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Weiss–Weinstein Lower Bounds for Markovian
Systems. Part 1: Theory
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Abstract—Being essentially free from regularity conditions, the
Weiss–Weinstein estimation error lower bound can be applied to
a larger class of systems than the well-known Cramér–Rao lower
bound. Thus, this bound is of special interest in applications in-
volving hybrid systems, i.e., systems with both continuously and
discretely distributed parameters, which can represent, in prac-
tice, fault-prone systems. However, the requirement to know explic-
itly the joint distribution of the estimated parameters with all the
measurements makes the application of the Weiss–Weinstein lower
bound to Markovian dynamic systems cumbersome. A sequential
algorithm for the computation of the Cramér–Rao lower bound for
such systems has been recently reported in the literature. Along
with the marginal state distribution, the algorithm makes use of
the transitional distribution of the Markovian state process and
the distribution of the measurements at each time step conditioned
on the appropriate states, both easily obtainable from the system
equations. A similar technique is employed herein to develop se-
quential Weiss–Weinstein lower bounds for a class of Markovian
dynamic systems. In particular, it is shown that in systems satis-
fying the Cramér–Rao lower bound regularity conditions, the se-
quential Weiss–Weinstein lower bound derived herein reduces, for
a judicious choice of its parameters, to the sequential Cramér–Rao
lower bound.

Index Terms—Dynamic Markovian systems, estimation error
lower bound.

I. INTRODUCTION

THE problem of a priori assessment of estimation errors
arises each time a suitable system architecture is required

in order to achieve some prescribed estimation performance. A
natural way of performing such an assessment is to investigate
the behavior of the estimation error covariance matrix produced
by the appropriate minimum mean-square error (MMSE) filter.
Unfortunately, a closed-form optimal filter is unavailable for the
majority of practical systems, calling for the use of alternative
estimation error measures, e.g., lower bounds on the estimation
error covariance matrix.

The most popular lower bound is the well-known Cramér–
Rao lower bound (CRLB). This bound is presented in [1, p. 84]
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in the context of Bayesian estimation of static random parame-
ters. In that formulation, also known as the Van Trees version of
the CRLB, the underlying static random system is assumed to
satisfy the so-called CRLB regularity conditions [1, p. 72], that
is, absolute integrability of the first two derivatives of all related
probability density functions (pdf’s). Later, [2], [3] provided a
CRLB derivation under less restrictive requirements, but even
these weaker conditions state, among others, that all associated
pdf’s must be continuously differentiable [3].

The first derivation of a sequential CRLB version appli-
cable to discrete-time dynamic system filtering, the problem
addressed in this work, was presented in [4] and then extended
in [5]–[7]. Recently, the most general form of sequential CRLB
for discrete-time nonlinear systems was presented in [8]. To-
gether with the original static form of the CRLB, these results
served as a basis for a large number of applications [9]–[13].

Unfortunately, the requirement to satisfy the CRLB regu-
larity conditions, even in their weakest form, rules out the use
of the CRLB in many practical applications. A suitable example
are hybrid systems, i.e., systems with both continuously and
discretely distributed parameters [14], which may be used to
model, e.g., maneuvering targets [15] or a fault-prone behavior
[16, p. 177]. Two bounds for such systems, which have been
recently presented by the authors, are [17] and [18].

There is still another, more powerful bound, known in the
literature as the Weiss–Weinstein lower bound (WWLB) [3].
Both the CRLB and the Bobrovsky–Zakai lower bound are spe-
cial cases of the WWLB [19]. Being essentially free from regu-
larity conditions, the WWLB can be applied to a very large class
of estimation problems, including estimation of discretely dis-
tributed parameters. However, in order to use the WWLB, one
has to know the joint distribution of all the estimated parame-
ters with all the measurements. Unfortunately, the computation
of this distribution is very cumbersome in dynamic systems de-
scribed by Markov processes, where only the transitional dis-
tribution of the states and the distribution of the measurements
at each time step conditioned on the appropriate states are di-
rectly available. Therefore, direct application of the WWLB to
dynamic systems is impractical.

Based on the authors’ conference paper [20], the present work
derives a sequential form of the WWLB via an extension of the
technique proposed in [8]. It is shown that, under certain condi-
tions, the sequential form exists. Directly using the transitional
state distribution, the measurement conditional distribution, and
the marginal state distribution, renders the resulting class of
WWLB’s practical for Markovian dynamic systems. It is also
shown that the sequential CRLB [8] is a special case of the new
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sequential lower bound. Moreover, the companion paper [21]
presents an application of the sequential version of the WWLB
to several classes of fault-prone systems and relates it to other
existing sequential lower bounds.

The remainder of this paper is organized as follows. The
standard WWLB is presented in Section II. In Section III, the
Markovian dynamic system of interest is defined, and some
basic assumptions are made and discussed. The paper’s main
result, namely the sequential version of the WWLB, is derived
in Section IV. The relation of this bound to the sequential
CRLB of [8] is presented in Section V. Concluding remarks
are offered in the last section. For improved readability, several
auxiliary results are presented in Appendices A and B. For
presentation clarity, the notational convention of [1] is adopted,
according to which lower-case and upper-case letters are used
to denote random variables and their realizations, respectively.

II. WEISS–WEINSTEIN LOWER BOUND

Let be a random vector of parameters and let
be a corresponding measurement vector. Then, according to [3],
for any matrix

(1)

with columns , , any estimator , and
any set of numbers such that , the
Weiss–Weinstein lower bound on the estimation error covari-
ance matrix of is

(2)

where the element of is given as shown by equation (3)
at the bottom of the page, and the likelihood ratio
is defined as

(4)

The integration in the mathematical expectations is carried out
over the support of the joint pdf , denoted by .
Notice that the matrix is symmetric.

Remark 2.1: The matrix and the set of numbers
are arbitrary. Thus, (2) presents a family

of estimation error lower bounds. Moreover, these quantities
can be used as tuning parameters to tighten the bound. As
reported in [3], the choice , often
maximizes the WWLB.

III. DEFINITIONS AND BASIC ASSUMPTIONS

A. Markovian Dynamic System

Consider a dynamic system, characterized by a Markovian
state process that is measured through a measurement
process , where and . The time
histories of the states and the measurements are denoted by

(5a)

(5b)

and their realizations are denoted by

(6a)

(6b)

The joint distribution of and is given by

(7)

where

(8a)

(8b)

Finally, for some time instant and some vector ,
define

such that

(9)

and define as shown by equation (10) at the
bottom of the next page. Then, the sequential bound to be devel-
oped in the sequel applies to systems satisfying the following
fundamental assumption.

Assumption 3.1: For every time instant there exists
satisfying

(11)

(3)
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such that

(12)

Remark 3.1: In systems satisfying Assumption 3.1, is
an even function of , that is, .

Remark 3.2: The quantity is related to the sen-
sitivity of the state transitional distribution
to changes in the value of the conditioning state vector . As-
sumption 3.1 states that this sensitivity is uniform over all values
of .

Assumption 3.1 might seem overly restrictive. However, as
illustrated in the sequel, it is valid for a wide range of dynamic
systems.

1) Class 3.1 (Systems With Linear Dynamics): Let the state
process satisfy

(13)

where the process noise is a white sequence with pdf
, and be a known deterministic input sequence.

In this case

(14)

so that equation (15) at the bottom of the page holds, thus satis-
fying Assumption 3.1. Notice that only the dynamics equation
is required to be linear. The measurement equation may be non-
linear, and the system noises are not restricted to be Gaussian.

2) Class 3.2 (Bernoulli Markov Chain): If is a
Bernoulli random sequence then

(16)

In this case, the admissible values of are . Moreover,
and , i.e., there exists only one value of

corresponding to each value of . Therefore, Assumption 3.1 is
trivially satisfied with

(17)

3) Class 3.3 (Systems Satisfying the CRLB Regularity Con-
ditions With ): Letting yields

(18)

where the residual term, , is , i.e., it goes to
zero faster than , and

(19)

is the gradient operator. If the CRLB regularity conditions are
satisfied, the order of integration and differentiation may be in-
terchanged, yielding

(20)

The integral in (20) is . Thus, for sufficiently small values
of , does not depend on .

B. Lower Bound Restrictions and Notation

The derivation procedure of the sequential version of the
WWLB is based on the idea presented in [8]. The lower bound
for the state vector is derived from the standard WWLB
applied to the entire history . For this lower bound, the
following notation is used. Let the matrices and
be the matrices defined in (1) and (3), respectively, when cal-
culated for the histories and . To permit sequential
calculation, the matrix is chosen to be block-diagonal

. . . (21)

(10)

(15)
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where the diagonal block

(22)

corresponds to the state vector . Let (without the su-
perindex) denote the th column of the matrix , in
accordance with (1). Notice that, because of the block diagonal
structure of

(23a)

(23b)

In addition, let , . The following parti-
tion of the matrix is introduced

...
. . .

...

(24)

where . Notice that due to the symmetry
of

(25)

Finally, let

(26a)

and

(26b)

IV. MAIN RESULT

In this section, the sequential version of the WWLB is
derived. For presentation clarity, only the main highlights of
the derivation are presented herein. A complete account of the
derivation details can be found in Appendix A.

The derivation procedure hinges on the following fact. For a
general Markovian dynamic system, the matrices and

have the following form (see Corollary A.1):

(27a)

(27b)

where

(28a)

... (28b)

... (28c)

... (28d)

and, in general, . However, when Assumption 3.1 holds,
Lemma A.6 states that

(29)

so that

(30)

Now, let denote the inverse of the block of .
The main result is now stated in the following Theorem.

Theorem 4.1: Consider a Markovian dynamic system. Let
, be a set of matrices, composed

from such columns for which Assumption 3.1 holds. Then, the
corresponding WWLB is given by

(31)

where the matrix is computed sequentially as

(32a)

(32b)

and the entries of the matrices are computed
using (33a)–(33c), as shown at the bottom of the next page.

Proof: The result (31) follows from the definition of
and the particular selection of the matrix in (21). In
addition, the fact

(34)

yields (32b).
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The recursion (32a) is proved as follows. Let denote the
block of . It follows from (27), (28), and (30) that

(35)

(36)

(37)

Using (37), (36) can be rewritten as

(38)

and (32a) is obtained upon substituting (38) into (35). Finally,
(33) follows from Lemma A.3.

Remark 4.1: Notice that the selection of the matrices
may be not unique. Therefore, the result given by Theorem 4.1
constitutes, in essence, a wide class of WWLBs. Moreover, the
matrices can be regarded as tuning parameters, which
can be used to tighten the bound.

V. RELATION TO THE CRAMÉR–RAO LOWER BOUND

Constituting a special case of the WWLB, the CRLB can
be recovered from it via a limiting procedure provided that the
well-known regularity conditions are satisfied [19]. It will be
shown now that the sequential CRLB, derived in [8], is a spe-
cial case of the sequential version of the WWLB derived in

(33a)

(33b)

(33c)
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Section IV. To facilitate the development, the sequential CRLB
is presented next.

Theorem 5.1 (Tichavský, Muravchik, and Nehorai, 1998):
Suppose that the joint distribution given in (7) satisfies the
CRLB regularity conditions [1, p. 72]. Define

(39a)

(39b)

(39c)

where the operator is defined, using the gradient operator,
as

(40)

Then, the sequential CRLB for this system is given by [8]

(41)

where the Fisher information sub-matrix is computed via
the following recursion

(42a)

(42b)

Theorem 5.2: If the joint distribution given in (7) satisfies the
CRLB regularity conditions [1, p. 72], then the sequential CRLB
given in Theorem 5.1 follows from the sequential version of the
WWLB presented in Theorem 4.1, for the following selection
of the matrix :

(43)

Proof: For conciseness, only the underlying idea of the
proof is presented herein. The proof details are deferred to
Appendix B.

For the particular selection of the matrix as given in
(43), the system under consideration belongs to Class 3.3 pre-
sented in Section III. Therefore, Assumption 3.1 is satisfied and
Theorem 4.1 holds. Using a Taylor expansion in (33) yields the
following expressions for the matrices:

(44a)

(44b)

(44c)

where the matrices are defined in (39). Substituting (44)
into (32a) yields the following recursion for :

(45)

Let denote the inverse of the WWLB in the case where
. According to (31), for the special selection of the matrix

in (43), this inverse is given by

(46)

Together with (45), (46) yields the recursion (42a). In addition,
for the particular selection of the matrix

(47)

which yields (42b).

VI. CONCLUSION

A sequential computational algorithm is presented for the
Weiss–Weinstein estimation error lower bound. Making use of
the state transitional distribution, the conditional distribution of
the measurements given the appropriate states and the marginal
state distribution, the new sequential form renders the appli-
cation of the Weiss–Weinstein bound feasible in a wide class
of dynamical systems, including hybrid systems. For a certain
choice of its parameters, this lower bound is shown to reduce to
the recently presented sequential Cramér–Rao lower bound, if
the corresponding system satisfies the Cramér–Rao lower bound
regularity conditions. Several applications of the new sequen-
tial form of the Weiss–Weinstein bound to filtering problems
in fault-prone hybrid systems are presented by the authors in a
companion paper.

APPENDIX A
LOWER BOUND DERIVATION DETAILS

This Appendix provides the derivation details of the sequen-
tial version of the WWLB for a general Markovian system.
The details are summarized in the following Lemmas and
Corollaries.

Lemma A.1: Consider the state and measurement time his-
tories as defined in (5), with joint distribution as given by (7).
Then, using the notation (26), the likelihood ratio (4) can be cal-
culated as in (A.1a) and (A.1b), as shown at the bottom of the
next page, where the vectors are defined in (23).
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Proof: To prove (A.1a), notice equation (A.2), shown at
the bottom of the page.

Equation (A.1b) is proved similarly.
Lemma A.2: Equation (A.3a) and (A.3b), shown at the

bottom of the page, hold.
Proof: The result (A.3a) is proven as shown in equation

(A.4) at the bottom of the page. The result (A.3b) is proven
similarly.

Lemma A.3: Let denote the element
in the block of the matrix , and let . Then,
equations (A.5a)–(A.5c) at the bottom of the next page hold.

Proof: It follows from the partitions (21) and (24) and the
structural relations (23) that

(A.6)

The Lemma follows from using (A.1) in (3).
Lemma A.4:

(A.7)

Proof: Let . due to the Markov property, given
, the product terms inside the expectation in the numerator

(A.1a)

(A.1b)

(A.2)

(A.3a)

(A.3b)

(A.4)
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of are independent. Therefore, using the
smoothing property of the conditional expectation, the numer-
ator can be expressed as shown by (A.8) at the bottom of the
next page.

According to Lemma A.2, the first conditional expectation is
zero, which proves the Lemma. The proof for is
similar.

Lemma A.5: Let . Then

(A.9)

where is the Weiss–Weinstein lower bound -matrix com-
puted for the state history until time (see Theorem 4.1). In
addition,

(A.10)

Proof: According to (A.5c), the expressions in
for do not include either

or . Therefore, they are identical in both and ,
thus establishing (A.9). In addition, according to Lemma A.4

(A.11)

which yields (A.10).
Corollary A.1: In a general Markovian system the matrices

and can be written as

(A.12a)

(A.12b)

(A.5a)

(A.5b)

(A.5c)
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where

(A.13a)

... (A.13b)

... (A.13c)

... (A.13d)

and, in general, .
Whereas the results obtained so far do not require Assump-

tion 3.1, the next Lemma addresses systems satisfying this
Assumption.

Lemma A.6: Under Assumption 3.1

(A.14)

Proof: According to (A.5c) the numerator of
is given by

(A.15)

For notational simplicity, define

(A.16)

Using this notation, the numerator of be-
comes (A.17), as shown at the bottom of the next page. Now,
using the smoothing property of the conditional expectation
yields (A.18), as shown at the bottom of the next page. Using
Assumption 3.1 yields (A.19), shown at the bottom of the next
page. Also

(A.20)

yielding

(A.21)

Hence,

(A.22)

(A.8)
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Equations (A.19) and (A.22) yield (A.23), as shown at the bottom
of the page. Equation (A.24) at the bottom of the next page is

derived similarly. Substituting (A.23) and (A.24) into (A.17)
yields (A.25), as shown at the bottom of the next page, where the

(A.17)

(A.18)

(A.19)

(A.23)
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last expectation is the numerator of . Similarly,
according to (A.5c), the denominator of
becomes

(A.26)

Combining (A.25) and(A.26) yields (A.27), as shown at the
bottom of the next page.

APPENDIX B
DETAILS OF PROOF OF THEOREM 5.2

This Appendix provides the derivation details of (44).

(A.24)

(A.25)
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Using a Taylor expansion in (33) yields (B.1), as shown at the
bottom of the page, where is the th component of the state
vector . Similarly

(B.2)

Notice that, by the smoothing property of the conditional
expectation

(B.3)

The change of order between integration and differentiation in
(B.3) is justified by noting that the system satisfies the CRLB
regularity conditions. Similarly

(B.4)

Also, using again the smoothing property of the conditional ex-
pectation but conditioning upon all components of but
yields

(B.5)

Now, taking mathematical expectation of both sides of (B.1) and
(B.2) and substituting (B.3), (B.4), and (B.5) yields

(B.6a)

(B.6b)

which means that the denominators in the expressions
given in (33) are all . To compute

the numerators in the expressions for notice
that, according to (B.1) and (B.2)

(B.7)

(A.27)

(B.1)
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and

(B.8)

Substituting (B.7) into (33a) yields

(B.9)

But

(B.10)

yielding (B.11) at the bottom of the page. Similarly, substituting
(B.7) and (B.8) into (33b) gives

(B.12)

Using the smoothing property of the conditional expectation it
can be shown that

(B.13a)

(B.13b)

(B.13c)

(B.13d)

(B.13e)

Hence

(B.11)
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(B.14)

In addition, substituting (B.8) into (33c) yields

(B.15)

Again, the smoothing property of the conditional expectation
gives

(B.16a)

(B.16b)

so that using (B.10) yields

(B.17)

Finally, according to (B.11)

(B.18)

so that

(B.19)

Using the definitions (39) one can observe that

(B.20a)

(B.20b)

(B.20c)

which are (44).
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