
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 25, No. 4, July–August 2002

Ef� cient Multiple Model Adaptive Estimation
in Ballistic Missile Interception Scenarios

Tal Shima,¤ Yaakov Oshman,† and Josef Shinar‡

Technion—Israel Institute of Technology, 32000 Haifa, Israel

A novel ef� cient algorithm, featuring a highly reduced computational load, is presented for multiple model
adaptive estimation in a future real-life ballistic missile defense scenario, where the blind incoming target (having
no information on the interceptor’s state) performs a bang–bang evasive maneuver characterized by a random
switching time. The ef� ciency of the algorithm derives mainly from its exploitation of the special structure of the
hypothesis space in this problem to drastically reduce the number of concurrently active � lters in the bank with-
out incurring any signi� cant performance degradation. The proposed algorithm’s ef� ciency allows a substantial
increase in the resolution of the discretized hypothesis space, thus enhancing considerably the attainable estima-
tion performance. The effect of the new estimator’s performance on guidance accuracy is examined. The homing
performance of various perfect information guidance laws using this ef� cient estimation method is compared, via
Monte Carlo simulations, to the use of a Kalman � lter incorporating a shaping � lter representing the random
target maneuver. The results demonstrate the superiority and viability of the proposed method.

Introduction

G UIDANCE laws of currently used interceptor missiles have
commonly been developed based on the assumption of per-

fect information, that is, ideal noiseless measurements and known
inputs to the dynamicsystem.This assumptionhasallowedaneasier
mathematical analysis and, in some cases, even a closed-form solu-
tion. It has been of common practice to implement such guidance
laws by assuming the well-known certainty equivalence principle1

(CEP) that states that the optimal control law for a stochastic con-
trol problem is the optimal control law for the associated deter-
ministic (certainty equivalent) problem. The validity of the CEP
was proved for linear optimal control problems with unbounded
control, quadratic cost function, and Gaussian noise (termed linear
quadratic Gaussian), with a strictly classical information pattern,
where the controller has available all past outputs and controls at
any time. For such problems, a well-known separation result states
that the estimator and the controllercan be designed independently;
hence, the estimated states should be used in the control law of
the deterministic problem. For problems with a strictly classical
information pattern, the state estimator can be designed indepen-
dently of the control law even if the CEP does not hold. However,
the stochastic optimal control law is de� ned on the space of con-
ditional probability distributions resulting from the solution of the
� ltering problem, which means that the � ltering problem has to be
addressed � rst.1

The CEP has never been proved for realistic missile guidance
problems, characterizedby bounded control, non-Gaussianrandom
target maneuvers, and saturated state variables. Nevertheless, it has
been common practice in the guided missile community to assume

Presented as Paper 2000-4274 at the AIAA Guidance, Navigation, and
Control Conference, Denver, CO, 14–17 August 2000; received 28 August
2000; revision received 27 September 2001; accepted for publication 28
November 2001. Copyright c° 2002 by the authors. Published by the Amer-
ican Institute of Aeronautics and Astronautics, Inc., with permission. Copies
of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/02
$10.00 in correspondence with the CCC.

¤Ph.D. Student, Department of Aerospace Engineering; currently Sys-
tem Engineer, RAFAEL, Ministry of Defense, Department 35, P.O.B. 2250,
31021 Haifa, Israel; talsh@rafael.co.il. Member AIAA.

†Associate Professor, Department of Aerospace Engineering; Yaakov.
Oshman@technion.ac.il. Associate Fellow AIAA.

‡Professor Emeritus, Max & Lottie Dresher Chair of Aerospace Per-
formance and Propulsion, Department of Aerospace Engineering. Fellow
AIAA.

it when designing the interceptor’s control law. In such implemen-
tations, target maneuvers were either neglected or assumed to be
of a well-de� ned, mostly constant, structure.2 Inherently, homing
accuracy is limited by the accuracy of the estimated state variables.
In guidance laws that explicitly use the target maneuver, the estima-
tion of this variable, which cannot be measured directly, becomes
crucial. If the mathematical model (including the target maneuver
dynamics) used in the estimator design is inaccurate, the estima-
tion errors become large, leading to a poor homing performance.
Previous studies, investigating realistic missile guidance problems
with noisy measurements and unknown target maneuvers, concen-
trated on identifyingthe actual targetmaneuver3 or on searchingfor
an estimator that minimizes the resulting guidance errors in some
sense.4 Future ballistic missile defense (BMD) scenarios against
maneuvering reentry vehicles represent a new example for such
a case.

Currently known tactical ballistic missiles (TBMs) are not de-
signed to maneuver. Nevertheless, they have an inherent high ma-
neuveringpotentialin theatmosphere,resultingfrom their very high
reentry speed. Recently developedantiballisticmissile defense sys-
tems, suchasPAC-3 and Arrow, demonstratedthe ability to intercept
such nonmaneuveringtargets with a hit-to-killaccuracy.5;6 The suc-
cessful development of such BMD systems is expected to motivate
the development of a new generation of maneuvering TBMs in the
foreseeable future. Although a TBM is blind with respect to the
interceptor,it can executehard maneuvers randomly (to avoid inter-
ception) on its way to a designated surface target, while complying
with the constraintof hitting it. If the defense strategy, including the
interceptor’s guidance law, cannot guarantee that the miss distance
generatedby an optimal (in the deterministicsense) evasivemaneu-
ver is suf� ciently small, the probability of an unacceptable leakage
does not vanish.

A future BMD scenario against a randomly maneuvering TBM
can be analyzed as an imperfect information zero-sum pursuit–
evasiongame. Such an analysis,based on a simpli� ed mathematical
model (linearized kinematics, constant speeds, and low-order sys-
tem dynamics) has been performed in the past decade.7¡9 In the
� rst phase, perfect information for the interceptorwas assumed, but
later the reality of noise-corruptedmeasurements and an estimator
were included.The perfect informationguidance laws used in these
studies were derived using a linear differential game formulation
with bounded control10¡12 and the estimator design was based on a
standard Kalman � lter (KF) with a shaping � lter (SF) representing
the random target maneuver.13

Other estimation methods such as the multiple model adap-
tive estimator14 (MMAE) can also be used in a random evasion
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encounter3;15 if the unknown evasion strategy belongs to a � nite
set of applicable strategies. In the MMAE approach, a set of KFs
is run in parallel, each � lter corresponding to a different evasion
strategy. The estimated state vectors from the various KFs are then
fused according to either the minimum mean square error (MMSE)
criterion16 or the maximum a posteriori (MAP) criterion.17

In practice, the MMAE technique is seldom applied to intercep-
tion scenarios because of its associated prohibitive computational
load due to the use of a large number of KFs corresponding to the
number of assumed evasion strategies. Ef� cient algorithms have
been proposed in the past in the context of maneuvering target
tracking for alleviating the computational load problem. In Ref. 18,
a multiple model estimator was devised for tracking a maneuver-
ing target, modeling the maneuver via a combination of Singer’s
exponentiallycorrelated acceleration(ECA) model19 and the semi-
Markov model of Gholson and Moose.20 Because the models used
in Ref. 18 differ only in their inputs, it was observed that the � lters’
gain and covariance need be computed just once (as opposed to n
separate computations,correspondingto the n elemental KFs in the
bank). A similar conclusion (although based on some simplifying
assumptions) was reached in Ref. 21, which also presented an ef-
� cient MMAE for passive tracking of a maneuvering underwater
target in the presence of randomly switching biased measurements.
In Ref. 22, a bank of extended KF was used to detect target ma-
neuvers, modeled via jumps at random times of an unknown bias
that was added to the basic ECA model, within the framework of
generalized likelihood ratio � ltering. Because this method involved
an ever increasing � lter bank (because a new � lter had to be initial-
ized at every measurement update), the � lter bank was arbitrarily
trimmed by dropping each � lter after it had lived a predetermined
number of measurement updates. Yet another computational load
alleviation was introduced by Chan et al. in their multiple hypothe-
sis tracking algorithm,23 which was further developed by Bogler.24

The adaptive algorithm presented in Refs. 23 and 24 makes use
of the fact that, in tracking a maneuvering target modeled via its
command input, the only difference between the various hypothe-
ses is the forcing function and its time of application. When this
observation was exploited to reduce the computational load, an es-
timation algorithm equivalent to a MMAE was developed, which
consists of one nominal KF (that assumes no target maneuver) and
a bankof correctioncomputationsthat effectivelygeneratethe other
elemental � lters’ state estimates and residuals from those com-
puted by the nominal � lter. The current work’s approach differs
from that taken in Refs. 23 and 24; however, here, too, the forc-
ing function’s role in distinguishing between the elemental � lters
is used.

This paper presents a novel ef� cient algorithm for MMAE, fea-
turing a highly reduced computational load. Moreover, the feasibil-
ity and merits of this estimation algorithm are examined in future
endoatmospheric BMD scenarios. The ef� ciency of the algorithm
presented derives mainly from its exploitation of the special struc-
ture of the hypothesisspace in this problemto reduce drastically the
number of concurrently active � lters in the bank. This order reduc-
tion schemedoes not incur any signi� cantperformancedegradation.
In addition,when the propertiesof the dynamic models involvedare
exploited, the proposedalgorithmfeatures one-time covarianceand
gain computations for all � lters in the bank (in a manner similar to
the algorithm of Ref. 18). Under realistic computational load con-
straints, these savings allow a substantial increase in the resolution
of the discretizedhypothesisspace, thus enhancingconsiderablythe
attainable estimation performance.

Motivated by that complete separation of estimation and control
cannot be asserted in the scenario of interest, the approach taken
in this paper emphasizes the estimator’s effects on guidance accu-
racy. Therefore, the performance index used here is based on the
miss distance, similar to Refs. 3 and 4. This approach differs from
most investigationsconcerningestimator design, which use estima-
tion accuracy as the � gure of merit (implicitly assuming complete
separation between estimation and control).

The remainder of this paper is organized as follows. In the fol-
lowing section, the problem of intercepting a maneuvering TBM
is formulated. Next, the perfect information maneuver strategies

are presented along with an imperfect information analysis. This
is followed by a description of the ef� cient MMAE approach that
substantially reduces the computationaleffort. Then a Monte Carlo
simulation study is presented, comparing the merits of the MMAE
approach to those of a KF coupled with a SF, for various guidance
laws. Concluding remarks are offered in the last section.

Problem Formulation
Assumptions

The investigation of the terminal phase of an endoatmospheric
TBM interceptionscenario is based on the following set of assump-
tions:

1) The near head-on engagement between the interceptor (pur-
suer) and TBM (evader) takes place in a plane.

2) Both missiles can be represented by point-mass models with
linear control dynamics.

3) The relative endgame trajectory is linearized about a � xed
reference line (the initial line of sight or nominal trajectory).

4) Both missiles have constant speeds.
5)The lateral accelerationsof both missileshave constantbounds.
6) The maneuvering dynamics of the interceptor and TBM mis-

siles can be approximatedby � rst-order transfer functionswith time
constants ¿P and ¿E , respectively.

7) The TBM has no information on the state of the interceptor.
8)The interceptorhasnoisymeasurementsof somestatevariables

of the engagement.

Dynamic Model
Figure 1 shows a schematic view of the planar engagement geo-

metry. Note that in a near head-onengagement the respectiveveloc-
ityvectorsof themissilesaregenerallynotalignedwith thereference
lineof sight (LOS). The aspect anglesÁP and ÁE are,however,small
in an antiballistic interception scenario. Thus, the approximations
cos.Ái / ¼ 1 and sin.Ái / ¼ Ái ; i D P , E , are uniformly valid and co-
herent with assumption 3. Moreover, based on assumptions 3 and
4, the � nal time of the interception can be computed for any given
initial conditions of the endgame by

t f D r0=Vc (1)

where r0 is the initial range and the closing speed Vc can be closely
approximatedby the speed sum VP C VE . The time-to-go is de� ned
as

tgo D t f ¡ t (2)

and its normalized version is

µ
1D tgo=¿P (3)

Remark: In a realisticballisticmissile interceptionscenario, the
range r and range rate Pr D ¡Vc are continuously, quite accurately,
measured by a ground-based radar. This allows uplinking the
updated time-to-go to the interceptormissile.

The state vector in the equations of relative motion normal to the
reference line is

X D [x1; x2; x3; x4]
T (4)

Fig. 1 Engagement geometry.
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where

x1
1D y D yE .t/ ¡ yP .t/; x2

1D Py

x3
1D aE ; x4

1D aP (5)

and the correspondingequations of motion are

Px1 D x2; Px2 D x3 ¡ x4

Px3 D
¡
v ¢ amax

E ¡ x3

¢¯
¿E C !E ; jvj · 1

Px4 D
¡
u ¢ amax

P ¡ x4

¢¯
¿P C !P ; juj · 1 (6)

where u and v are the controls of the pursuer and evader, respec-
tively.Here,!P and!E are zero meanGaussianwhiteprocessnoises
with standard deviations ¾P and ¾E , respectively.The problem in-
volves two nondimensionalparametersof physical signi� cance: the
pursuer/evader maximum maneuverability ratio

¹
1D amax

P

¯
amax

E (7)

and the evader/pursuer time constant ratio

" D ¿E=¿P (8)

Measurements
It is assumedthat the interceptoracquiresmeasurementsat a given

frequency f . The measurements are

z1 D Áaz C vÁ
»D y=r C vÁ ; z2 D aP C vP (9)

where r , the range between the evader and the pursuer, is measured
very accurately relative to the other measurements and is, there-
fore, assumed to be deterministicallyknown. The angle Áazbetween
the current and initial LOS (Fig. 1) is measured with angular noise
vÁ and the interceptor’s own acceleration is measured with noise
vP . These measurement noises are zero mean, white, Gaussian
distributed, with standard deviations ¾ang and ¾ap , respectively.

Lethality Model
A realistic lethalitymodel involvingan interceptormissile’s war-

head andan incomingTBM is very complex.In this study, theproba-
bility of target destructionis determinedby the following simpli� ed
lethality function:

Pd.Rk / D
»

1; jx1.t f /j · Rk

0; jx1.t f /j > Rk (10)

where Rk is the lethal (kill) radius of the warhead. The interception
is successful only if the miss distance jx1.t f /j is smaller than the
lethal radius of the warhead. A simplifying assumption underlying
this model is that the overall reliabilityof the entireguidancesystem
is 1.

Performance Index
The objective of the interceptor missile is to destroy the incom-

ing TBM with a predetermined probability of success, when it is
equipped with a warhead of the smallest possible lethal radius Rk .
The required probability of success is measured by the single-shot
kill probability (SSKP),3 de� ned as

SSKP.Rk / D E fPd.Rk /g (11)

where E is the mathematical expectation, taken with respect to the
measurement noise and random target maneuver distributions. In
this study, the requiredprobabilityof success is assumed to be 0.95.
When the preceding de� nition is used, the performance index of
this game is

J D arg
Rk

fSSKP.Rk / D 0:95g (12)

This performance index is to be minimized by the interceptor (pur-
suer) and maximized by the evading target.

Maneuver Strategies
Deterministic Analysis

In the ideal, noise-free case, the perfect information assumption
forms the worst case from the viewpoint of the defense because it
provides the TBM (which is actually blind) with a potential that it
does not have. When perfect information is assumed, the maneu-
vering strategies of both parties can be derived using two different
formulations: 1) differential games and 2) optimal control.

Differential Game Solution
The cost function of the perfect information game, to be min-

imized by the pursuer and maximized by the evader, is the miss
distance

J D jx1.t f /j D jDX.t f /j (13)

where

D D .1; 0; 0; 0/ (14)

In this deterministic case, if the pursuer’s warhead lethal radius is
larger than the guaranteed miss distance of the game, SSKP D 1 is
guaranteed.

The solutionof such a game is based on computingthe zero effort
miss (ZEM), de� ned as the miss distance that results if both players
do not apply any further accelerationcommands, and using it as the
single state variableof the game. The ZEM can be computed at time
t by

ZEM.t/ D D8.t f ; t/X.t/ (15)

where 8.t f ; t/ is the transition matrix associated with PX D AX. In
the game with � rst-order evader dynamics,12 the ZEM is

ZEM1 D x1 C x2tgo C ¿ 2
E x3Ã.µ="/ ¡ ¿ 2

P x4Ã.µ / (16)

where

Ã.³ /
1D e¡³ C ³ ¡ 1 (17)

In the game where ideal evader dynamics, that is, ¿E D 0, is
assumed,10 the ZEM reduces to

ZEM0 D x1 C x2tgo ¡ ¿ 2
P x4Ã.µ/ (18)

Note that the computation of ZEM0 does not require knowledge of
the target acceleration.The optimal strategiesin both of thesegames
can be implemented as

u¤ D sign[ZEMi .t/]; v¤ D sign[ZEMi .t/]

i D 0; 1 (19)

The guidance laws based on the optimal pursuer strategies are de-
noted in the sequel as differentialgame laws for � rst-order (DGL/1)
and ideal (DGL/0) dynamics, respectively. For most initial con-
ditions of practical importance, the guaranteed miss distance in
both game models is constant. For DGL/0, this value is never zero,
whereas in DGL/1 it can be nulli� ed if the inequality ¹" ¸ 1 is
satis� ed.

Remark: In a noise-corruptedscenario,using a bang–bang type
strategy might lead to a chattering of the acceleration command.
In an actual implementation, to avoid the unwanted chattering of
the accelerationcommand, DGL/0 and DGL/1 can be implemented
using a linear strategy (for all initial conditions of practical im-
portance) as was shown in Refs. 10 and 12. In the present study,
which concentrates on a comparative evaluation of various estima-
tion techniques (with given guidance laws), this was not deemed
necessary.
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Optimal Control Solution
Constructionof a maneuver strategy based on an optimal control

formulation requires an assumption on the future behavior of the
opponent. If the guidance law of the interceptor is known, the TBM
can perform an optimal evasion strategy.25¡27 In most interceptor
missiledesigns, it has beenof common practice to assumea constant
target maneuver, resulting in a guidance law denoted as the optimal
control guidance law (OGL).28 In a fashion similar to the preceding
derivation, the implementation of this guidance law is based on
computing the associated ZEM, which, in this case, is

ZEMOGL D x1 C x2tgo C 0:5x3t2
go ¡ ¿ 2

P x4Ã.µ/ (20)

The optimal guidance law is

u¤ D
¡
G

¯
amax

P ¿ 2
P

¢
ZEMOGL (21)

where G is the time-varying gain computed as

G D Ã.µ/=.3 C 6µ ¡ 6µ 2 C 2µ 3 ¡ 3e¡2µ ¡ 12µe¡µ / (22)

This guidance law is based on a linear quadratic formulationassum-
ing unbounded control. As such, it can enforce zero miss distance
(SSKP D 1) and minimize the integral of the control effort. Because
at interception(µ D 0) the guidancegain becomes in� nite, this guid-
ance law saturatesin any practicalimplementation.In this paper, this
guidance law is applied, as are all of the other guidance laws, with
bounds on the control.

Stochastic Analysis
TBM

In the stochastic(realistic) versionof theproblem,which includes
process and measurement noises, the blind TBM cannot implement
a deterministicoptimal strategy due to the lack of information.The
TBM designer’s obvious objective is to avoid interception, in spite
of the lack of information, allowing the TBM to hit its designated
surface target. Performing no maneuver, or even performing a con-
stant maneuver, generates predictable trajectories, leading to a suc-
cessful intercept. Thus, the TBM must maneuver randomly. Based
on the perfect information game solution, outlined in the preceding
section, and on the results presented in Refs. 25–27, the optimal
target maneuver sequence has a bang–bang structure (19). Imple-
mentation of such a random strategy over the short duration of the
endgame consistsof a maximal maneuver in one direction,followed
by a randomly timed switch to a maximal maneuver in the opposite
direction.

Interceptor
Implementation of the perfect information guidance laws pre-

sented requires knowledge of the original state variables of the sce-
nario. Unfortunately, they have to be estimated based on the avail-
able noisy measurements.As already noted, it has been of common
practice to use the estimated states in the deterministic (perfect in-
formation) guidance law. Following this practice, the guidance laws
(19) and (21) are implemented in this work using the estimated
ZEM.

Fast MMAE
In this section an ef� cient MMAE is presented. A static MMAE

is used instead of more advanced MMAE structures, for example,
interacting MMAE, because it best � ts the underlying assumptions
of the TBM interceptionscenario investigated here. For the sake of
comparison, a KF incorporating a SF (a common estimation solu-
tion) is also included.

Ordinary MMAE
Based on Magill’s pioneeringwork,16 the static MMAE can han-

dle a case where the system model is known to be adequately rep-
resentable by one hypothesis, denoted by ®i , out of a � nite set of
hypotheses f®i gL

i D 1. The MMAE comprises a set of elemental esti-
mators, each corresponding to a possible hypothesis. In the investi-
gated scenario, the hypothesesare on the TBM maneuver command

sequence. In theory, in� nite hypothesesare needed for the represen-
tation of a bang–bang maneuver command with a randomly timed
switch in the endgame scenario. For practical reasons, the duration
of the endgame t f is divided into L time steps of duration 1tsw,
resulting in L hypotheses, where the ®i hypothesis corresponds to
a switch in the maneuver command at t i

sw D i1tsw, with i ranging
from 1 to L.

Let the KF based on the ®i hypothesis be denoted KF.®i /. All
of the estimators in the MMAE bank process the same measure-
ments. The output of the i th � lter is the estimated vector OXk=k;®i .
The innovations process realization computed by the i th � lter is

Qzk=®i D zk ¡ Ozk=®i (23)

where k is the discretizedtime. When the innovationsrealizationof
each estimator is used, the a posterioriprobabilityfor thecorrectness
of the hypothesis of each estimator can be recursively computed as

p.®i j Zk / D
exp

¡
¡ 1

2 QzT
k=®i

Ä¡1
k=®i

Qzk=®i

¢

cjÄk=®i j
1
2

p.®i j Zk ¡ 1/ (24)

where Äk=®i is the innovationscovariancematrix and c is a normal-
ization coef� cient, which is computed to satisfy

LX

i D 1

p.®i j Zk/ D 1 (25)

The total scheme state estimate can now be computed using one
of the following approaches: 1) MMSE, probability weighted av-
erage of the estimated vectors from all elemental � lters, based on
their a posteriori probabilities, or 2) MAP, the state estimate of the
total scheme is taken from the � lter associated with the maximum
a posteriori probability.

The MMAE algorithm is shown in Fig. 2.

Ef� cient Algorithm
In principle, the implementation of an MMAE requires the use

of as many KFs as the number of hypotheses. In the investigated
scenario,where in theory in� nite models are needed, increasing the
number of models in the bank improves the homing performance
(up to a certain limit), as will be shown in the sequel. Because the
computational effort increases linearly with the number of KFs,
the number of models in the bank is usually constrained by the
available computational power. However, as will be shown next,
this constraint can be signi� cantly relaxed in the special case under
consideration.

The idea underlying the fast MMAE is based on that, in the case
under investigation,the hypothesesare on the TBM maneuver com-
mand sequence. Thus, the various � lters that compose the MMAE
bank differ just in their hypothesis on the target maneuver switch
time. The important observations, leading to a substantial compu-
tational load saving, are the following. First, at any time t during
the scenario, all � lters KF(®i / in the MMAE bank whose under-
lying hypotheses correspond to target maneuver switch times that
belong to the future, that is, t i

sw > t , can be represented by a single
� lter. Second, at time t the MMAE scheme need not contain a � lter
KF(® j ) whose underlying hypothesis is that the target has already
performeda maneuverswitch, that is, t j

sw ¿ t , if that � lter has not al-
ready been foundby the MMAE scheme to be correct. Incorporating
these observations within the MMAE structure results in a highly
ef� cient algorithm that comprises the following three subprocesses.

Elemental Filter Aggregation
All � lters in the bank that do not differ in their underlying as-

sumptions at the current time are aggregated, that is, those � lters
that are based on models assuming a maneuver switch that has not
yet occurred are all representedby a single � lter because their state
estimates, estimation error covariances, and a posteriori probabil-
ities are identical. Thus, the number of � lters represented by the
aggregated � lter at time t

Lag.t/
1D L ¡ j .t/ (26)
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Fig. 2 Ordinary MMAE algorithm.

decreases monotonically with j .t/, where

j .t/ D int
¡
t¡

¯
1tsw

¢
(27)

is the number of models in which switches have occurred before
time t .

When the current time t reaches the switching time of the i th
model, a new � lter, corresponding to this model, is initialized.The
new � lter is assigned the same state estimate and estimation error
covariancematrixas the representative(aggregated) estimatorat that
time. Assuming that the aggregated� lter represents L ag.t/ identical
models, the new � lter is assigned the a posteriori probability

p.®i j Zk/ D [1=L ag.t/]p.®ag j Zk / (28)

where p.®ag j Zk/ is the a posteriori probability of the aggregated
� lter before the initialization of the new � lter. Obviously, after ini-
tializing the new � lter, its probability is subtracted from that of the
aggregated � lter.

MMAE Filter Pruning
Whenevera maneuvercommand switch occurs, it is assumed that

the MMAE bank identi� es it within a time interval Tid, computed
as

Tid D s f ¢ T min
id (29)

where s f is an algorithm tuning parameter (safety factor), chosen
by the estimator designer, and T min

id is the minimum time required
for maneuver command detection. It can be shown that a target
maneuvercommand can be detected,with false alarm probabilityof
about0.05,when the absolutevalueof the measureddeviationof the
targetpositionfrom its nominal trajectoryexceedstwice the valueof
the standard deviation of the respective measurement noise.29 The
position deviation of a missile, with � rst-order dynamics, due to a
lateral acceleration step command of magnitude ac

E at t D 0 can be
approximated by

1y.t/ »D ac
E t3

¯
6¿E (30)

Hence, the minimal detection time can be approximated by

T min
id

»D arg
t

f1y.t/ D 2¾y D 2r¾angg »D 3

q
12¿E r¾ang

¯
ac

E (31)

where ¾y is the standarddeviationof the measurementnoiseof y(t ).

If a certain maneuver switch is not identi� ed by its corresponding
� lter (that is, the a posteriori probability of the corresponding� lter
stays below a predetermined threshold, chosen as 0.8 in this study)
within the time interval Tid after the expected maneuver switch,
then it is reasonable to assume that it will also not be identi� ed in
the future as being the correct model. Therefore, this � lter can be
discarded.

Discardinganold � lter takesplacesimultaneouslywith the initial-
ization of a new � lter (described earlier). For a maneuver detection
time Tid, the number of models about which a decision cannot yet
be made at any time is int(Tid=1tsw). Including the aggregated� lter,
the total number of � lters in the ef� cient MMAE bank is

L s D int.Tid=1tsw/ C 1 (32)

The total numberof models that have to be used, for a given scenario
and a required resolution, is

L D t f =1tsw (33)

Therefore, the size of the � lter bank is reduced by

Ls =L »D Tid=t f (34)

Thus, thedetectiontime intervaland the scenariodurationdetermine
a physical bound on the achievable � lter bank size reduction.

Uni� ed Covariance Computation
In the case under study, it is possible to further reduce the algo-

rithm’s computational load by computing the covariance and gain
matrices only once for all L s KFs in the MMAE bank, as was done
in Ref. 18, which dealt with a differentscenario.This is based on the
observation that in the investigated scenario the hypotheses relate
only to the evader’s control; hence, the transition matrix of the ho-
mogeneous system is identical for all of the estimators in the bank,
resulting in identical covariance and gain matrices for all KFs.

The well-known discrete-timeKF equationsmay be found in any
estimation textbook, for example, Ref. 30, and, hence, they are not
repeated here.

The fast MMAE algorithm is shown in Fig. 3.

SF
The SF method allows for the representation of a system driven

by an arbitrary (not necessarily white) stochastic input by an aug-
mented system that is excited by white noise only. This greatly sim-
pli� es the design of the estimator. The augmented system, which
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Fig. 3 Fast MMAE algorithm.

comprises the original system and the SF, is designed such that its
output possesses the same � rst- and second-order statistical mo-
ments as the output of the original system. The equivalent SF for a
randomly timed maneuver13 is an integrator excited by white noise
with power spectral density of 4 ¢ .amax

E /2=t f . This makes it neces-
sary to augment the system by one state variable corresponding to
the evader’s maneuver command.

Computational Load
The computational load associated with the various � ltering al-

gorithms considered in this paper has been estimated in Ref. 31
by counting � oating-point operations (FLOPs), where each basic
algebraic operation was counted as one FLOP (complying with
MATLAB®’s convention). For brevity, only the � nal computational
load formulas, which can be used as design formulas, are given
here:

load D

8
>>>>>>><

>>>>>>>:

t f f
£
L e1.3n3 C 2m3 C 5n2m C 5nm2 ¡ 1:5n2 ¡ 3nm/

C L e2.2m2 C 4mn C 2m C 5/
¤

C .t f =1t/
£
Le1n.3n2

¡ 1:5n C 2s2 C sn ¡ s/ C Le2n.2n C 4/
¤
; MMAE

t f f .3n3 C 2m3 C 5n2m C 5m2n ¡ 1:5n2 C mn/

C .t f =1t/.3n3 C 0:5n2 C 2s2 C ns C 2n ¡ s/; KF/SF
(35)

where

Le1 D
»

1; fast MMAE

L ; MMAE (36)

Le2 D
»

L s; fast MMAE

L ; MMAE (37)

n D dim.X/; m D dim.Z/; s D dim.W/ (38)

where W is the process noise vector.
The reduction in the computational load for the investigatedsce-

nario when using the fast MMAE instead of the conventional one

Fig. 4 Comparison of the computational load for MMAE (ordinary
and fast) and KF/SF.

is presented in Fig. 4, along with a comparison to the KF/SF. Note
that the computational load associated with the proposed fast algo-
rithm is reduced by about an order of magnitude compared with the
ordinary MMAE, becomingcomparable to that of a KF/SF. Viewed
from a differentperspective,it can be stated that for a given, limited,
computationalpower, using the proposedfast MMAE allows for the
incorporation of many more models in the bank, that is, it enables
the representation of the hypothesis space with a much higher res-
olution. This obviously leads to superior homing accuracy, as will
be shown in the sequel.

Simulation Study
When the implementationof variousguidancelawswas simulated

with the two different estimation approaches, sets of 100 Monte
Carlo simulation runs with independent random switching times
and noise samples were used. To allow for a comparison between
the various investigated cases, the same random number generator
seed has been selected.
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The parameters of the discrete simulation (with time step
1t D 0:001 s) are summarized in Table 1, where g stands for gravity
acceleration.They were chosen to satisfy the inequality¹" ¸ 1, for
which, in a perfect information engagement, zero miss distance is
guaranteed when using DGL/1.

Estimation Performance
In the investigatedscenario,a resolutionof 1tsw D 0:1 s was cho-

sen; thus, for a 3.0-s endgameduration,the MMAE bank consistsof
30 models, correspondingto maneuver switches at t D 0:1i s, with i
rangingfrom1 to 30.At maximumrange,Tid (r D 16:5 km)»D 0:68 s;
hence, using Eq. (32), 7 elemental � lters are required to run concur-
rently in the ef� cient MMAE bank instead of 30 in the full-order
MMAE bank.

In Figs. 5 and 6 the same example (tsw D 1:52 s, which occurs at
r »D 8 km) is used for estimation performance comparison between

Table 1 Simulation parameters

Evader Pursuer Scenario

amax
E D 21:5 g amax

P D 48:4 g ¹ D 2:25
¿E D 0:2 s ¿P D 0:2 s " D 1
VE D 2:7 km/s VP D 2:8 km/s X0 D 16:5 km
ÁE .0/ D 0 deg ÁP .0/ D 0 deg t f D 3 s
¾E D 1 g ¾P D 0:1 g f D 200 Hz
¾ang D 1 mrad ¾ap D 0:1 g s f D 1:2

Fig. 5 Typical performance of the fast MMAE: a posteriori probabil-
ities of elemental � lters; L = 30, Ls = 7, and tsw = 1.52 s.

Fig. 6 Typical closed-loop estimation performance of MMAE (with
MMSE and MAP fusion methods) and KF/SF; guidance law is DGL/0,
MMAE parameters are L = 30 and Ls = 7 with target maneuver switch
time tsw = 1.52 s.

the ef� cient MMAE using the MMSE or MAP methods and the
KF/SF. Figure 5 shows the a posteriori probability of each of the
ef� cient MMAE � lters. Note that the aggregated � lter, correspond-
ing to the assumption that no maneuver has yet occurred, has a high
probability of about 0.8 before the actual switch. After the switch
has occurred, it takes about 0.4 s for the MMAE to detect the ex-
istence of the maneuver and identify it (converging to the model
with the closest switch, tsw D 1:5 s), which agrees well with the pre-
computed approximate value of T min

id (r »D 8 km) »D 0:45 s. Notice
that every 0.1 s, when a new � lter is initialized and an old � lter
is discarded, the � lters assigned to the various hypotheses change
their indices in the MMAE bank, for example, at t D 2 s, � lter 6
replaces � lter 5 in the bank and is assigned � lter 5’s previous prob-
ability of 0.95. In Fig. 6 the estimation of the evader’s acceleration
is shown for the various estimation methods. It is clear that, only
after the MMAE identi� es the correct model, the estimated states of
the MMAE converge to the true states. It can also be seen that using
the MAP criterioncreates (beforeconvergenceto the correct model)
jumps in the estimatedstates,due to switchesbetween the models. It
is apparent that the estimation errors of the MMAE/MMSE scheme
are the smallest of the three methods.

Homing Performance
Figures 7, 8, and 9 present the homing performance of the

various guidance laws when combined with the estimation ap-
proaches MMAE/MMSE, MMAE/MAP, and KF/SF, respectively.

Fig. 7 Homing performance of DGL/0, DGL/1, and OGL with fast
MMAE/MMSE, L = 30.

Fig. 8 Homing performance of DGL/0, DGL/1, and OGL with fast
MMAE/MAP, L = 30.
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Fig. 9 Homing performance of DGL/0, DGL/1, and OGL using a
KF/SF.

Fig. 10 Homing performance of DGL/0 with fast MMAE (with MMSE
and MAP fusion methods) and KF/SF.

It is apparent that, although the use of OGL yields, in many cases,
negligiblemiss distances (between 15–65%, dependingon the kind
of estimator used), in other cases it yields very large values (max-
imum miss distances between 35 and 140 m). On the other hand,
the use of DGL/1 yields small miss distances with a higher proba-
bility, and the nonnegligible miss distances are much smaller than
those obtainedusing OGL. A remarkableconclusion,becoming ev-
ident on observingFigs. 7–9, is that in this example DGL/0 is better
than DGL/1, the optimal guidance law for the perfect information
game. This conclusion is based on noting that the maximum miss
distancesassociatedwith DGL/0, as well as the probabilityfor large
miss distances, for example, larger than 10 m, associated with this
law, are the smallest. Viewed from a different perspective, it can
be stated that to achieve a given SSKP, for example, SSKP D 0:95,
the use of DGL/0 requires a warhead with the smallest lethal radius
for all of the three estimationmethods investigated.This superiority
of DGL/0 over DGL/1 can be viewed as a numerical validation of
the assertion that, in realistic, noise-corruptedBMD scenarios,CEP
does not hold.

Based on these results, DGL/0 was chosen for the homing per-
formance comparison presented in Figs. 10 and 11. In Fig. 10
the MMAE/MMSE, MMAE/MAP, and KF/SF estimators are com-
pared. It is apparent that an MMAE/MMSE with a resolution of
30 provides the best homing performance. Figure 11 presents the
homing performancevs the resolutionof the MMAE/MMSE bank:
As can be seen, increasing the resolution from 15 to 30 leads to
a substantial performance improvement in more than 70% of the

Fig. 11 Homingperformance of DGL/0 vs hypothesis space resolution;
fast MMAE/MMSE used.

Fig. 12 Effect of model reduction on DGL/0 homing performance.

cases. Increasing the resolutionfurther, from 30 to 60, has a smaller
effect on a smaller portion (about 50%) of the cases.

In passing, note that reducing the number of concurrently ac-
tive � lters in the ef� cient algorithm does not incur substantial
performance degradation. This is demonstrated in Fig. 12, which
shows the performance of DGL/0 combined with both ordinary
and fast MMAE/MMSE. Similar results have been obtained for
the other guidance laws (DGL/1 and OGL) and estimation method
(MMAE/MAP) investigated in this work.

Conclusions
The work describeddemonstrates that, in a future BMD scenario,

real-time application of a fast, computationally ef� cient MMAE
scheme is feasible. It has been shown that, by using the proposed
novel ef� cient MMAE algorithm, a dramatic reduction in the com-
putational load can be achieved, facilitating a substantial increase
in the resolution of the discretized hypothesis space. This, in turn,
leads to improved estimation performance, and, as a consequence,
to better guidance accuracy.

The reduction in the computational load is achieved mainly by
noting that, when the MMAE hypotheses relate only to the timing
of the evader’s control, only a few elemental � lters are needed for
proper representation of a high-resolution hypothesis space. This
observationleads to the introductionof the aggregationand pruning
operators, which enable the use of a greatly reduced MMAE bank,
comparedwith the large, ordinaryMMAE of the same accuracythat
would have been used had these operations not been employed. In
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addition, in the scenarios of interest, the transition matrix (of the
homogeneous system) is identical for all estimators in the bank.
Therefore, the covarianceand gain matrices need be computedonly
once per � ltering cycle.

Applying this ef� cient method, which employs a computational
load reductionscheme different from other methods outlined in ear-
lier papers, circumvents the main drawback of the MMAE, which
made its use impracticalfor real-timeimplementationsin most inter-
ception scenarios: For a given computationalcapacity, this ef� cient
MMAE allows for the inclusionof manymore targetevasionmodels
in the estimator bank, leading to a signi� cant improvement in hom-
ing performance.Note that the ef� cientMMAE can be implemented
not only for bang–bang maneuvers but for all target maneuver
command models with different initialization timing.

Based on an extensive Monte Carlo simulation study, an evalu-
ation of the homing performance of an interceptor guidance sys-
tem processingnoisy measurementsusing the fast MMAE has been
carried out. Two MMAE weighting methods, namely, MAP and
MMSE, havebeen comparedalongwith a conventionalKF incorpo-
rating an SF. Coupled with guidance laws derivedusing differential
game and optimal control theories, the MMSE weighting method
was found to provide the best homing performance if a suf� cient
number of models is used in the MMAE bank.

It was also foundthat, in this scenario,with the assumedrelatively
high noise level and the given SSKP criterion, DGL/0 provides
the best homing performance. The reason is that this guidance law
does not use information on the target acceleration;hence, it is less
susceptible to the acceleration estimation error. Nonetheless, it is
still of prime importance to model correctly this acceleration for
the sake of the estimator performance. Inaccurate modeling will
result in degraded estimation and, consequently, in poor homing
performance.

The superiority of DGL/0 demonstrates that, when certainty
equivalence cannot be assumed, one should not automatically use
the optimal deterministic guidance law (in this case DGL/1, which
guarantees zero miss distance in the perfect information case). The
construction of a new guidance law that fully takes into account
the estimation characteristics is, currently, an open problem. Such
a guidance law should be of prime interest to the guided missile
community.

The results of this study indicate that using the proposedef� cient
MMAE with an appropriate guidance law will facilitate successful
interception of highly maneuvering TBMs expected in the future.
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