shown a convergence rate
rapid enough to render the convergence of the whole scheme suf-
� ciently fast for practical purposes. For example, Fig. 9 shows
the global performance of the estimator corresponding to adjust-
ing the tuning parameters in the following order: � rst 1Jx x , then
1Jyy , and last ¾ 2

u . In the � rst 300-s block, Jx x converges to the
value 501.407 kg ¢ m2 (Fig. 9a), whereas, processing data from
300 to 600 s, the Jyy term converges to the value 548.149 kg ¢ m2

(Fig. 9b). The third block, from 600 to 900 s, serves to tune the
diagonal entries of the process noise covariancematrix Q (Fig. 9c).
Figure 9d shows the rss estimation error measure 6err, computed
independently for each block; after each � lter improvement (con-
vergence of Jx x , convergence of Jyy , tuning of ¾ 2

u ), the error mea-
sure decreases and its minimum (» 0:758 deg/s) is achieved in the
fourth block.
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a)

b)

c)

d)

Fig. 9 Global performance of the real-time calibration of the matrix
of inertia.

VI. Conclusions
A method is presented for fast estimation of the angular rate of

a tumbling SC in LEO from sequential readings of Earth’s mag-
netic � eld. The estimator consists of an EKF, which is based on
the underlying assumption that the geomagnetic � eld vector does
not signi� cantly change (relative to an inertial frame of reference)
during the short sampling time. The analytical solution of rigid-
body motion in terms of Jacobian elliptic functions is used in the
propagation phase of the � lter to improve its accuracy and com-
putational ef� ciency. The geomagnetic � eld measurements are di-
rectly processed by the � lter, requiring no external preprocessing
differentiation stage. The measurement noise, rendered colored by
the differencing involved with the � lter’s implementation, is han-
dled via approximate Markov modeling and application of Bryson
and Henrikson’s reduced-order� ltering theory. A simulation study,
which employs a standard tenth-order International Geomagnetic
ReferenceField model, is presented,showing that the � lter can yield
1-¾ errors on the order of 0.12 deg/s. This value is very close to the
theoretical limit, dictated by the negligenceof the Earth’s magnetic
� eld inertial rotation rate in the measurement equation. In addition,
a batch method (allowing an almost real-time implementation) to
calibrate the SC matrix of inertia is proposed, based on statistical
processing of the innovations sequence. The calibration method is
shown via numerical simulations to be highly effective, not only in
estimating correctionsto the diagonal terms of the matrix of inertia,
but also in accounting for small, unmodeled, off-diagonal terms, by
adjusting the process noise covariance matrix.

Appendix: Analytical Solution of Euler’s Equations
The analytical solution of the angular rates of a rigid body in the

absence of external torques is19

!x D
!x0cn.!pt jm/ C .º!y0!z0=!3m /sn.!pt jm/dn.! pt jm/

1 ¡ .¹!y0=!3m /2sn2.!p tjm/

!y D !y0cn.!pt jm/dn.!p t jm/ ¡ .!z0!x0=º!3m/sn.! pt jm/

1 ¡ .¹!y0=!3m /2sn2.!p tjm/

!z D
!z0dn.!pt jm/ C

¡
¹2!x0!y0

¯
º!3m

¢
sn.!pt jm/cn.!p tjm/

1 ¡ .¹!y0=!3m/2sn2.!pt jm/

(A1)

where !x0; !y0 , and !z0 are the initial values of the angular velocity
components and cn, sn, and dn are the Jacobian elliptic functions
cosamplitude, senamplitude, and deltamplitude, respectively, with
the parameter m given by

m D
.Jx x ¡ Jyy /

¡
L2 ¡ 2Jzz T

¢

.Jzz ¡ Jyy/
¡
L2 ¡ 2Jx x T

¢ (A2)

with L2 D J 2
x x !2

x0 C J 2
yy !2

y0 C J 2
zz!

2
z0 and T D 1

2 .Jx x !2
x0 C Jyy!

2
y0 C

Jzz!
2
z0/.

The two parameters

¹ D
µ

Jyy.Jyy ¡ Jx x /

Jzz.Jzz ¡ Jx x /

¶ 1
2

(A3)

º D
µ

Jyy.Jyy ¡ Jzz/

Jx x .Jx x ¡ Jzz/

¶ 1
2

(A4)

depend on the moments of inertia only, whereas

!3m D
£
!2

z0 C ¹2!2
y0

¤ 1
2 (A5)

!p D §
µ

.Jzz ¡ Jyy/.Jzz ¡ Jx x /

Jx x Jyy

¶ 1
2

!3m (A6)

depend on the initial values of the angular velocity component. In
Eq. (A6), theuppersigncorrespondsto Jx x > Jyy > Jzz and the lower
for Jzz > Jyy > Jx x .

The preceding expressions can be exploited also for the compu-
tation of the analytical expression of the state transition matrix for
the motion of a rigid body in the absence of external torques. The
nine entries of ©.t; 0/, which carry the state from time 0 to time t ,
require the computation of elliptic integrals of the second kind, E
and E0. As an example, the full expression of the � rst term of the
state transition matrix 8.t; 0/11 is

811 D @!x

@!x0
D !x !x0 C !z

!z0

!y!y0 C
µ

E ¡ E0

1 ¡ m
¡ !p.t ¡ t0/

¡
m

1 ¡ m

³
!x !y

!z
¡

!x0!y0

!z0

´¶
!z!y!x0 (A7)

where

E D
Z ¯

0

dn2.x/ dx (A8)

and

E0 D
Z

¯0

0

dn2.x/ dx (A9)

with ¯ and ¯0 computed using sn¯ D !y =!2m , cn¯ D !x =!1m , and
sn¯0 D !y0=!2m , cn¯0 D !x0=!1m , and !1m and !2m given by

!1m D
µ

L2 ¡ 2Jzz T

Jx x .Jx x ¡ Jzz/

¶ 1
2

!2m D
µ

L2 ¡ 2Jzz T

Jyy.Jyy ¡ Jzz/

¶ 1
2
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