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Interceptor missiles, designed against aircraft, have substantial speed and maneuverability advantage over their

targets. Thus, by exploiting the technological progress, even simple guidance concepts yielded satisfactory

performance. For the interception of antisurface missiles, higher guidance precision is required. Using conventional

guidance and estimation concepts, existing missile defense systems have demonstrated hit-to-kill accuracy against

nonmaneuvering targets. Guaranteeing a similar performance against maneuvering targets can be achieved only if

the estimation errors against such targets are minimized. This paper introduces a new, logic-based estimation/

guidance algorithm, that explicitly uses the time-to-go in the estimation process and modifies the guidance law to

reduce the consequence of estimation errors. The successful outcome of the new approach is illustrated by an

extensive Monte Carlo simulation study.

I. Introduction

H ISTORICALLY, guided interceptor missiles were designed
against nonmaneuvering or moderately maneuvering aircraft-

type targets. In such scenarios, the speed and the maneuverability of
the missile largely exceed those of the target. Moreover, miss
distances on the order of a few meters, compatible with the lethal
radius of the missile warhead, were considered admissible due to the
vulnerability of aircraft structures. New warfare concepts in
antiballistic missile defense and ship defense scenarios involve the
interception of antisurface missiles that attack high value targets.
This task has presented an extreme challenge to the guided missile
community. Tactical ballistic missiles, as well as modern antiship
missiles, fly at very high speeds and their maneuvering potential in
the atmosphere is comparable to that of the interceptors. Moreover,
this potential can be made useful by a modest technical effort.
Successful interception of an antisurface missile, carrying probably
an unconventional warhead, requires a very small miss distance or
even a direct hit (to hit a bulletwith a bullet). Such hit-to-kill accuracy
against targets emulating tactical ballistic missiles that fly on straight
or ballistic trajectories has recently been demonstrated [1–3].
However, recent studies [4–6] have indicated that currently used
guidance and estimation methods are unable to guarantee a
satisfactory guidance accuracy against highly maneuvering targets
that are expected in the future. To understand the origin of this
deficiency, it is necessary to review the 50-year history of guided
missiles design practice.

Guidance theory points out that the main error sources responsible
for nonzero miss distances are: 1) noisy measurements, 2) nonideal

dynamics of the guidance system, 3) the contribution of target
maneuvers, 4) limitedmissile maneuverability, leading to saturation.
Nevertheless, simulation studies and flight tests have demonstrated
that adequatemaneuverability advantage of the interceptor canmake
the resulting miss distances sufficiently small.

All known missile guidance laws used at present were developed
based on a linearized kinematical model and a linear quadratic
optimal control concept (with unbounded control), so that the limited
maneuver potential of the interceptor has not been explicitly taken
into account. Advanced guidance laws have included the effects of
nonideal dynamics of the guidance system and the contribution of
target maneuvers in the generalized zero-effort miss distance and
used a time-varying gain schedule [7]. To evaluate the contribution
of the targetmaneuvers, their current value and future evolutionmust
be known. Because the current target maneuver cannot be directly
measured, it has to be estimated. In most cases, a constant target
maneuver has been assumed in the estimator’s structure.
Theoretically, if the assumption on the target behavior is correct,
the measurements are ideal and the lateral acceleration of the
interceptor does not saturate, such a guidance law can reduce themiss
distance to zero. In practice, if the interceptor/targetmaneuver ratio is
sufficiently high, the inevitable saturation occurs only very close to
the end of the interception and the resulting miss distance becomes
negligible.

In realistic interception scenarios with noise-corrupted measure-
ments, an estimator has become an indispensable element of the
guidance system and the homing performance of the interceptor
missile has been limited by the estimation accuracy. Although, for
realistic interceptor guidance scenarios with noise-corrupted
measurements, bounded controls, and saturated state variables, as
well as non-Gaussian random disturbances, the validity of the
separation theorem [8] (stating that the estimation and control
processes can be separately optimized) has never been proved, it has
been of common practice to design the estimators and missile
guidance laws independently. The estimators were simpleWiener or
Kalman filters and the guidance laws were derived using simplified
(linearized and planar) deterministic models. In most cases, such
convenient design approach had been acceptable, because it
succeeded in satisfying the performance requirements, due to the
substantial maneuverability advantage of guided missiles over their
manned aircraft targets. Applying this suboptimal approach also to
the interception of antisurface missiles with high maneuverability,
results in unsatisfactory homing performance [9].

In cases in which the separation theorem does not hold, a
generalized separation property was asserted [10], stating that the
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estimator can be designed independently of the controller, but the
derivation of the optimal control function has to be based on the
conditional probability density function (conditioned on the
measurement history) of the estimated state variables. Unfortunately,
this very important idea had not been followed by a rigorous practical
implementation approach for a very long period, and had not been
applied in any known control design including guided missiles.
Nevertheless, several attempts outlining new implementation ideas
have been proposed in recent years. The first one in this directionwas
the development of a guidance law partially compensating the
estimation delay (denoted as DGL/C) [9]. This, however, was only
an approximation that neglected the stochastic features of the
problem, associatedwith the noisymeasurements, and reemphasized
the need for improved estimation performance. Further advances in
this direction have been recently introduced in [11,12], that address a
linear problem with Gaussian noises. In these works the separation
theorem is not applicable because an acceleration saturation is
assumed. In [11], the nonlinear saturation element is replaced by a
linear representation through which the conditional probability
distribution function affects the guidance. In [12] the stochastic
Hamilton–Jacobi–Bellman equation (HJB) is solved directly,
including the nonlinear saturation effect. The idea of using an
adaptive scheme of estimation and guidance, using a modified GLR
detector, has been recently proposed in [13,14], showing some
improvement of the homing performance. A first comprehensive
attempt at a new, unified approach to integrating guidance with
estimation in a generalized nonlinear non-Gaussian framework has
been recently presented in [15]. Based on the guidelines of the
generalized separation theorem [10], and extending the conventional
notion of the reachability set [16–18], the proposed approach
integrates the conditional probability density function into the
guidance algorithm. However, the approach of [15] is computation-
ally intensive, and still needs to be thoroughly verified through
extensive experimentation. It should be noted that none of the above
methods could be applied to the problem of intercepting highly
maneuverable antisurface missiles in a satisfactory manner.

The objective of this paper is to report the results of a recently
completed multiyear investigation that outlines a new integrated
logic-based estimation algorithm that achieves substantial homing
improvement. The remainder of this paper is organized as follows. In
the next section, the interception problem of maneuvering
antisurface missiles is formulated. This is followed by a brief
review of a deterministic optimal interceptor guidance concept and
its implementation in a scenario of noise-corruptedmeasurements. In
Sec. IV the difficulties in finding a feasible optimal estimator for this
task are discussed. The new idea of an integrated logic-based
estimation/guidance algorithm, alleviating the difficulties, is
introduced in Sec. V, which includes results of a large set of Monte
Carlo simulations. Concluding remarks are presented in the last
section.

II. Problem Statement

A. Scenario Description

For the sake of research efficiency (simplicity, repeatability, and
reduced computational load), the analysis reported in this paper is
performed using a planar (horizontal) constant speed model. Such a
model can represent approximately the interception of a low flying
cruise missile. Validation of the approach in a generic three-
dimensional endoatmospheric ballistic missile defense (BMD)
scenario with time-varying parameters (velocities and acceleration
limits), requiring a large set of additional simulations, will be
presented in a follow-up paper.

It is assumed that the homing endgame scenario starts shortly
before interception, as soon as the onboard seeker of the interceptor
succeeds in locking on the target. The relative geometry is close to a
head-on engagement. It is assumed that at this moment the initial
heading error, with respect to a collision course, is small and neither
the interceptor nor the target is maneuvering. These assumptions
permit a linearization of the interception geometry.

B. Information Structure

Abasic assumption underlying the new concept is that the time-to-
go, which constitutes a critical piece of information, is available to
the homing interceptor. The time-to-go can either be computed by an
interceptor equipped with an active seeker that can measure range
and range-rate with good accuracy, or, in the case of a passive seeker,
it has to be provided by the launching platform.Measurements of the
line of sight angle are also available, but these are corrupted by a
zero-mean, white Gaussian angular noise. The interceptor’s own
acceleration is accurately measured, but the target acceleration has to
be estimated based on the available measurements. The target has no
information on the interceptor, but, being aware of an interception
attempt, it can start applying evasive maneuvers at any time,
randomly changing the direction of the maneuver.

C. Lethality Model

The objective of the interception is the destruction of the target (the
attacking antisurface missile). In the reported investigation, the
probability of destroying the target is determined by the following
simplified lethality function

Pd�M;Rk� �
�
1 M � Rk

0 M >Rk
(1)

where Rk is the lethal (kill) radius of the warhead andM is the miss
distance. This model assumes an overall reliability of 100% of the
entire guidance system.

D. Performance Index

The natural (deterministic) performance index of the interception
engagement is themiss distance. Because of the noisymeasurements
and the random target maneuvers, the miss distance becomes a
random variable with an a priori unknown probability distribution
function. A large number ofMonte Carlo simulations can provide an
empirical estimate of the cumulative probability distribution
function, that allows comparing the homing performances of
different guidance systems. Based on the lethality function of Eq. (1),
the efficiency of a guided missile strongly depends on the lethal
radius Rk of its warhead.

One figure of merit is the single shot kill probability for a given
warhead, defined by

SSKP � EfPd�M;Rk�g (2)

where the mathematical expectation is computed with respect to the
miss distance random variable, which is a function of the
measurement noise and the random target maneuver. The objective
of the guidance system is to maximize this value.

An alternative figure of merit is the smallest possible lethal radius
Rk��� that guarantees a predetermined probability of success � [i.e.,
SSKP�Rk���� � �]. In several recent studies [19–21] the required
probability of success has been set to �� 0:95, yielding the
following performance index

J � Rk�0:95� (3)

to be minimized by the guidance system.

E. Equations of Motion

The analysis of an interception endgame is based on the following
set of simplifying assumptions:

1) The engagement between the interceptor (pursuer) and the
maneuvering target (evader) takes place in a horizontal plane.

2) Both the interceptor and the maneuvering target have constant
speeds Vj and bounded lateral accelerations, jajj � �aj�max, for
j� E, P.

3) The maneuvering dynamics of both vehicles can be
approximated by first-order transfer functions with time constants
�P and �E, respectively.
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4) The relative interception trajectory can be linearized with
respect to the initial line of sight, with which the X-axis of the
coordinate system is aligned.

In Fig. 1 a schematic view of the endgame geometry is shown.
Note that the respective velocity vectors are generally not aligned
with the reference line of sight. The angles ’P and ’E are, however,
small. Thus, the approximations cos�’i� � 1 and sin�’i� � ’i

�i� P;E�, are uniformly valid and coherent with assumption 4).
Based on assumptions 2) and 4), the final time of the interception can
be computed for any given initial range R0 of the endgame by

tf � R0=Vc (4)

where Vc is the closing speed. Since the angles ’P and ’E are
assumed to be small, then, in a head-on engagement

tf � R0=�VP � VE� (5)

The time-to-go is defined as

tgo � tf 	 t (6)

The state vector in the equations of relative motion normal to the
reference line is

X � �x1; x2; x3; x4�T � �y; dy=dt; aE; aP�T (7)

where

y�t�≜ yE�t� 	 yP�t� (8)

The corresponding equations of motion and the respective initial
conditions are

_x 1 � x2; x1�0� � 0 (9a)

_x 2 � x3 	 x4; x2�0� � VE’E0
	 VP’P0

(9b)

_x 3 � �ac
E 	 x3�=�E; x3�0� � 0 (9c)

_x 4 � �ac
P 	 x4�=�P; x4�0� � 0 (9d)

where ac
E and ac

P are the commanded lateral accelerations of the
target and the interceptor, respectively. The players’ acceleration
commands are conveniently modeled as

ac
E � amax

E v; jvj � 1 (10a)

ac
P � amax

P u; juj � 1 (10b)

where v and u are the normalized acceleration commands of the
target and the pursuer, respectively.

The nonzero initial conditions VE’E0
and VP’P0

represent the
respective initial velocity components not aligned with the initial

(reference) line of sight. By assumption 4) these components are
small relative to the components along the line of sight. Equations (9)
can be written in a compact form as a linear, time invariant, vector
differential equation

dX=dt� AX � Bu� Cv (11)

The problem involves two nondimensional parameters of physical
significance: the pursuer/evader maximum maneuverability ratio

�≜ �aP�max=�aE�max (12)

and the evader/pursuer time constant ratio

"≜ �E=�P (13)

The miss distance (the deterministic cost function of the
interception), can be written as

M� jDX�tf�j � jx1�tf�j (14)

where

D� �1; 0; 0; 0� (15)

F. Problem Formulation

There is a fundamental deficiency in formulating the interception
of a maneuverable target as an optimal control problem. Target
maneuvers are independently controlled. Since future target
maneuver time history (or strategy) cannot be predicted, the optimal
control formulation is not appropriate. The scenario of intercepting a
maneuverable target has to be formulated as a zero-sum differential
game of pursuit–evasion [22,23]. In such a formulation, there are two
independent controllers and the cost function is simultaneously
minimized by one of them andmaximized by the other. Based on the
above outlined assumptions and formulation, deterministic zero-sum
pursuit–evasion game models can be solved. The game solution
provides simultaneously the interceptor’s guidance law (the optimal
pursuer strategy), the worst target maneuver (the optimal evader
strategy) and the resulting guaranteedmiss distance (the saddle-point
value of the game). An optimal guidance law based on the solution of
a perfect information linear game with bounded control was
published in the past [24] and is briefly reviewed in the sequel.

III. Game Optimal Guidance Law

The gamemodel assumes planar geometry, constant velocities and
fixed acceleration limits [24]. The set of assumptions 1)–4) allows
casting the problem into the canonical form of linear games, from
which a reduced-order game with only a single state variable, the
zero effortmiss distance (denotedZ), is obtained.As the independent
variable of the problem, the time-to-go (tgo), defined by Eq. (6), is
selected. The solution of this game is determined by the two
parameters of physical significance and defined by Eqs. (12) and
(13).

The guidance law based on the game optimal pursuer strategy,
denoted as DGL/1, is of a bang–bang type

u
 � signfZg; 8 Z ≠ 0 (16)

u
 being the normalized optimal control of the pursuer (interceptor).
The explicit expression for Z is

Z� x1 � x2tgo 	�ZP ��ZE (17a)

where

�ZP � x4��P�2�exp�	#P� � #P 	 1� (17b)

�ZE � x3��E�2�exp�	#E� � #E 	 1� (17c)

are the own and target acceleration contributions to Z, respectively,
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Fig. 1 Interception geometry.
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and #P � tgo=�P and #E � tgo=�E. The guaranteed miss distance
depends on the parameters of the game ��; "� and can be made zero
for all initial conditions of practical importance if both � > 1 and
�" � 1.

Implementation of DGL/1 requires perfect knowledge of the zero-
effort miss distance, which includes also x4, the current lateral
acceleration of the target. Since this variable cannot be directly
measured, it has to be estimated based on noise-corrupted
measurements. This process involves an inherent delay. If the
interceptor uses DGL/1, derived from the perfect information game
solution [24], a smart target can take advantage of the estimation
delay and achieve a large miss distance by adequate optimal
maneuvering [25] as illustrated in Fig. 2, even if the game parameters
are such that the guaranteed miss distance should be zero. Figure 2
represents the results of a large set of planar (horizontal) simulations
against a target performing bang–bang type evasive maneuvers with
a single, randomly timed acceleration direction reversal (switch)
during the endgame. Such type of an evasionmaneuver was found to
be the optimal one for interception avoidance [26]. The figure shows
the average miss distance of 100 Monte Carlo runs as a function of
�tgo�sw, the timing of the switch in the target maneuver direction. The
data used for these simulations are given in Table 1.

In the simulations a typical Kalman filter augmented with a
shaping filter is used. Such a shaping filter, driven by a zero-mean
white noise, represents random target maneuvers [27]. The shaping
filter selected for this case is based on an exponentially correlated
acceleration (ECA)model, suggested by Singer [28]. Such a shaping
filter has first-order dynamics with two tuning parameters, the
correlation time of the maneuver �s and the level of the assumed
process noise, expressed by its standard deviation �s � amax

E =Cs. In
this example the parameters of the shaping filter are �s � 1:5 s and
Cs � 2.

The main reason for the degraded homing performance is the
inherent delay introduced in the estimation of the target maneuver by

the convergence time of the estimator. DGL/1 can correct the error
created by the delay only if the change of the acceleration command
occurs in the early part of the endgame [�tgo�sw > 1:6 s in the present
example]. In this case sufficient time remains until intercept, the
estimated acceleration converges and the guidance law receives
sufficiently accurate values of the zero-effort miss distance early
enough for achieving good precision.

The value of the delay can be reduced by increasing the bandwidth
of the estimator by selecting different tuning parameters of the
shaping filter. Using such shaping filter, the large miss distances
associated with command switches occurring near the end of the
interception will be reduced, at the expense of less efficient filtering
that will lead to larger residual converged estimation errors. This will
give rise to increased miss distances for acceleration command
changes occurring in the early parts of the endgame. For improved
homing performance, both the estimation delay and the variance of
the converged estimation error have to be reduced. To achieve this
objective, extensive simulation studies have been aimed at searching
for an improved estimation scheme,which is suitable for interception
endgame problems.

IV. On Optimal Estimation

In the search for a suitable optimal estimator for the task of
intercepting randomly maneuvering targets, several difficulties are
encountered. The first one is of a conceptual nature. For linear
systems with zero-mean, white Gaussian measurement and process
noises, the Kalman filter [29], based on the correct model of the
system dynamics, is the minimum variance optimal estimator. The
measurement noise used in interception simulations has indeed such
characteristics, but the representation of random target maneuvers as
the output of a shaping filter driven by a zero-mean, white Gaussian
noise, is only an approximation [27]. Moreover, each type of target
maneuver requires a different shaping filter approximation.

Since target maneuver dynamics is not ideal, the target
acceleration is regarded as a state variable, as part of the interception
model. The disturbance inputs are the random acceleration
commands, that can be discontinuous, representing a random jump
process. They are bounded and certainly neither white nor Gaussian.

In some recent papers [30,31] it was shown that in such cases the
optimal estimator is of infinite dimension. Thus, every computa-
tionally feasible (finite dimensional) estimator can be, at best, only a
suboptimal approximation and the search for a feasible optimal
estimator associated with interceptor guidance is not a well-posed
problem. Similarly, it should be of no surprise that the certainty
equivalence principle and the associated separation theorem [8], both
involving the concept of optimality, have never been proven valid for
the interception of randomly maneuvering targets. Not being able to
rely on separate optimization of the estimator and the guidance law,
one should search for other, efficient, feasible approaches.

The requirements to reduce both the estimation delay and the
variance of the converged estimation error, mentioned at the end of
the previous section, are contradictory. The delay associated with
identifying a rapid target maneuver change is composed of the
maneuver change detection time and the estimator’s response time.
Short detection time comes at the price of high false alarm rate. Short
response time requires large bandwidth, which is associated with
large estimation errors. For small estimation errors a narrow
bandwidth is needed, which leads to slower response.

This controversy raises the question: can a single Kalman filter-
type estimator satisfy the contradictory requirements of homing
accuracy? Extensive Monte Carlo simulations have shown that no
such estimator can be globally optimal for all guidance laws/
interception scenarios, and there is no unique optimal Kalman filter-
type estimator/guidance law combination that is suitable for all
feasible target maneuvers [21]. Thus, a heuristic approach, based
both on the insight generated by the extensive simulation results, as
well as on control engineering intuition, is adopted herein. Some
elements of the new approach have already been introduced in two
conference papers [19,20].
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Fig. 2 Homing performance of DGL/1 against bang–bang target

maneuvers.

Table 1 Horizontal endgame parameters

Parameter Value

Interceptor velocity VP � 2300 m=s
Target velocity VE � 2700 m=s
Interceptor lateral acceleration limit amax

P � 20 g
Target lateral acceleration limit amax

E � 10 g
Time constant of the interceptor �P � 0:2 s
Time constant of the target �E � 0:2 s
Initial range R0 � 20 km
Endgame duration tf � 4 s
Measurement noise standard deviation �ang � 0:1 mrad
Measurement rate f� 100 Hz
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V. New Approach

A. Integrated Estimation/Guidance Strategy

Because it was observed that no single Kalman filter-type
estimator can satisfy the requirements of homing accuracy, the
various tasks performed by a classical estimator have to be separated
and assigned to different elements within a corporate estimation
system. The main task, directly affecting the homing accuracy, is the
estimation of the state variables (including the target acceleration)
involved in the guidance law. This task can be performed
satisfactorily by a narrow bandwidth filter, if and only if the correct
model of the target maneuver is available. Thus, at the initial part of
the endgame, the first task to be carried out is model identification,
using, for example, a static multiple-model adaptive estimator
(MMAE) [32]. Specifically, theMMAE (or any other technique used
for this purpose) is used for discriminating between a piecewise-
constant maneuver (e.g., bang–bang) and a time-varying maneuver
(e.g., spiral). The filters for this task should be of a rather large
bandwidth, in order to complete the model identification as fast as
possible.

Because, in a planar scenario, a bang–bang-type maneuver is the
most effective for evasion [24,26], the present paper focuses on it.
Such amaneuver can be characterized as a piecewise-constant lateral
acceleration maneuver, for which the model has to include its
amplitude and current direction. If the anticipated direction reversal
(switch) occurs sufficiently far from the end of the interception, there
is sufficient time for the filter to converge after identifying the
maneuver. The DGL/1 guidance law, using a sufficiently accurate
value of the target acceleration, achieves small miss distances, as
shown in Fig. 2. However, if the switch occurs near the end of the
interception (e.g., at tgo � 1:0 s), a very large miss distance is
generated due to the estimation delay.

In an earlier paper [33], a multiple-model estimator, where each
model assumes a different timing of the switch, is presented. Using a
single estimator that is ideally tuned to the correct switch virtually
eliminates the delay, as shown in Fig. 3. This improved estimation
performance yields excellent homing performance, as can be seen in
Fig. 4, which presents the cumulative probability distribution of the
miss distance, obtained from 100 Monte Carlo runs for
�tgo�sw � 1:0 s.

Moreover, even if the switch occurs shortly after the time
anticipated by the estimator, similarly good homing performance is
obtained, as illustrated in Fig. 5. This figure depicts the average miss
distances of 100 Monte Carlo runs for three different values of
�tgo�sw, as a function of ��tgo�sw, the difference between the tuning
time of the estimator and the true value of �tgo�sw:

��tgo�sw � �tgo�tune 	 �tgo�sw (18)

Figure 5 shows small miss distances and a surprising robustness,
allowing the use of only very few tuned estimators for covering the
range of interest. The estimators for this evaluation employ, similar
to the one used for generating Fig. 4, ECA shaping filters with a
relatively large bandwidth (�s � 0:2 s, Cs � 3:0).

If the event of the switch in the target acceleration command can be
detected sufficiently fast, this robustness property suggests (for the
example using the data of Table 1 and the results shown in Figs. 2–5),
a logic-based estimation/guidance strategy as a function of time-to-
go. This strategy consists of the following phases:

1) Until the identification of the target maneuver type, a narrow
bandwidth estimator is used, along with a guidance law that does not
use the target acceleration to compute the zero-effort miss distance.
TermedDGL/0, this guidance law thus uses the following expression
for the zero-effort miss distance [34]:

Z� x1 � x2tgo 	�ZP (19)

2)Once the direction of the constantmaneuver has been identified,
the guidance law is changed to DGL/1, preserving the same
estimator.

3) If a jump in the direction of the target maneuver command is
detected before a critical time-to-go (tgo � 1:6 s in the present
example), this estimator is maintained until the end. Depending
mostly on the narrow-band estimator’s performance and the pursuer
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dynamics, the critical time-to-go is determined using offline
simulations.

4) If the jump in the direction of the target maneuver command is
detected after the critical time-to-go, the narrow bandwidth estimator
that provides the input of the guidance law is replaced by a wide-
bandwidth filter that is tuned to the nearest earlier switch time from a
preselected set of switch times. After jump detection, the activated
estimator remains unchanged. Because the estimation delay with a
tuned estimator is negligible, the guidance law used with these
estimators is also DGL/1. In the example presented in this paper, the
preselected set of switch times consists of just three elements:
�tgo�sw � 1:6, 1.0, and 0:5 s (hence, just three tuned filters are used).
This set was found sufficient for covering the entire range of interest.

The new estimation/guidance strategy was tested in an extensive
Monte Carlo simulation study. The study included 40 evenly spaced
switch times over the entire 4-s duration of the benchmark endgame,
using 100 noise samples for each switch time. The results, based on
the assumption of ideal detection, are shown in Fig. 6, displaying the
miss distance cumulative probability distribution. These results are
very close to satisfying the hit-to-kill requirement.

Because an ideal detection of the jump in the direction of the target
maneuver command is impossible, the Monte Carlo simulations
were repeated assuming small detection delays of 0.05 and 0.1 s. The
miss distance cumulative probability distributions for these two
cases are also shown in Fig. 6. As can be observed from Fig. 6, a
detection delay of 0.05 s has only a minor effect, whereas a delay of
0.1 s causes a more significant performance degradation, mainly for
maneuver switches near the end of the interception. These results
strongly emphasize the need for a fast jump detector, which has to be
developed, as an additional element of the integrated estimation
system. Figure 6 also includes the results presented in [20], already
using the ideas of task separation and the explicit application of the
time-to-go in the estimation process, but employing the DGL/C
guidance law with tuned estimators assuming ideal jump detection.
The comparison clearly indicates the improvement achieved by
relying on DGL/1 in the entire endgame after model identification,
even if the jump detection is not ideal.

To alleviate the negative effects of the detection delay, two
important modifications are introduced in theDGL/1 guidance law at
the last phase of the endgame. These modifications are presented
next.

B. Guidance Law Modifications

It was observed that, due to the detection delay and the remaining
short time, the interceptor is unable to reach its maximum lateral
acceleration and reduce the guidance error generated during the
delay. This deficiency can be corrected by increasing the lateral
acceleration command for small values of time-to-go.

The increase in the commanded acceleration gain is expressed, for
tgo � �tgo�sw, by

ac
P � ac

P�tgo; k� �
amax
P signZ

1 	 k exp�	tgo=�p�
(20)

where the parameter k is selected to satisfy

jaP�tf; k�j � amax
P (21)

From Eqs. (20) and (21) it is clear that k < 1; otherwise the gain
would be infinite. The value of k depends on �tgo�sw and the value of
aP at that very moment. The effect of this modification is illustrated
in Fig. 7, comparing the acceleration time histories generated by the
classical command of Eq. (16) (dashed line) and the command of
Eq. (20) (solid line).

A further improvement is achieved by introducing a time-varying
dead-zone version of the signum function in theDGL/1 guidance law
for the period when the tuned estimators are used:

sign DZ�Z� �
(
1 Z > ZDZ

0 jZj � ZDZ

	1 Z < 	ZDZ

(22)

where

ZDZ ≜ ADZ exp�	bDZ�tf 	 tgo�� (23)

In Eq. (23), the parameter ADZ guarantees that the dead zone is
sufficiently small, and bDZ is the exponential decay rate of the dead
zone. Both of these tuning parameters are determined using offline
simulations for the set of expected worst-case scenarios. This
modification reduces the error created during the period of detection
delay, as illustrated in Fig. 8. The dead zone is used only in the
interval 1:0 s > tgo > 0:2 s until the switch is detected. In the
simulations, the values of ADZ � 50 m and bDZ � 1 s	1 were
selected.

By applying the two modifications expressed by Eqs. (20–23), a
major improvement in the homing performance is achieved, as can be
clearly seen in the cumulative distributions presented in Fig. 9.

Table 2 presents various figures of merit for the homing
performance in the horizontal constant speed interception endgame:
the average miss distance rav, the maximum miss distance for
SSKP� 0:95, r95, and p0:5, the kill probability for warhead lethality
radius of 0.5 m. The results summarize the effect of the detection
delay and the two new modifications of the guidance law. One can
see that the modifications succeed in compensating for the
performance degradation due to the imperfect detection.
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VI. Conclusions

In this paper, a new integrated estimation/guidance algorithm is
introduced for the interception endgame of randomly maneuvering
targets. The algorithm is based on a set of innovative concepts. First,
separate estimator elements are used for the different tasks of target
model identification, proper state estimation and jump detection. The
joint contribution of the separate estimation elements enhances the
accuracy of the state estimates at the critical moments of the
interception. Second, explicit use of the time-to-go is made for
scheduling the functions of the various estimators in a logic-based
structure, depending on the detection of an eventual jump in the
target maneuver command. Finally, two modifications are
introduced in a perfect information differential game-based guidance
law, thus alleviating the effect of the jump detection delay. One of the
modifications (increased command gain) allows using the maximum
available lateral acceleration of the interceptor at the end,whereas the

other (using a dead zone) reduces the guidance error created during
the period of the delay in the jump detection.

Using the new integrated logic-based estimation/guidance
algorithm in a horizontal interception scenario example
demonstrated not only a substantial improvement compared with
earlier results, but also a potential to satisfy a hit-to-kill requirement.
Validation of the results in a generic three-dimensional endoatmo-
spheric ballistic missile defense scenario with time-varying
parameters will be presented in a follow-up paper.

The crucial element for the successful application of the new
algorithm is the existence of a sufficiently fast jump detector. The
development of such a detector is currently under investigation.

The data used in the Monte Carlo simulations are generic and,
therefore, the numerical results are only illustrative. However, the
data represent a rather pessimistic case. In the example scenario, a
nonexcessive interceptor maneuverability advantage (�� 2), a
relatively agile target ("� 1) and a conservative sensor noise
(�ang � 0:1 mrad) were assumed. The bang–bang target maneuver,
used in the simulations, is also the most efficient one for avoiding
interception.
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