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Third-Order, Minimal-Parameter Solution
of the Orthogonal Matrix Differential Equation

Margalit Ronen¤ and Yaakov Oshman†

Technion—Israel Institute of Technology, Haifa 32000, Israel

The problem of minimal-parameter solution of the orthogonal matrix differential equation is addressed. This
well-knownequationarisesnaturallyin three-dimensionalattitudedeterminationproblems(inaircraft andsatellite
navigation systems), as well as in the square-root solution of the matrix Riccati differential equation. A direct
solution of this equation involves n2 integrations for the elements of the nth-order solution matrix. However, since
an orthogonal matrix is determined by only n(n ¡ 1)/2 independent (albeit nonunique) parameters, a much more
ef� cient solution may, conceivably, be obtained by a parametrization of the problem in terms of such parameters.
A new, third-order minimal parametrization, which is motivated by the Peano–Baker solution of linear matrix
differential equations, is introduced. The parameters and their corresponding differential equation are very simple
and natural. The proposed method is used to provide a new derivation of a closed-form third-order quaternion
propagationalgorithm,which is commonlyused in strapdown inertial navigationsystems utilizing rate-integrating
gyros. A numerical example is used to demonstrate the viability and high ef� ciency of the new algorithm.

Introduction

T HIS paper is concerned with the minimal-parameter solution
of the well-known orthogonal matrix differential equation

PV (t ) D W (t )V (t ), V (t0) D V0 (1)

where V (t ) 2 Rn ,n is orthogonal, W (t ) is skew-symmetric for all
t ¸ t0, and the raised dot indicates the temporal derivative. This
equation arises naturally in three-dimensional attitude determina-
tion problems, as well as in the square-root solution of the matrix
differential Riccati equation.1 The properties of V and W enable a
minimal-parameter solution, which should, conceivably, be much
more ef� cient than a direct solution, based on n2 straightforward
integrationsas implied by Eq. (1).

To the best of the authors’ knowledge, the problem of minimal-
parameter solution of Eq. (1) was originally suggested by Oshman
and Bar-Itzhack.1 The foundation of the problem lies in the ob-
servation that, although the number of scalar integrations implied
by Eq. (1) is n2 , the orthogonality of V may be used to introduce
n(n C 1)/ 2 relationsamong its elements. Hence, the n2 elements of
V are functions of only m D n(n ¡ 1)/ 2 independent parameters.
A considerable reduction of the computational burden, involved in
the solution of Eq. (1), can thus be achieved by parametrizing the
matrix V in terms of m such independentparameters, solving a dif-
ferential equation for these parameters only, and then algebraically
transforming the parameters into V .

In their recent investigation of the minimal-parameter problem,
Bar-Itzhack and Markley2,3 proved that if the matrix W appear-
ing in Eq. (1) is skew-symmetric and the initial condition matrix
is orthogonal, then the solution V (t) is also orthogonal for all
t ¸ t0 . They also proved that any time-varying orthogonal ma-
trix V (t ) satis� es a matrix differential equation having the form of
Eq. (1), for some skew-symmetricmatrix W . To � nd an appropriate
parametrization, Bar-Itzhack and Markley used the observation
that, for n D 3, Eq. (1) is identical to the well-known differen-
tial equation of the transformationmatrix in three-dimensionalEu-
clidean space. That matrix is, of course, also orthogonal, W being
a skew-symmetric matrix whose entries are the three components
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of the angular velocity vector at which the body rotates with re-
spect to some reference coordinate system. Hence, the original
n-dimensional minimal-parameter problem may be considered an
extension of the three-dimensional attitude determination problem
and,conversely,the latter is a specialcaseof theproblemat hand.Us-
ing theseobservations,Bar-Itzhackand Markley explored the possi-
bilityof � ndinga parametrizationmethodfor then-dimensionalcase
of Eq. (1), based on extension of various known parametrizations
of the three-dimensional transformation matrix. Three such meth-
ods were investigated in Ref. 3, based on Euler angles, quaternions,
and Rodrigues parameters (also known as the Gibbs vector4 ). Only
the last method was found effective for extension, and a minimal-
parameter solution of Eq. (1), based on extended Rodrigues param-
eters (ERPs), was presented and demonstrated using a numerical
example.

The approach taken in Ref. 3 utilizes physical insight and rea-
soning to mathematically extend an existing three-dimensional
method—namely the Rodrigues parameters—into Rn . A differ-
ent approach is taken in this paper, which is motivated by the
Peano–Baker method for the solution of linear matrix differential
equations.5 This results in a new minimal set of parameters, which
are used to provide a third-order solution to Eq. (1). It is shown that
these parameters, and their correspondingdifferential equation, are
very simple and natural to the problem. A numerical example is
used to demonstrate the viability of the method and to compare the
accuracy and ef� ciency of the solution based on these parameters
with those of the exact solution and the ERP solution.

The remainder of this paper is organized as follows. A precise
de� nition of the problem, reiterated from Ref. 3, is presented in
the next section. For completeness, the ERP method is then brie� y
reviewed. In the following section we present the new third-order
parametrization. As an illustration of its utility, the new method
is used to present a new derivation of a widely-used third-order
quaternionpropagationalgorithm.To demonstratethe accuracyand
ef� ciency of the method, we use the same numerical example of
Ref. 3 in a simulation study. Conclusions are drawn in the � nal
section.

Problem Statement
The minimal-parameterproblem, de� ned in Ref. 3, is the follow-

ing. Given the matrix differential equation

PV (t ) D W (t)V (t ), V (t0) D V0 (2)

where V 2 Rn,n , W (t) is a skew-symmetric matrix for all t ¸ t0,
and V0 is orthogonal, the problem is to � nd 1) a set of m D n(n ¡
1)/ 2 parameters that unambiguouslyde� ne V (t ), 2) the differential
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equation satis� ed by these parameters, 3) the transformation that
maps these parameters into V (t ), and 4) an ef� cientmethod to solve
the differential equation and to compute V (t ).

To facilitate a subsequent comparison and for the sake of com-
pleteness,theminimal-parametersolutiondevelopedbyBar-Itzhack
and Markley in Ref. 3 is reviewed next.

Extended Rodrigues Parameters
In this section we brie� y review the ERP minimal-parameter

method recently developed by Bar-Itzhack and Markley. For de-
tailed presentation and proof, the reader is referred to Ref. 3.

Rodrigues Parameters in Three-Dimensional Space
As previouslynoted, the three-parameterrepresentationof three-

dimensional rotations that was used in Ref. 3 is due to Rodrigues.6

Denotingtheseparametersby g1 , g2 , and g3, thedifferentialequation
satis� ed by them is4

d

dt

g1

g2

g3

D ¡
1

2

1 C g2
1 g3 C g1g2 ¡g2 C g1g3

¡g3 C g1g2 1 C g2
2 g1 C g2g3

g2 C g1g3 ¡g1 C g2g3 1 C g2
3

x x

x y

x z

(3)

where x x , x y , and x z are the three componentsof the angular veloc-
ity vector of the � nal coordinate system with respect to the initial
one, when this vector is resolved in the � nal system. Using the
Rodrigues parameters, the transformation matrix D, which trans-
forms vectors from the initial coordinate system into the rotated
one, can be computed as follows:

D D
1

d

1 C g2
1 ¡ g2

2 ¡ g2
3 2(g1g2 C g3) 2(g1g3 ¡ g2)

2(g1g2 ¡ g3) 1 ¡ g2
1 C g2

2 ¡ g2
3 2(g2g3 C g1)

2(g1g3 C g2) 2(g2g3 ¡ g1) 1 ¡ g2
1 ¡ g2

2 C g2
3

(4)

where

d D 1 C g2
1 C g2

2 C g2
3 (5)

Letting G be the matrix de� ned as

G
4D

0 ¡g3 g2

g3 0 ¡g1

¡g2 g1 0

(6)

and de� ning W as

W
4D

0 x 3 ¡ x 2

¡ x 3 0 x 1

x 2 ¡ x 1 0

(7)

yields the following matrix form of Eqs. (3–5):

PG D ¡ 1
2
( I C G)W (I ¡ G) (8)

and

D D ( I ¡ G)( I C G)¡1 (9)

where I is the identity matrix.

Extended Rodrigues Parameters
As previously stated, Bar-Itzhack and Markley extended the

three-dimensional Rodrigues parametrization method into the n-
dimensional case. The ERP-based solution of Eq. (2) in the n-
dimensional case is

V (t ) D [I ¡ G(t )][I C G(t )]¡1V0 (10)

where G(t ) is a skew-symmetric matrix satisfying the following
differential equation:

PG(t) D ¡ 1
2
[I C G(t )]W (t )[I C G(t )]T , G(t0) D 0 (11)

Referring to the problem statement, the n(n ¡ 1)/ 2 off-diagonal
terms of the matrix G(t ) are the answer to part 1. The differential
equation (11) is the answer to part 2, and Eq. (10), expressing V in
terms of the entries of G, is the answer to part 3. To obtain a usable
numerical solution that avoids the potential singularityof I CG and
the need to invert I C G [see Eq. (10)], an approximatemethod was
suggested in Ref. 3. The method is based on the observation that
V (t) can also be expressed using the series

V (t ) D I C 2
1

n D 1

(¡1)n Gn (t) V0 (12)

In actual implementation,the degreeof approximationis determined
by the number of terms used. Thus, a third-order approximation is
given by

V (t) D (( I ¡ 2G(t )fI ¡ G(t )[I ¡ G(t )]g))V0 (13)

This algorithm provides the answer to part 4 of the minimal-
parameter problem.

New Minimal-Parameter Method
This section presents a new minimal set of parameters for the

third-order solution of Eq. (1). The parameters are motivated by
the Peano–Baker method of solution of linear matrix differential
equations,5 which we use to prove the following theorem.

Theorem 1. Let V (t) 2 Rn ,n be any time-varying orthogonal
matrix that satis� es the matrix differential equation

PV (t ) D W (t )V (t ) (14a)

with

V (t0) D V0 (14b)

where V0 is orthogonal. Then there exists a unique matrix-valued
function B(t, t0) such that the solutionof Eq. (14a) that satis� es the
initial condition (14b) can be expressed as

V (t) D [I C A(t , t0) C B(t, t0)]V0 (15)

where

A(t, t0)
4D

t

t0

W ( t ) dt (16)

In addition, B(t, t0) satis� es the algebraic equation

I ¡ A(t, t0) C BT(t, t0) [I C A(t, t0) C B(t, t0)] D I (17)

Proof. Dating from 1888, the Peano–Baker method5 gives the
solution of Eqs. (14) subject to the initial condition (14b) as

V (t ) D U (t , t0)V0 (18)

where the transition matrix U (t, t0) is de� ned by the in� nite series

U (t , t0)
4D I C A(t, t0) C

t

t0

W ( t )
t

t0

W ( t 1) dt 1 d t C ¢ ¢ ¢ (19)

and A(t , t0) is de� ned as in Eq. (16). A straightforwarddifferentia-
tion of Eq. (19) proves that V (t ) from Eq. (18) is indeed a solution
of Eqs. (14). Now U (t, t0) can be rewritten as

U (t, t0) D I C A(t , t0) C B(t, t0) (20)

which is an implied de� nition of the unique matrix-valued func-
tion B(t, t0). Note that, according to Eq. (19), both B(t, t0) and its
derivative PB(t , t0) vanish at t D t0 . Since Eqs. (14) are self-adjoint,
U (t, t0) is an orthogonal matrix.5 Hence

U T (t , t0) U (t, t0) D I (21)
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Rewriting Eq. (21) explicitly in terms of B(t, t0) and noting that, by
its de� nition (16), A(t , t0) is a skew-symmetric matrix completes
the proof.

Discussion. Notice that, if Eq. (17) could be explicitly solved for
the matrix B(t , t0) in terms of the entries of A(t, t0), then this would
have implied that the solutionof Eqs. (14) can be de� ned in terms of
just the n(n ¡ 1)/ 2 off-diagonal terms of A(t , t0). Stated in another
way, this would have meant that the off-diagonal terms of A(t, t0)
constitute a minimal set of parameters that completely determine
the solution V (t).

In fact, in the specialcase where A(t, t0) and W (t ) commute, that
is indeed true. As is well known, the exact solution to Eqs. (14) is
then

V (t ) D U (t , t0)V0 D exp[A(t , t0)] V0 (22)

where

exp[A(t , t0)] D
1

i D 0

1

i !
Ai (t, t0) (23)

implyingthat the solutionV (t ) is a functionof theoff-diagonalterms
of A(t, t0) and, equivalently, that the relation between B(t , t0) and
A(t, t0) is

B(t , t0) D
1

i D 2

1

i !
Ai (t, t0) (24)

It is easy to verify that, in this special case, the solution V (t ) from
Eq. (22) is an orthogonalmatrix.This follows from the fact that both
V0 and exp[A(t, t0)] are orthogonal matrices fthe orthogonality of
exp[A(t , t0)] follows from the skew symmetry of A(t, t0)g.

Unfortunately, in the general case, it can be shown that Eq. (17)
does not uniquely de� ne B(t , t0) in terms of A(t, t0). However,
limiting the scope of the search, we are able to present a minimal
parametrizationwhich yields a simple, closed-form third-order so-
lution of Eqs. (14). This parametrization is the subject of the next
theorem.

Third-Order Parametrization
Theorem 2. Let QV (t, t0) be the matrix-valued function de� ned as

QV (t, t0)
4D I C A(t, t0) C

1

2!
A2(t , t0) C

1

3!
A3(t, t0)

C
t ¡ t0

3!
A(t, t0)W0 ¡ [A(t, t0)W0]

T V0 (25)

where A(t , t0) is de� ned in Eq. (16) and W0 D W (t0). Then QV (t, t0)
is a third-order approximation of the solution V (t).

Proof. QV (t, t0) constitutes a third-order approximation of the so-
lution if all of its derivatives up to order three are equal to the
corresponding derivatives of the solution at t0. The proof consists
of a straightforward,direct comparison of the � rst three derivatives
of V (t) and QV (t , t0) at t0 . The derivatives of QV (t , t0) are computed
using the differential equation

PA(t, t0) D W (t), A(t0 , t0) D 0 (26)

which follows from Eq. (16).
As follows from Theorem 2, a minimal set of parameters, which

de� nes a third-order solution of Eqs. (14), are the n(n ¡ 1)/ 2
off-diagonalterms of the skew-symmetricmatrix A(t, t0). This pro-
vides an answer (albeit approximate) to part 1 of the problem state-
ment. Equation (25) provides an answer to part 2 of the problem
statement, which requires a mapping of the parameters into the or-
thogonal matrix V . The parameters are natural, because they are
directly related to W (t ). Moreover, for the three-dimensional case
they have a simple geometric interpretation: they are the angles re-
sulting from a temporal integration of the components of the angu-
lar velocityvector x

4D [ x x x y x z]T of the � nal coordinate system
with respect to the initial coordinate system, when that vector is

resolved in the � nal system. Indeed, this interpretation will serve,
in the sequel, to provide a new derivationof a third-order algorithm
for the integration of the quaternion equation, using the output of
an orthogonal triad of rate-integratinggyros.

Equation (26) provides a formal answer to part 2 of the problem
statement, which requires a differential equation whose solution
de� nes the parameters. Notice that, since in our case W (t ) is a
skew-symmetric matrix, only n(n ¡ 1)/ 2 integrations are needed
to solve Eq. (26). Moreover, the simplicity of Eq. (26) stands out
in comparison with Eq. (11), which de� nes the kinematics of the
extended Rodrigues parameters.

Remark 1. In the special case where A(t , t0) and W0 commute,
Eq. (25) is a third-order approximation of Eq. (22), as could be
expected; for in that case Eq. (22) is the exact solution of Eqs. (14).
To verify this, notice that since both A(t, t0) and W0 are skew-
symmetric, we have

A(t, t0)W0 ¡ [A(t, t0)W0]
T D A(t, t0)W0 ¡ W0 A(t, t0) (27)

Hence, when A(t, t0) and W0 commute, the last term in QV (t, t0)
vanishes, rendering the expression in large parentheses in Eq. (25)
equal to the beginning (� rst four terms) of the series expansion for
exp[A(t , t0)].

Remark 2. Equation (27) may be used to rewrite Eq. (25) as

QV (t, t0) D I C A(t, t0) C
1

2!
A2(t, t0) C

1

3!
A3(t , t0)

C
t ¡ t0

3!
[A(t , t0)W0 ¡ W0 A(t , t0)] V0 (28)

which can be shown to be a third-ordersolution of any linear matrix
differential equation of the form of Eqs. (14), where W (t ) is not
necessarily skew-symmetric.

Remark3. For QV (t , t0) to be a validapproximatesolution,it should
approximateanorthogonalmatrix.This issue isaddressedin thenext
theorem.

Theorem 3. QV (t, t0) is a third-order approximation of an orthog-
onal matrix, in the sense that

QV (t , t0) QV T (t, t0) D I C O (t ¡ t0)4 (29)

whereO(x) denotesa functionof x thathas thepropertythatO(x)/ x
is bounded as x ! 0.

Proof. Let K (t , t0) denote the matrix consisting of the last term
of QV (t, t0) in the large parentheses of Eq. (25), i.e.,

K (t, t0) D
t ¡ t0

3!
fA(t, t0)W0 ¡ [A(t, t0)W0]

T g (30)

It is obviousthat K (t, t0) is a skew-symmetricmatrix.Since A(t , t0),
W0 , and K (t, t0) are skew-symmetric, then

QV (t, t0) QV T (t, t0)

D I C A(t , t0) C
1

2!
A2(t, t0) C

1

3!
A3(t , t0) C K (t, t0)

£ I ¡ A(t, t0) C
1

2!
A2(t, t0) ¡

1

3!
A3(t, t0) ¡ K (t, t0)

(31)

Using Eq. (26) yields

A(t, t0) D (t ¡ t0)W0 C O (t ¡ t0)2 (32)

hence

K (t, t0) » O (t ¡ t0)
3 (33)

Using Eqs. (32) and (33) in Eq. (31) completes the proof.
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Table 1 Computationalburden

Method nm na ns EOC

New (third-order) 3n3 C 5n2 3n3 ¡ n2 8n2 5n3 C 7n2

ERP (third-order) 8n3 C 6.5n2 8n3 ¡ 8n2 20n2 13.3n3 C 7.8n2

Direct solution 4n3 C 11n2 4n3 C 4n2 13n2 6.7n3 C 18n2

(fourth-order)

Numerical Algorithm
To obtain a numerical algorithm as an answer to part 4 of the

problem statement, we have to � nd the entries of A(t, t0) using a
numerical solution of Eq. (26).

Equation (26) is a very simple differential equation, whose solu-
tion consists of a direct integration of W (t). A numerical solution
using the Simpson quadrature formula is

A(t, t0) D (h/ 6)fW (t0) C 4W [t0 C (h/ 2)]

C W (t0 C h)g C O(h5) (34)

where h D t ¡ t0. Notice that, in this case, the Simpson formula is
equivalent to the fourth-order Runge–Kutta solution of Eq. (26).

The numericalsolutionof Eq. (14) is obtainedby usingEq. (34) in
Eq. (25). For given initial conditions V (t0) D V0 and W (t0) D W0

and a given integration step h, this yields V (t0 C h). In the next
integration step this procedure is repeated to compute V (t0 C 2h)
from V (t0 C h), and so on.

Computational Load
To assess the computational ef� ciency of the new method, its

expected computational load is compared in Table 1 with the third-
order solution based on the ERP method, Eqs. (11) and (13). The
ERP method requires about 1.5 matrix multiplications to com-
pute PG, taking into account the skew symmetry of G. Fourth-order
Runge–Kutta integrationofEq. (11) is assumed.The new third-order
method, based on Eq. (26), does not require matrix multiplications
for the computation of PA. Moreover, simple Simpson quadrature
is used (which, as previously mentioned, is equivalent to fourth-
order Runge–Kutta integration). Note, however, that several matrix
multiplications are needed to calculate QV .

Since this method is most commonly used in practice,we present
in the last row of Table 1 the workload associated with a direct,
fourth-order Runge–Kutta integration of Eq. (1). This method re-
quires one matrix multiplication to calculate the derivative PV . Four
calculations of the derivatives PV are required at each time step. It
is noted, however, that this method (being fourth-order) is more
accurate than the other two methods appearing in Table 1; hence,
its computational burden should not be directly compared with the
computational requirements of the other methods.

Table 1 shows the numbers of operations for each method, where
nm , na , and ns denote the numbers of multiplications,additions,and
substitutions,respectively.Note thateachn£n matrixmultiplication
requires n3 scalar multiplications and n2(n ¡ 1) additions; each
integrated variable in a fourth-order Runge–Kutta routine involves
11 multiplications and 8 additions.

The relative ef� ciency of the three methods is measured by the
expression in the last column of Table 1, the equivalent operation
count (EOC), de� ned as the weighted sum

EOC
4D nm C 2

3 na C 1
3 ns (35)

The weights in Eq. (35) are based on the number of clock pulses
that these operations require in a typical 486-class computer [the
EOC does not take into account the additional operations required
to generate the matrix W (t ), which are identical in all methods].

Table 1 shows that the new method is more ef� cient than the third-
order version of the minimal-parameter ERP method. For a four-
dimensionalsystem, the new method saves about 55% of the work-
load required by the ERP method. For a large n the corresponding
expected saving is about 62%. It can also be observed that the new
method requires a considerably smaller computational burden than
the direct solution (with savings of 40 and 25% for n D 4 and large
n, respectively).

Remark 4. As previouslystated, the directsolutionis fourthorder;
hence it should generally require fewer time steps than either third-
order method to achieve a comparable accuracy. In practice, there-
fore, we can expect lower savings from either third-order method
than for the direct, fourth-ordersolution.

Remark 5. Although a third-order version of the ERP method
was used here for the sake of comparison, note that, unlike the new
method presented in this paper, the ERP method is not limited to
third-order accuracy [see Eq. (12)].

Application: Quaternion Propagation
In this section, we demonstrate the utility of the new method by

using it to present a new derivation of a well-known third-order
integration algorithm for the quaternion differential equation.

The quaternion is a four-parameter rotation speci� er.4 Popular in
navigation and attitude determination applications, its usage elimi-
nates the singularity problem associated with all three-parameter
attitude representations (e.g., Euler angles, Rodrigues parameters),
although at the price of adding one super� uous parameter. Letting

q
4D [q0 q1 q2 q3]

T (36)

denote the quaternion vector, the differential equation satis� ed by
the quaternion elements is

Pq(t ) D \ (t )q(t ), q(t0) D q0 (37)

where the matrix \ (t ) is composed of the angular velocity compo-
nents,

\ (t) D 1
2
W [x (t)] (38)

and W [¢ ] is a 4 £ 4 matrix-valued function on R3 such that

W [x (t )]
4D

0 ¡ x x (t) ¡ x y(t ) ¡ x z(t)

x x (t ) 0 x z(t ) ¡ x y(t )

x y(t ) ¡ x z(t ) 0 x x (t )

x z(t ) x y(t ) ¡ x x (t ) 0

(39)

Notice that Eq. (37) is a coupled, albeit linear, differential equation.
The problem addressed in this section is that of propagating the

attitude quaternion in an approximate closed form from time t to
time t C T , by processinggyro data. Speci� cally, we refer herein to
a third-order approximation that is based on the assumption that a
rate-integratinggyro (RIG) package is used.

Remark 6. The history of the particular third-order scheme re-
ferred to herein is interesting in itself. The scheme was apparently
� rst presented in the open literature (without proof) by Grubin.7

In his paper, which compared three attitude determination schemes
based on Euler angles, quaternions,and the directioncosine matrix,
Grubin used an empirical modi� cation of a quaternion integration
scheme that was originally presented by Edwards8 (who did not
provide any proof or derivation either). Grubin noticed that, when
using the scheme suggested in Ref. 8, he obtained better results if
the sign of one of the terms in that schemewas reversed,althoughhe
did not provideany mathematicalexplanationof his � ndings.Roth,9

who alsocompareddifferentapproximateintegrationschemes in the
context of strapdownattitudedetermination,stated that Grubin’s al-
gorithm (including the sign reversal,which happened to be correct),
was rigorously proven by Ben-Dor in an unpublished correspon-
dence. Unfortunately, Roth, too, omitted the complete derivation
in his thesis. Finally, Markley and Spence10 showed how to derive
the algorithm by using Taylor series expansion of the quaternion
q(t C T ) about time t and repeatedly using the quaternion kine-
matic equation (37).

Remark 7. Althoughthenew minimal-parametermethodhas been
developedfor the matrix equation(1), it is also applicablein the case
of thevectorequation(37), since any columnvi (t), i 2 f1, . . . , ng of
the orthogonal matrix V (t ) in Eq. (1) satis� es the same differential
equation, namely

Pvi (t ) D W (t )vi (t ) (40)

Remark 8. In compliance with standard practice in inertial navi-
gation systems, it is assumed in the sequel that the measuringdevice
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is a RIG package,which periodicallyprovides temporal integralsof
the angularvelocity componentsalong each of the vehicle axes over
the sampling interval T . Let the vector

D h (t )
4D [D h x (t ) D h y (t ) D h z(t)]

T (41)

denote the vector of RIG outputs at time t ; i.e., it is assumed that

D h (t C T ) D
t C T

t

x ( t ) d t (42)

In the sequel, it will be assumed that q(t ) has already been de-
termined. The purpose of the integrationalgorithm to be developed
is to compute q(t C T ) from the measured gyro outputs D h (t) and
D h (t C T ), using the new third-order parametrization.

Adapted to the present problem, Eq. (28) yields

q(t C T )

D I C A(t C T , t ) C
1

2!
A2(t C T , t ) C

1

3!
A3(t C T , t )

C
T

3!
[A(t C T , t ) \ (t) ¡ \ (t) A(t C T , t )] q(t ) (43)

where the matrix A(t C T , t ) is

A(t C T , t ) D
t C T

t

\ ( t ) d t (44)

Using Eqs. (38) and (42), we have

A(t C T , t ) D 1
2
W [D h (t C T )] (45a)

from which it is easy to verify that

A2(t C T , t ) D ¡ 1
4 kD h (t C T )k2 I (45b)

A3(t C T , t ) D ¡ 1
4 kD h (t C T )k2 A(t C T , t ) (45c)

where k¢ k denotes the Euclidean norm, and also

A(t C T , t ) \ (t ) ¡ [A(t C T , t ) \ (t )]T

D 1
4 f W [D h (t C T )] W [x (t)] ¡ W [x (t )] W [D h (t C T )]g

D 1
2
W [ x (t ) £ D h (t C T )] (45d)

where £ denotes the usual vector product.
In principle, we can now use Eqs. (45) in Eq. (43) to obtain the

requiredthird-orderquaternionpropagationalgorithm.Notice,how-
ever, that in Eq. (45d) the angularvelocitycomponentsare explicitly
used.Since, as previouslynoted, it is assumed that a RIG packageis
utilized, we proceed further by approximating the angular velocity
vector using the gyro outputs, as follows:

x (t) ¼ (1/ 2T )[D h (t ) C D h (t C T )] (46)

Using Eq. (46) in Eq. (45d) yields

A(t C T , t ) \ (t ) ¡ [A(t C T , t) \ (t )]T

D (1/ 4T ) W [D h (t ) £ D h (t C T )] (47)

V D

–7.276567E–01 1.528573E–01 –2.438722E–01 –6.226368E–01

1.021751E–02 5.837368E–01 7.919407E–01 –1.788189E–01

1.393533E–01 –7.973786E–01 5.348135E–01 –2.423716E–01

6.715603E–01 –3.717101E–03 –1.653151E–01 –7.222207E–01

(53)

Substituting Eqs. (45a–45c) and (47) into Eq. (43) � nally results
in

q(t C T ) D 1 ¡ 1
8 kD h (t C T )k2 I

C 1
2

1 ¡ 1
24

kD h (t C T )k2 W [D h (t C T )]

C 1
24

W [D h (t ) £ D h (t C T )] q(t ) (48)

which is the sought-for third-order propagation algorithm.
As noted in Refs. 9 and 10, the � rst two terms on the right-hand

side of Eq. (48) represent the change in the quaternion during the
time interval T , assuming a constant angular velocity during that
interval. These terms follow from a Taylor series expansion of the
closed-form, constant-velocitysolution of Eq. (37):

q(t C T ) D expf 1
2
W [D h (t C T )]gq(t ) (49)

The last term on the right-hand side of Eq. (48) may be viewed as
a correction term, which represents the change in the quaternion
due to the change in the direction of the axis of rotation during the
sampling interval.

In passing, we note that the vector product in Eq. (48) can be
computed using the cross-productmatrix [D h (t )£], de� ned as

[D h (t)£]
4D

0 ¡D h z(t ) D h y(t )

D h z(t ) 0 ¡D h x (t)

¡D h y(t ) D h x (t) 0

(50)

Using this de� nition, the vector product on the right-hand side of
Eq. (48) can be computed as

D h (t ) £ D h (t C T ) D [D h (t)£]D h (t C T ) (51)

Numerical Example
In this section we use a numerical example to demonstrate the

accuracy and ef� ciency of the new method. The new method is
comparedwith a third-orderversionof the ERP method.A reference
solution, obtained using a fourth-orderdirect integration, is used to
measure the accuracy of both third-order solutions.

Of the various numerical examples we have used to test the per-
formance of the new method, we have chosen to present here the
results of a fourth-order system, which is identical to the system
used in Ref. 3. The differential equation is

W (t ) D

0 ¡0.1 ¡1.0 ¡7.5

0.1 0 3.0 0

1.0 ¡3.0 0 ¡0.9

7.5 0 0.9 0

sin(6.28t) (52a)

with the initial condition

V0 D I (52b)

The initial time is t0 D 0, the � nal time is t f D 0.5 s, and the integra-
tion time step is h D 0.001 s. All computations were programmed
in MicrosoftFortran5.1 (a 16-bit implementationof Fortran77) and
implemented using single precision on an Intel 486-powered per-
sonal computer. The results are presented for t D t f , which yields
the maximal error for allmethods(the solutionis periodicwith cycle
time T D 1 s, and the maximal error occurs at half the period3).

Computed by the new method, the following solutionmatrix was
obtained at t f D 0.5 s:
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Table 2 Error metrics

Method e m

New 2.248E–06 3.66E–06
ERP 2.345E–06 3.70E–06
Direct solution —— 1.71E–06

Table 3 Computation time

Actual time Predicted load
Method Time, s % of direct EOC % of direct

New 0.66 57 432 60
ERP 1.86 162 968 135
Direct solution 1.15 100 717 100

This solution was compared with two other solutions.
Using a third-orderversionof theERP method,Eqs. (11) and (12),

the following solution matrix was obtained:

VERP D

–7.276566E–01 1.528573E–01 –2.438722E–01 –6.226367E–01

1.021752E–02 5.837367E–01 7.919407E–01 –1.788188E–01

1.393532E–01 –7.973785E–01 5.348135E–01 –2.423715E–01

6.715605E–01 –3.717093E–03 –1.653151E–01 –7.222205E–01

(54)

The reference solution, computed via a direct fourth-order Runge–Kutta solution of the matrix differential equation (1), was

VREF D

–7.276558E–01 1.528571E–01 –2.438721E–01 –6.226372E–01

1.021753E–02 5.837359E–01 7.919418E–01 –1.788188E–01

1.393533E–01 –7.973777E–01 5.348138E–01 –2.423718E–01

6.715592E–01 –3.717092E–03 –1.653150E–01 –7.222208E–01

(55)

The error associated with each method, relative to the direct inte-
gration method, was measured using the metric

e (V )
4D kV ¡ VREFk (56)

where k¢ k denotes the Frobenius norm.
The deviation from orthogonality of the solution in the various

methods was measured using the metric

m (V )
4D kV V T ¡ I k (57)

The resulting metric values are shown in Table 2. As can be ob-
served, the errors of the two minimal-parameter methods relative
to the direct solution are small and similar to each other. The mea-
suresof deviationfromorthogonalityfor the two minimal-parameter
methods are also small and similar (though more than twice as large
as the correspondingmeasure for the direct method).

Although the numerical results are similar for the three methods,
the new method is signi� cantly more ef� cient. The actual compu-
tation times are shown in Table 3. The computational time saving
of the new method is very close to that expected from the EOC
measure (see previous section): it requires less than 60% of the di-
rect method. The ERP method is signi� cantly slower (notice that
the EOC measure provided only an approximate prediction of its
ef� ciency).

Conclusions
A new third-orderminimal-parametermethod has beenpresented

for the solution of the orthogonal matrix differential equation.
This equation plays an important role in various navigation- and
estimation-related problems, e.g., transformation between rotated
coordinate systems, or the solution of the matrix Riccati equation.
The new method is motivated by the Peano–Baker method of so-
lution of linear matrix differential equations. The parameters, and
their corresponding differential equation, are very simple and nat-
ural to the problem. Moreover, for the three-dimensional case of

transformationmatrices, the parametershave a simple geometric in-
terpretation, being the angles resulting from a temporal integration
of the three angular velocity components of the rotating coordinate
system with respect to the reference coordinate system.

The new method was used to obtain a new, simple derivation
of a known third-order algorithm for the numerical propagation of
the attitude quaternion, which is widely used in inertial navigation
systems utilizing rate-integratinggyros.

The accuracy and high numerical ef� ciency of the new method
were demonstrated via a numerical example taken from the liter-
ature. Both algorithm operation count and the numerical example
have demonstrated that the use of the new method can result in
substantialcomputation time savings in cases where third-order ac-
curacy is suf� cient.
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