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Space systems are characterized by a low-intensity process
noise resulting from uncertain forces and moments. In many
cases, their scalar measurement channels can be assumed to
be independent, with one-dimensional internal dynamics. The
nominal operation of these systems can be severely damaged
by faults in the sensors. A natural method that can be used to
yield fault tolerant estimates of such systems is the interacting
multiple model (IMM) filtering algorithm, which is known to
provide very accurate results. However, having been derived
for a general class of systems with switching parameters, the
IMM filter does not utilize the independence of the measurement
errors in different channels, nor does it exploit the fact that
the process noise is of low intensity. Thus, the implementation
of the IMM in this case is computationally expensive. A new
estimation technique is proposed herein, that explicitly utilizes
the aforementioned properties. In the resulting estimation scheme
separate measurement channels are handled separately, thus
reducing the computational complexity. It is shown that, whereas
the IMM complexity is exponential in the number of fault-prone
measurements, the complexity of the proposed technique is
polynomial. A simulation study involving spacecraft attitude
estimation is carried out. This study shows that the proposed
technique closely approximates the full-blown IMM algorithm,

while requiring only a modest fraction of the computational cost.
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I.  INTRODUCTION

Space missions involving precise pointing and/or
spacecraft rendezvous require highly accurate data,
which, in turn, has to be based on very accurate
estimates of the spacecraft attitude and/or position.
Operation in space is usually characterized by
low-intensity uncertain forces and moments applied
to the spacecraft. These inputs can be modeled as
process noises.

Estimation accuracy can be severely damaged
by measurement faults, which can take the form of
measurement biases or noises (white or colored).
Thus, GPS jamming and spoofing takes, in general,
the form of colored noise and appears suddenly
whenever it is activated [1]. Magnetometer faults,
which are caused by magnetic fields generated by
spacecraft electronics and electromagnetic torquing
coils, usually take the form of biases (see [2, p. 251])
and appear whenever the corresponding current starts.
Rate gyro faults, caused by input accelerations if the
gyro gimbals are not perfectly balanced, are usually
also modeled as biases (see [2, p. 198]) and appear
whenever the spacecraft accelerates. So-called soft
faults, in which case the faulty measurement errors
are of the same order of magnitude as the nominal
measurement noises, present a special and difficult
problem. When measurements faults are caused by
internal problems in the corresponding data channels,
as in the aforementioned examples, the faults in
separate channels can be assumed to be statistically
independent. Moreover, measurement faults do not
contaminate the main system dynamics, i.e., the
spacecraft motion.

A popular approach to model such fault-prone
behavior is by means of hybrid systems or systems
with switching parameters [3]. One of the switching
parameter values corresponds in these applications
to the nominal system operation, whereas the others
represent various fault situations [1, 4]. In systems
with several independent fault-prone sensors and
fault-free main dynamics, such as spacecraft, this
general model can be simplified: the faults in different
measurement channels can be modeled as separate
Markovian Bernoulli random processes, where “1”
designates a fault situation and “0” designates a
nominal (fault-free) situation in the particular channel.
Moreover, the dynamics of faulty measurements
errors, like measurement biases (e.g., gyro drifts)
and measurement noises (e.g., GPS jamming) can be
usually represented by simple scalar linear systems,
depending, in general, on the particular fault status.

It is well known that the optimal filtering
algorithm for hybrid systems, that provides the
estimates of the state vector and the switching
parameters, requires infinite computation
resources [5]. Therefore, a variety of suboptimal
techniques was proposed [3, 6—10]. These methods
are known in the literature as multiple model methods.
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The most popular one is the interacting multiple
model (IMM) algorithm [8]. The IMM runs in
parallel a bank of Kalman filters (KFs), each of
which corresponds to a certain system mode. At the
heart of the IMM algorithm is a mixing procedure,
performed in order to take into account the effect
of mode switching on the state estimates. Originally
conceived for tracking problems, the IMM algorithm
was then used in the area of fault detection [4]. The
accuracy of the IMM algorithm is well known and
has been reported in many applications. However,
straightforwardly implemented, this algorithm

does not utilize the special features of the problem
mentioned above, namely, the low intensity of

the process noise, the statistical independence of
separate measurement channels, and the a priori
independence of the faults and the main system
dynamics. As a result, the IMM algorithm is
computationally expensive. For example, in a system
with 5 independent measurement faults, there are

23 = 32 possible modes, and, therefore, 32 parallel
filters are required. In particular, the computational
burden associated with the mixing step is especially
high. A popular way to overcome the problem is to
assume a small number of simultaneous faults [4].

Several methods try, in some sense, to exploit the
measurement channel independence. In the federated
filtering architecture [11] a separate KF runs for
each measurement channel, producing the so-called
local estimate. In this architecture, fault detection is
performed via examining each of the local estimates,
whereas the global state estimate, which is based on
all of the measurements, is obtained by merging the
local estimates and taking into account the detected
faults. The disadvantages of this method are that 1) it
does not take into account the Markovian property of
the faults, and 2) it is not applicable to systems that
are unobservable through each of the separate scalar
measurement channels. The complementary filtering
architecture [12], in which each of the local KFs takes
into account all channels except one, is heavily based
on the assumption of a single fault at a time.

An intuitive attempt to simplify the estimation
scheme using the aforementioned properties has been
recently presented in [13]. The proposed method
requires to run in parallel a single state filter and
a bank of separate fault estimators, one for each
measurement channel. However, this method is
restricted to the case of faulty measurement biases.
Moreover, these biases are not estimated. Instead, the
contribution of each channel to the state estimate is
reduced according to the estimated probability of the
corresponding fault.

A new fault-tolerant estimation scheme is proposed
here. The approach is based on the fact that in a
system with independent measurement channels
and low process noise, the faulty measurement
errors, conditioned on the main state variables,
remain independent after measurement update. This

property permits handling the measurement errors
separately, thus reducing the computational burden.
The corresponding fault tolerant filter is derived and
compared with the ordinary IMM algorithm both in
terms of computational complexity and estimation
accuracy. It turns out that the proposed filter requires
significantly less computational resources than the
ordinary IMM. Specifically, it is shown that the
complexity of the proposed technique is polynomial
in the number of fault-prone measurements, whereas
the IMM complexity is exponential. Furthermore, a
spacecraft attitude estimation example, comparing
the performance of the new algorithm to that of

the ordinary IMM, is used to demonstrate that this
computational saving does not come at the price of
estimation performance.

The remainder of this paper is organized as
follows. The system model is defined in Section II.
For completeness, the ordinary IMM algorithm is
then summarized in Section III. The underlying
principles of the proposed filter, its derivation and
the algorithm summary are presented in Section IV.
The computational complexity analysis, comparing the
new algorithm with the ordinary IMM, is presented
in Section V. A numerical example, involving
spacecraft attitude estimation, that compares the
performance of the proposed technique to that of the
ordinary IMM algorithm, is presented in Section VI.
Concluding remarks are offered in the last section. For
presentation clarity, proofs of several auxiliary results
are deferred to appendices. As a matter of notational
convention, lower case and upper case letters are used
to denote random variables and their realizations,
respectively.

IIl.  PROBLEM FORMULATION

Consider an ordinary linear Gaussian state space
model

x, €R”

ey
where {u,}72, is a sequence of (known) deterministic
inputs, {w, }72, is Gaussian white sequence of the
main process noise with w, ~ N(0,0,), and x, ~
N (Xy,%,) is the random initial state with 3, > 0.
The state transition matrix ®, is assumed to be
nonsingular. The system is observed through m
independent channels, each of which produces scalar
measurements. A fault can occur in each of these
channels. The measurement equations are given by

Xewr = P X + gy + Gpp Wesrs

. T . . . .
W= x4 P +v, = 12,...m

2
where {v{"} | are independent Gaussian white

sequences of measurement noises with v,((i) ~ N0, R,(f))
and R >0, {\"}72, is a Bernoulli Markov chain
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of fault indicators, and b,(f) is a faulty measurement
error. The distribution of the fault indicator sequence
is described by the following initial and transition
probabilities:

Pr{yy =1} =11’ (3a)
Pr{y), =17 =j} =BQU+1]k),  je{0,1}.
(3b)

Each of the scalar processes {b,((i)}‘,i‘;o is described by
the following dynamics equation

bl(clil = al(clil(’Yl(clJ)rl)bl(cl) + gl(clil(’Yi(clJ)rl)‘z’l(;J)rl “)

where {fv,(f)},fil are independent Gaussian white

sequences with vT/,((i) ~ N (O,qg)). It is assumed that

xos AW diz e 10 N0 471320 {97)32, and by are
mutually independent. For notational simplicity the
explicit time dependence is suppressed in the sequel in
all places where it is clear by context.

The main emphasis in this work is on space-related
systems, typically characterized by the low uncertainty
about their main dynamics. Therefore, the following
assumption is made.

Assumption 1 The intensity of the main process
noise {w;};2, in (1) is low, i.e., the matrices Q, take
small values.

The model addressed in this work can describe a
wide class of fault-prone measurement systems. Thus,
a?(y)=1, g?(y)=0 and ¢ (y) = 1 correspond to a
system with permanent measurement biases; a system
with faulty measurement biases that change their value

each time they appear can be modeled using
. . 0 for v=0

adD () = D () = {
W=D o oy

5
1 for v=0 ©®)

() () =
£ {0 for v=1

and a?(y) =0, g?(y) =1 and ¢ as in (5) yield a
system with additive faulty white noises.

The goal of this work is to derive a minimum
mean square error (MMSE) estimation algorithm for
the states and fault indicators of the system.

The following definitions are used in the sequel:

¥ 22T (6a)
AV REPRCAN S (6b)
b 2[b", 6P, .. b (6¢)
W 2D AR, AT (6d)

For completeness, the IMM algorithm is reviewed
next.
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Ill.  REVIEW OF IMM ALGORITHM

Consider a hybrid system

with observations
Vi = H (0%, + v,y €R” ®)

where the processes {w; }¢2, and {v;};2, are mutually
independent Gaussian white noises with w;, ~
N(0,Q,), vy ~N(0,R,(0,)), and {0, }72, is a Markov
chain taking values in {1,2,...,S} according to the
transition probabilities
A . .

Bk |k—1D=Pr{b, =i|6_, =} 9
The posterior state distribution can be exactly
computed via the following five steps:

1) Mode evolution: 0, | Y, = 6, | V.

2) State mixing: x; | 0,,), = x; | 61> Ve

3) State evolution: x; | 6, 1,V = X4y | ki1 Vs

4) Mode measurement update: 6, | V, = 6, |
yk+ 1>

5) State measurement update: x, ., | 0,, .V, =
Xert | Ok Vesr

The IMM algorithm [8] is based on the assumption
that the distribution x, , | 6,,,,)), resulting from
Step 3 is Gaussian. This assumption permits
representing the distributions x, ., | 6,,,,), and

Xpt1 | 04415 Visq by their mean vectors and covariance
matrices. Denote

A .
P =Pr{0, =i |V} (10)
A A .
xklr’[(l) =E[xk | er = lay[] (1 1)
A A .
B () =covlx |6, =i, Y] (12)
Then, a complete cycle of the IMM algorithm
comprises the following steps:
1) Mode evolution, 6, | V, = 0, | V;:
s
D@ =D Bk + 11 0p()  (13)
j=1
fori=1,2,...,S.
2) State mixing, x; | 0, Y, = x; | 04,1, Vi
s
X1, (0) = Z:uijxk\k,k(j) (14a)
j=1
~ S A
Bpesr (0 = Zl“ij(ec\k,k(j) + Xpek () = X1 £ D]
j=1
X [Xgp () = Fes 1 D17
(14b)
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fori=1,2,...,S, where the mixing probabilities f; ;
are given by
_ Btk + 11pg ()

Hij = pk+l|k(i) 4>
3) State evolution, x; | 0,1,V = X1 | Ops1> Vit
5Ck+l\k+l,k(i) = Ak+1(i)3ck\k+1,k(i) (16a)
f’c+l\k+l,k(i) = Ak+1(i)f;c\ku,k(i)Akn(i)T
+ Bk+l(i)Qk+lBk+l(i)T (16b)

fori=1,2,...,S.
4) Mode measurement update, 6, |V, = 6, |

Vis1: .
o JiPis @

Pertps1(D = —5———— (17
ik Zf:lf}pkﬂ\k(])
fori=1,2,...,5, where
1 l_p 1~>
e exp | —=V/STY. 18
= araes, p< isivi) o (8)
and
Vi = Vs _Hk+1(i))%k+1\k+1,k(i) (19a)

S; = Hk+1(i)B(+1\k+1,k(i)Hk+1(i)T + R, (D). (19b)
5) State measurement update, x| 0,,,,) =
Xt | Qs Vw1

35k+1\k+1,k+1(i) = 5‘k+1|k+1,k(i) + K.y, (20a)

Pk+1\k+1,k+1(i) = (I _Kin+1(i))Pk+1\k+1,k(i) (20b)
fori=1,2,...,5, where

K; = 1'3k+1\k+1,k(i)15[k+1(i)TSf1 (21)

and y; as well as S; are defined in (19).
For output purposes one can compute an estimate
X441 Of the state vector x;,; as

N

Xellk+1 = Zxk+l|k+l,k+l(i)pk+1|k+1(i)'
i=1

(22)

REMARK 1 Steps 3 and 5 are, in fact, a bank of S
KFs, each of which corresponds to a certain system
mode.

IV.  FILTERING ALGORITHM

A. Main Idea

The idea underlying the proposed estimation
technique is based on the following property of the
posterior state distribution, which in turn follows from
Assumption 1.

PROPOSITION 1 Under Assumption 1, the posterior
distribution of the states x,, b,((l) and the fault indicators
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v,ii) can be written as

pxksbknvk\yk(xk’Bk’Fk | Tk)

= pmyk(Xk | Tk)H[ph,(j)hf)ﬁb)‘k(B/(j) |F(i),Xk’Tk)

i=1

xPr{y? =T |x, = X, ), = T, }]

(23a)
P byt st i KBy Ty [ T = Dy X [T
(@) (@)
X H[pbi"il\q/](jil,xk,yk(BkH | T X Tp)
i=1
xPr{y), =T |x, =X, Y, =T,}]1  (23b)

pxk+1»hk+mk+1\yk(Xk+l’Bk+1’rk+l | Tk) = pxk+1\yk(Xk+1 | Tk)

m
. ) (@) (@)
x | I[pb’(('ilh']("ll,xk+l,yk(Bk+l BIEIS. T 09
i=1

@O _p@ _ _
xPri{y’ =00 [ = XY =T

(23¢)

where p, ), 1 (X,B,I" | T) stands for p, ., ,(X,B |
L', Y)Pr(y =T | Y = T). In other words, given the
main state vector x;, the estimates of the parameters
characterizing the faulty behavior of different
measurement channels remain independent.

PROOF The proof is deferred to Appendix A.

To facilitate the derivation of a closed-form
estimation algorithm, the following two assumptions,
concerning the state posterior distribution properties,
are now made.

Assumption 2 The distribution x;, 1,61 | Ver1- Vi
is Gaussian.

Assumption 3 The estimates of the main state
variables are independent of the estimates of the fault
indicators: x; | YV, L, | V.

Assumption 2 is nothing but the standard IMM
assumption on the Gaussian distribution of the
conditional state [8]. Assumption 3 is justified based
on the following observation. Notice that the state
variables are clearly divided into two sets. In the first
set, which includes the main state vector x;, the state
dynamics does not depend on the fault behavior (see
(1)). The contributions of these state variables to the
measurements are also independent of the faults, as
can be observed from (2). In the second set, which
includes all measurement error variables b,({i), the fault
indicators do affect both the state dynamics and the
contributions to the measurements. This observation
leads to the conclusion that the main states remain less
coupled with the fault indicators than the measurement
error variables also after measurement updates.
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Intuitively it can be concluded also that the coupling
between the main states and the fault indicators
weakens as the number of measurement channels
increases.

Using these assumptions the following property of
the state posterior distribution can now be stated.

PROPOSITION 2 The following distributions, associated
with the probability density functions (pdfs) appearing
in the representation (23), are Gaussian:

D) X1 bt Y1 Vst

2) X1 | Yoo

3) %ot | Viwrs

4) xk+19b(l)1 | VI?ll’yk’

5) xk+1’bk+1 |”Vk+17yk+1

PROOF The proof is deferred to Appendix B.

An immediate conclusion from Proposition 2 is
that, for [ € {k,k + 1}, the conditional distribution

b,(ffr n 7,?3 1»X¢41>Y, can be represented as

bl(ciﬁ)—l | ’Vlgill’xkﬂ’yl ~ N+ 8"y, _'%k+l|l)’p)’
B EeR? 24)

where the parameters «, (3, and p are independent of
X, and

Sy 2 L | V11 (25)
Together with Propositions 1 and 2, this observation
makes it possible to represent the posterior state
distribution using the following parameters:

1) the mean and the covariance matrix of the
distribution x.,, | Y,

2) the conditional probabilities Pr{y,((’il =1y}

3) the parameters «, 3, and p of each of the
distributions b%) | | v %, 1,V

The idea underlying the proposed filter consists
of the computation of the posterior state distribution
using this set of parameters, rather than the parameters
used in the ordinary IMM filter, which include
2™ mean vectors and covariance matrices of the
augmented state vector conditioned on the system
mode. Obviously, the number of parameters in
the new representation is smaller than in the
ordinary IMM algorithm. Notice also that in the new
representation each fault is handled separately, unlike
in the IMM algorithm, where all fault combinations
must be treated. In Section V it will also be shown
that Assumptions 1, 2, and 3, and the facts that 1) the
dynamics equations of x and b are uncoupled, 2)
the measurement noises are independent, and 3) each
measurement error state affects a separate channel,
render this procedure less computationally demanding
than the ordinary IMM algorithm.

The following notational convention is adopted
in the sequel. In accordance with (25), the mean and
the covariance matrix of the distribution x; | Y, are
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denoted by ik‘ , and i’k‘ ;> Tespectively, that is

X | Y, N/\/'(?Acku»i)ku)- (26)
Next, let

~ (1 A 1

A EPr{y =113} 27)

Finally, the parameters «, 3, and p of the conditional
distribution 5" | 7 = j,x,, ), for j € {0,1} [see (24)]
are denoted by af) (), 8., and pf)) (),
respectively, meaning that

E[bl(f) ‘ 75” = j’xm’yl] ](:\)r m, I(-]) + 6(1\1”11 (j)('xm - '%m\l)
(28a)

var[b” |4 = j,x,, Y1 = p) i) (28b)

A detailed derivation of the proposed algorithm is
presented next.

B. Algorithm Derivation

The recursion cycle for the evolution of the
state posterior distribution, given in the form (23),
comprises two main steps: the time propagation step
and the measurement update step. Since the equations
describing the system time evolution are uncoupled
for different channels, and due to Proposition 1,
it is sufficient to track only the evolution of the
distribution of xk,b(’),yk’) | Y, in order to derive the
time ?ropagatlon procedure. First, the time evolution
of 7 is obtained by a direct application of the
Chapman Kolmogorov equation to m Markov chains
{(7}2,, Also, according to Proposition 2, the
conditional distribution xk,b() | (@) , YV, is Gaussian.
Using the notation given in (26), (27), and (28) its
parameters can be written as

E x] 0 w] [ i ] (29a)
i RIS Bl BNt a
b fix (©)
cov ) e
b,§>
Bk Bc\kﬁl?ﬁc,k,k(g) 1
H T P i h T o\p Al ’
ﬂl(c\}c,k,k (OB pgc\)k,k,k(g)'i'ﬂl(d;c,k,k (§)B<\kﬂz(c|3c,k,k(§)
(29b)
Defining
Hey 2P0 = 90 = €0} (30)
the ordinary IMM mixing procedure yields
E Xy () 53} Z y (l) =n
b(,) ’Vk+l Yk /67 (,) 1> k
k n=0
X
={ @) " } G
k\k+lkk(£)
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where |
a® _ (@)
Xklk+1.k, (&) = Z “gnak\k,k,k(”)' (32)
7=0
Similarly, defining
1
i A i
615\;c+1,k,k(§) = Z 'ufnﬂl(c\gc,k,k(n) (33)

n=0

noting that

1
0 To\p 0
Zﬂfnﬂkl\k,k,k (n)Ec\kﬂkl\k,k,k(n)

n=0

= Z;ufnﬁk‘kkk DB B D = Bt 1 1)
.
60 ik OB ©
2% g B s 1) = B 1 s ) Bog
=
Y CHINCOEICHIRIN(3)
00 ik OB ©

and defining

(34)

1
pl(cl\)kﬂ i (©) = Z lu‘fr][pl(ci\)k,k () + (ak\k (M — k\k+1 k k(f))z
n=0
+ (51((1\1 k(1) — ﬁ/?\?ur 1 ,k,k(g))TE(\k(ﬂlgl\;{ (D)

o — Bir1 s )] (35)
yields

k
cov bl((])
P BByfi1 s © ]

~ [ B
ﬁ/ﬁi+1,k,kT(§)IA)lc\k p/ii\)kﬂ,k,k(f) +ﬁl(cﬁwl,k,kT(é)éc\kﬁl(cﬁc+l,k,k(£) ‘
(36)
Now, the system dynamics equations (1) and (4) yield

”/k+1 & yk:|

Xi+1 @) ;Ck"'l\k
E [[bm 1 Vel = fyk} = [ @ © 37
k1 Q1+ 1Lk
where
Xt = X + Vi (382)
1) = AV ()01 (38D)
and
Bc+1\k

X
Cov b ]((l)

71(21 5,3}4 = [
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0 T \p &T
ﬁk+1|k+1,k,k (E)Pk\kq)

where

By = PBy 07 + GOGT (40a)
s ©) =a2©)BY () (40b)
k+1lk+1,kk klk+1,k.k

P arax© = AP0, 1) + 87OV (©).
(40c¢)

Concluding the time propagation step, notice
that, accordlng to Proposition 2, the distribution
Xy 1,b,((’ ey 7,((’11,)),( is Gaussian. Moreover, according
to Assumptlon 3, given the measurement history ),
X4, and vk ., are independent. Therefore, using the

parameters defined in (26),

NN(;CkH\k’PkH\k) (41

Yo | Vi
and

(@) ()

biit 1% = &% Yk

~ Naf) ©+ 8 '©
ak+l\k+l,k+l,k§ k+1|k+1,k+1,k 6

% (i)
X (Xt — xk+llk)’pkl+1\k+1,k+1,k(§))

where (42)
a;fil\kﬂ,kﬂ,k(g) = a/(jil\kﬂ,k,k(g) (43a)
ﬁ(l) +1]k+1.k+1 k(g) Pk+ll\kq)Pk\kﬁ k+1k+1, kk(é) (43b)

() _ 0 (i) r
/’k+1\k+1,k+1,k(f) = pk+1\k+l,k,k(£) + ﬂk+1\k+l,k,k ©

X (Bie — Pk\kq) B

k+1k

D (i)
k\k)ﬁk+1\k+l,k,k(§)
i i T
pl(cil\k+l o (©) + ﬁl(ﬁ)-l\kﬂ,k,k ©
Y0 (i) T
X Ec\kﬁk+l\k+l,k,k(§) - ﬁk+l\k+l,k+l,k ©

(43¢)

5 (i)
X B<+l\kﬂk+l\k+l,k+l,k(£)'

The measurement update step is based on the
following observations.

PROPOSITION 3 Let x, yU, y®_ ... .y be random

vectors satisfying

Py y('>\x(Y(1)7Y(2)’~'7Y(r) | X) = pr“)\x(Y(i) | X).
i=1
(44)
®B,, 8 ©
kkPk+1[k+1,kk
) 0 T D 50
pk+1|k+1,k,k(§) + ﬁk+1\k+1,k,k (f)Pk\kﬁk+1|k+1,k,k(§)
(39)
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Then

.....

In addition, let x, zV, zP,...,z0, yO y@  y©) be
random vectors satisfying

Pz(1),2(2),%1(,)‘X(Z(l),Z(z), L Z0 | X)

=[] r.0.z? 1% (462)

i=1

Py @,z 20,200 (Y(I), Y(Z), o y® ‘ X,Z(”,ZO), . ’Z(r))

- Hp}’“)\x,z(i)(Y(i) | X,ZD).

i=1

(46b)

Then
Poxy0,. y<r—1J(Z(r) | X,Y(l),---,Y(ril)) = sz\x(z(r) | X)
47)
and

.....

,,,,,

(45)
order:
et [ Ve = X Iy,ﬁ’i)l,yk
7 Xk |yl(ci+]-)l’yl(<i4z-)l’yk -
= X DY
X1 | Viewr
- Yerr | Vo (50)

(@) (@)
bivr | Xiew 1 Vea 10 Vi1

where each of the scalar measurement updates can be
performed as follows.
Suppose that x;,; | y'), ..., y,(:’") Y, has been

+1
already computed. Then
1) Using the distributions x,, ; | y("),..., ¥, ),

+1
and b, 7\ | x4,V construct the joint distribution

PROOF The proof is deferred to Appendix C.
PROPOSITION 4 Let {i,i,,...,i,} C{1,2,...,m} be a
set of indices such that i; # iy for j # k. Then

+

) @) yln) Y(ir—]) T
Gr) () @1 Gre1) «(Xk+1’Bk+l’ k 1| k+12 0Tkl k)
AR T MR

- ) ) B(ir) F(ir) X T
Pyt BT | Xe T

(i) (D]
xp ) ,(ir—l)vyk(Xk+l LB T). (49)

TtV

PROOF This result follows immediately from
Proposition 3.

Using Propositions 3 and 4, the following
measurement update procedure can be constructed

for every index i € {1,2,...,m}. Let {i},i5,...,i,} be
an index sequence with i,, = i. Then the measurement
update can be performed sequentially in the following
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""" = (48)

,,,,,

(S INY) (i) (r-1)
X O N | Virts > Vehd

associated pdfs are Gaussian.
2) Perform a single measurement update

,V,» assuming that all the

(S INY) (i1) (ir_1)
SONETN /ST T IV SHTTRIS VS RN 7

- xk+1’bl(<l+)l’7kl+)1 | yi(cll)l’---’yl(cl+)l’yk &1y
using the standard IMM measurement update
procedure. Notice that the state vector is now

[x],, b 17 € R"*!, and there are only two modes:

WD =0and A7) = 1.
. [(INY) (i1) (ir)
3) Using xk+1,_bk+1,?’k+; ‘ylgﬁl-l""’yk+l’yk’
compute the marginal distribution x, _ ; |
y,(c’jr)l s y]((’jr)l,yk and, if r = m, the conditional
s ot : @) G (@) (@ir)
distribution b\, %y [ Xy 1 Via 1o+ Vs Vi

assuming, again, that all associated pdfs are Gaussian.
Using this procedure in a straightforward manner
requires m?> IMM scalar measurement update steps.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 43, NO. 2 APRIL 2007



However, saving some miscellaneous results, this
number of measurement updates can be reduced to
(m? + 3m — 2)/2. The resulting measurement update
procedure is summarized in Section IVC as part of the
entire estimation algorithm.

C. Algorithm Summary

At the beginning of the recursion cycle at time k,

the quantities Xy, By %ﬁlﬁc al(cl\)k,k,k(é)’ ﬂl?\;c,k,k(g) and

p}("‘)k,k’k(g) forie{l,...,m}, £ €{0,1} are available
from the previous cycles.
1) Main state evolution: x; | Y, = X, | Vs

Xt = DX + Wity (522)
B,y = @B, 9" + GOG'. (52b)

2) Fault probabilities time evolution: v\ | V), =

7,((’11 | V,. For every channel i = 1,2,...,m:

A0 Pl((l))(l 7,}]?‘3() +Pl(f)A(t)

Ve+1lk Vil (33)

3) Measurement error state mixing due to fault
probabilities evolution: '
b,(;) | 7<’>,xk,yk = b,(cl) | 'y,i’il,xk,yk. For every
channel i = 1,2,...,m and ¢ € {0,1}:
0)
- PEU 3
G+ -0 0

X g+ (1= =F5),

Hey =

ne{0,1} (54a)
|
al(ci\)kﬂ,k,k(f) = Z/j‘fual(ci\)lc,k,k(n) (54b)
n=0
|
B © =D ey Bh s ) (54c)

n=0

1
(i) — (i) (@) @) 2
pk\k+l,k,k(£) = § :/“Lén[pk\k,k,k(n) + (ak\k,k,k(n) - ak\k+l,k,k(£))
n=0 A~
(i) (i) T
+ (ﬁkl\k,k,k(n) - 6kl\k+l,k,k(£)) Bk

X Bhar D = B ). (54d)

4) Measurement error state evolution: b,(f) |
’y,(fi] Xy Vi = b,(fil | 7,?11 , X, Y. For every channel
i=1,2,...,mand £ € {0,1}:

i1 = AV O (552)

() — G ()
5kl+1\k+1,k,k(§) =d )(5)6k[\k+l,k,k(§)

. 2 . 2 ,
Pt 1k (©) = A0 P11 ©) + 8P (g ().

(55¢)

(55b)
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5) Measurement error mixing due to the main state
s e KO @) @) @
evolution: b} | v} %6V = b0y | %L 5%k 1 Ve For
every channel i = 1,2,...,m and £ € {0, 1}:

al(ci-)o-l\k+l,k+l,k(§) = al(cill\kﬂ,k,k(f) (56a)
ﬁl?—:l\kﬂ,kﬂ,k(g) = }A:;c:ll\kq)éc\kﬂliil\kﬂ,k,k(f) (56b)

@ ! (i) r
pk+1\k+l,k+l,k(£) = pk+1\k+1,k,k(£) + 6k+l\k+1,k,k ©

X i)k\k 31521\k+|,k,k(f) - ﬁl(ci-o)-l\k+l,k+l,kT(£)
X éc+l\kﬂl(ci-3-l\k+l,k+l,k(£)' (56¢)
6) Measurement update:
Xeat | Ve = Xesr | Via
Yo 1 =900 [ Vi
bl(cij-l | 71(31axk+1v37k = bl(g1 | 7121’xk+17yk+1'
Perform the following sequence of (m — 1) scalar
measurement updates:
Yot | Ve = X |y1(<1+)1’yk
= Mk |yl£1+)l’yl(<i)l’yk -
= x yyD (57)

Each scalar measurement update step comprises the
following parts. Let

Teor |3 3 Ve~ NGO 0, PO0) - (58)
and denote, for simplicity,
a2 a1 40O (592)
B = 61(cill\k+l,k+1,k(§) (59b)
P = P r1 s 14(6) (59)
pe=Prinf), = €|V} (59d)

Then ) )
a) Construct the joint distribution x, ,b{") 7",

Yy Y, For € €{0,1}

i i Gr—1)
Pr{y), = ¢| ylEl-lr)l""’yk+1] Vet = pe (60a)

ir i) _ ¢ D Gr_1) Al i
X1 DI 1 = &l Y~ N RO (€), M=)

60b
where (60b)

'%(ir—l)
} (61a)

Qe

2(1}71)(5) - {
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' plir1) plr1g
MU-D(¢) = . . . (61b)
BT Pt-» + BP0,
b) Perform a single measurement update:
Pr{%ﬁil =& y/iii)l’ ’ylgl-;—l’yk} p(lr)
£e{0,1} (62a)
XD [0 = €3 3 Ve~ NEP(©.M D)),
£e{0,1}  (62b)
where p(’ ", 200(¢), and MU (€) are computed as
F© =), I P©1R0E  (63a)
(t)
2O = 1" ¢ OM ) [ i o | TR
©)
(63b)
ko =mie| WL (63¢)
— r—1 C
cP(¢) | o4
() = 2 © +K©OF © (63d)
I ~KH)XO) =1 -K©OUI" )] (63¢)
M (€)= — KH)OM" (U —KH) (€)
+K(ORVKT (&) (631)
(yk+1(§))2
= ex (63g)
. 20 [ 20550 :
and
; fep
(R L S— 64
¢ Jopo + 1P 4
c) Compute the marginal distribution x, | y,(fjr)l,

.Y +1,yk Let z)(¢) and M) (¢) be partitioned as

20 (¢ — Ex(f)} 2 ()R 65
SO P ECE o
: M, (&) my(6)
MG — { xx xb :| R M, R,
© L (©) myy(©) ©e
Then (©3b)
3@ =3 (O)p(l' + zx(l)p(lir) (66a)

pin = Z P () + (G () = X)E(©) — 3.
(66b)

After each measurement update save the resulting
mean and covariance of the main state x;,,, given by
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(66a) and (66b), respectively Then, for each index
i in the set {m,m — 1,...,1}, perform the following
measurement update sequence similarly to (57):

(1) @i-1)
Xt | Vedro e Yirr Vi

(m)
’yk+l ’yk+l’yk

(m) -1
’yk+1 ’yk+1’yk+1 Ve —

7 X+l |yk+l’ .

- X+l |yk+1""

(€9 (m) @i+1)
7 X |yk+l" ’yk+l ’yk+l’ Vi1 ’yk
X1 | Yewt
- 7/521 | Vert (67)

@
b |xk+l’7k+1’yk+l

Notice that after the last measurement update,
which is done using y,ﬁ'}rl, the parameters of both
the marginal distribution of x;_, | ), and the

conditional distribution of b,(:}rl,yk 1 | X1 Vs must

be computed. This is done in the following manner:

)Acl(clj-l\kﬂ =x0 (68a)
B = PO (68b)
s s 141 ©) = 2O (68¢)
6k+1\k+1 g1 () = M, (&) m,(6) (68d)

pl(clil\k+l ke thr1 (&) = my(8) — 51Ei4)-1|k+1,k+1,k+1T(§)
Mo (OB a1 141 ©)

(68e)

(68f)

As a result of this measurement update procedure the
m pairs of parameters ()Ac,((iil‘ . +1’Pkiu 1+1) are obtained.
These parameters are then averaged to yield a more
accurate estimate of the main state x;, ;:

~ @) (i)
Yertjk+1 = P1-

m

N 1 20

Xerlk+1 = ZZ I(cj-l\k+1 (692)
i=1

~ 1=

Bvipar = Ezpk(il\kﬂ (69b)

i=1

REMARK 2 Although the new algorithm has been
derived for systems where all measurement channels
are fault prone, it is also suitable for systems where
some measurements can be assumed to be free of
faults. The only change in this case is that Step 6

of the proposed algorithm must be preceded by the
measurement update of the main state using the
fault-free measurements.

The computational complexity of the proposed
algorithm is analyzed in the next section, where it is
also compared with that of the ordinary IMM filter.
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TABLE 1
Computational Load per Cycle (FLOP Count) of Proposed Algorithm

Multiplication, Addition, n x n Matrix Exponentiation,
Step Division Subtraction Inversion Square Root Times
1 3n’(n+1) n%/2)3n+1) 0 0 1
2 2m 2m 0 0 1
3 4(n® +2n + 4Hm 2(n? +3n+ T)m 0 0 1
4 2(n+2)m 2m 0 0 1
5 4n(2n + 1)m 4n(2n— 1)m 1 0 1
6.1 n?+n n?—1 0 0 (m? +3m—2)/2
6.2 313 + 1502 +32n + 33 33 +10n% + 170+ 12 0 2 (m? +3m — 2)/2
6.3:
x|y 2n(n +2) %n(n+3) 0 0 (m?* +3m—2)/2
b,y |xY nn+1) n?—1 1 0 2m
Averaging (n(n+3))/2 ((n(n+3))/2)(m—1) 0 0 1
TABLE 11
Computational Load per Cycle (FLOP Count) of Ordinary IMM Algorithm
Multiplication, Addition, Exponentiation,
Step Division Subtraction Square Root Times
Mode evolution SIS —-1) SIS -1) 0 1
Mixing S2(N?2 +2N +2) S(2S — DHN(N +3)/2 0 1
State evolution %nz(n + D +mm?+N+1) ((n(n+1))/2)Bn—-2)+n+ mn?—n+1) 0 S
State update N3 +3NZ+ N+ 3N3+N2/2+3N 0 Sm
Mode update S(Gm+1) S—-1 28m 1
X, estimate Sn S—Dn 0 1
TABLE TII results are summarized in Table II, where S denotes

Computational Burden Comparison (FLOP Count) of Proposed
Algorithm versus Ordinary IMM Algorithm for n = 4

m New IMM IMM/New
1 2257 1829 0.8
2 6491 9455 1.5
3 11877 41635 3.5
4 18415 166907 9.1
5 26105 636635 24.3
6 34947 2388155 68.3
7 44941 9035387 201.1

V. COMPLEXITY ANALYSIS

Table I presents the number of floating point
operations (FLOPs) per cycle in the proposed
algorithm. The analysis is based on the following set
of assumptions.

Assumption 4 Only the upper triangle is
computed in any symmetric matrix.

_Assumption 5 Expressions like GOG”, a”(€)* or
gD(€)2qP(¢) are computed off-line.

Assumption 6 Only the main state estimate is
required as the algorithm’s output.

To demonstrate the computational efficiency of
the proposed algorithm a complexity analysis of the
ordinary IMM was also carried out. The analysis
is also based on the set of Assumptions 4-6. The
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the number of possible modes (in the case under
consideration S = 2") and N denotes the total state
dimension (N = n + m).

Table I shows that when the number of
measurements is sufficiently large, the computational
complexity of the proposed algorithm is O(n3m?).
The computational complexity of the ordinary IMM
algorithm, on the other hand, is O(22"m?). In other
words, the number of FLOPs in the new algorithm is
polynomial in the number of measurement channels,
whereas in the IMM algorithm this relation is
exponential.

Finally, Table III presents a numerical comparison
of the complexities of both algorithms for 4 main
states (n = 4). It is assumed that the execution
of all FLOP types takes the same time, and that
matrix inversions are performed using the UDUT
decomposition. Table III shows that, starting from m =
2, the proposed algorithm exhibits a clear advantage
over the ordinary IMM.

VI.  SIMULATION STUDY

A numerical simulation study has been carried out
to demonstrate that the proposed algorithm exhibits
similar estimation performance to that of the standard
IMM filter, while incurring only a small fraction of
the associated computational cost. As an example, a
spacecraft attitude estimation problem is addressed.
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Consider a spacecraft in a circular orbit around
Earth. The spacecraft performs a torque-free angular
motion relative to some reference coordinate system.
The spacecraft attitude is represented by three Euler
angles: yaw, pitch, and roll. A momentum wheel
is installed along the pitch axis. Denote the wheel
momentum by #,,. The spacecraft body axes are fixed
along its principal axes. Let /,,, I, and [, be the
spacecraft principal moments of inertia.

It is assumed that the Euler angles are sufficiently
small so that the pitch and roll-yaw dynamics
are uncoupled and, consequently, can be treated
separately. Only the roll-yaw dynamics is considered
herein. The linearized equations of the spacecraft
roll-yaw angular motion are [14, pp. 108, 251]

G =w, (70a)
= w, (70b)
. h h
o, = Z:% + ety (70c)
hw h,,
=7 wal—wx+nz (70d)
Z Z

where ¢ and v are the roll and yaw angles,
respectively, w,, w, are the spacecraft angular rate
components, wy, is the satellite circular frequency
of its Earth orbit and n,, n_ are the specific torque
noise components. The process noises n, and n, are
mutually independent zero-mean Gaussian white
processes with power spectral density (PSD) o2.
The initial values of the states ¢, 9, w,, and w, are
independent zero-mean Gaussian random variables
with

var[(0)] = var[¢(0)] = 10 deg?
var[w,(0)] = var[w,_(0)] = 17 deg?/s>.

(71a)
(71b)

Five independent sensors are installed onboard the
satellite: two horizon sensors, measuring the roll angle
and described by

ie{1,2}, v~ N(,02%)
(72)

YO = 4 A DpD 4O,

and three rate gyros installed along 3 different
directions in the x-z plane:

y® V3/2  —1)2
Y@ | = 0 1 wx}
y® —V3/2 —1/2] ¢
NOIXE) NE)
+ [y | + | v® v ~ N(0,07,).
A®p®) NO)

(73)

The measurements are acquired by these sensors at
a rate of 1 Hz, and the continuous-time system (70)

TABLE IV
Spacecraft Parameters

Parameter Value
Wy 1.1 x 1073 rad/sec
2
I, 15 kg-m
I, 20 kg-m?
h, 20 kg-m?/sec
a, 7.6 x 1073 deg/sec’/?
Ton 1 deg
Oyg 0.1 deg/sec
Py 0.995
(@)
Py 0.02
T 1075 rad
o 107 rad/sec

is discretized in time accordingly. All measurement
channels are prone to faults that take the form of
biases changing their values each time they appear.
In other words, the sensor faulty dynamics can be
described by

@ _ @ 3@ (@) (@) ~ (i)
bkl+1 = 7k1+1bkl +[(1 - 7kl+1)kb0vh + ’7k1+10wh]wkl+1’

ic{l,2} (74a)

@ _ 0 30 @) (@) ~ (i)
bk+1 - 7k+1bk +[(1— 7k+1)kh0vg + ’7k+lo-wg]wk+l’

i€{3,4,5 (74b)

where ﬂ/,(fil ~ N(0,1) is the measurement bias process
noise and k,, is bias/measurement noise standard
deviation ratio. The spacecraft parameter values are
summarized in Table IV.

A statistical Monte-Carlo investigation is
performed to compare the proposed algorithm with
the ordinary IMM algorithm. Both algorithms are
run 2700 times, where the duration of each run is
1000 time steps. Figs. 1 and 2 present the rms state
estimation errors for both algorithms, corresponding
to a bias/measurement noise standard deviation ratio
k, = 4.0. In the case of measurement fault states
the estimation errors are computed for the effective
measurement errors vp®_ It can be observed that
the estimation errors of the Euler angles and the roll
measurement biases are close in both algorithms, and
the estimation errors of the angular velocities and their
measurement biases are almost identical.

Fig. 3 presents the corresponding fault estimation
rms errors for both algorithms. One can clearly
see that both filters exhibit almost identical fault
estimation performance.

In sum, the numerical simulation study
demonstrates that, in this example, the estimation
performance of the proposed algorithm closely
approximates the performance of the standard IMM
filter. At the same time, Table III shows that, for the
problem addressed, the proposed algorithm’s FLOP
count is only about 4% of that associated with the

502 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 43, NO. 2 APRIL 2007



0.02 T 0.2
0.015¢ v 0.15
=) it n- Y
g //“-" £ )
5 H <] N
5 0011 : § 01
9] : %) \
2 \’ E N
0.005 0.05 \\
\\""-H‘-‘.‘_
c0 200 460 600 800 1000 c0 200 400 600 800 1000
Time [sec] Time [sec]
(@) (b)
x10™ x10™*
]
!
_— 1 ! —
3 ot bl ; 3
35 el T 1 @5
o gl atl gl o
£ | Muiuniyhohiin £
g ' g
o o
24 Sa
4 4
0 200 400 600 800 1000 0 200 400 600 800 1000
Time [sec] Time [sec]
() (C)

Fig. 1.

Main state rms estimation errors for new algorithm (bold solid line) and IMM algorithm (thin dashed line). (a) . (b) .

©) w,. (d) w,.

standard IMM filter. Therefore, it can be stated that
the proposed algorithm is superior to the ordinary
IMM filter in terms of computational efficiency.

Of course, this conclusion holds only for systems
satisfying the structural model assumptions specified
in Section II.

VII.  CONCLUSIONS

An IMM-based fault-tolerant estimation algorithm
has been presented. The algorithm is tailored for
systems characterized by a low process noise and
independent fault-prone scalar measurement channels.
This algorithm handles different measurement faults
separately, thus reducing the overall computational
burden. The computational complexity of the
proposed algorithm has been shown to be polynomial
in the number of fault-prone measurements, unlike
the ordinary IMM algorithm, where it is exponential.
In an example problem of spacecraft attitude
estimation, it has been shown that the performance
of the proposed algorithm closely approximates the
performance of the ordinary IMM algorithm, while
requiring only a modest fraction of the computational
load.

Although the new algorithm has been derived for
systems where all measurement channels are fault
prone, it is straightforward to extend it to a wider
class of systems, where some measurements are free
of faults.
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APPENDIX A.  PROOF OF PROPOSITION 1

The proof is by mathematical induction. First,
mutual independence of x,, and the elements of -, and
b, yields

PrgiooXo-BorTo) = P X [ 12,0 B Pr{ng’ =T}
i=1
(75)

which is (23a) for k = 0. Assume now that (23a) holds
for some k > 0. Using the Chapman-Kolmogorov
equation, (3) and (4) gives

Pyt ovent e Brat: Dean | X )

" 400
- / Poyi st e

o0

(Bk+l’rk+l |Bk’rk)

Py by i (B, T | X, T)dBdT',
+o0 m
= ) ) o (@) (@) @ @
- / H[ph/(('llnf(’il\b,(c’),n/](")(Bk+l’Fk+1 | B, I")
Jo0 g

i) @) (@) (i)
pb2i>,W’,ﬁi>\xk,yk(Bkl ,Fkl ‘ Xk,Tk)dBkl dFkl 1

+00
(i)
Py o o 0By
Jno Tkt Tt Pk

B, 1" X,,7,)dBVdr?

m

U] @) @
1_‘l<+1 |Bk ’Fk )

i=1
pl’,(:)»”/](‘[)‘xbyk

) (76)

m

— . . (@)

= 1T o B T X T
i=1
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Fig. 2. Faulty state rms estimation errors for new algorithm (bold solid line) and IMM algorithm (thin dashed line). (a) vVbD).
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which yields (23b). Now, by the Markov property
pbknﬁkn\Xk+1,yk(Bk+1’Fk+l |Xk+1’Tk)
+00
=/ pbk+1,'yk+1\xk,yk(Bk+1’Fk+1 | Xp Tp)
—00
X pxk\xkn,yk(xk | KXiw1> T)d X,
+00
= / pbk+1,’Yk+1\Xk,yk(Bk+1’Fk+1 |Xk’Tk)
—00

~ pxk+1\xk(Xk+1 |Xk)
pxk+1|yk(Xk+1 | Ty)

P, (Xi | TAX,.

But, due to Assumption 1

Xps1 | Xp) = 0(Xpyy — ©Xp).

pxk+] [xk
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77

(78)

Substituting (78) into (77) and using (76) gives

pbkﬂ,m“l\xk+1,yk(Bk+l’Fk+l | X1 1)

+00
/ Py et i By s Ty | X T
—00

% 0(Xpyy — X))
P9 K | T

~
~

Py, X | T )dX,

Py

(@' X, [ 1)

_ -1
= Pbkﬂ,w\xk,yk(BkJr]’Fk+1 K. (T 99

B ka\yk(q’_lxkn | T
Py Ko [ 1O

m
(@)
X | |p @ (B
L b e kD
i

0
Fk

+

1 | q:)71)(k+1"rk)

U] @)
(Bk+l’rk+1 | Xk+1’Tk)

m
- Hp b A0 e i
i1

1
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Fig. 3. Fault rms estimation errors for new algorithm (bold solid line) and IMM algorithm (thin dashed line). (a) 7(1). (b) 7(2). (©) .
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which yields (23c). Finally, using Bayes’ law gives

pbk+l,"/k+l|xk+layk+l(Bk"'l’rk"'l |Xk+l’Tk+l)

_ Pyeitsinidinnonen Gt [ X1 Boro i)

Py Brst:Liat [ Xir1, Ty
p)’k+l|xk+l’yk(Yk+l ‘ Xk+l’Tk) k11 P 1,V Nk + + +

m @) @ O] (@) @
Hi=1[pyfillxk+l,b“) o (B |Xk+17Bk+1’Fk+1)bej 0 e Bir 1> Dt [ Xiw s Tl

e+ 1 Vi 1k+1

pyk+1 ‘X]H,] ’yk(}]k+] | Xk+l’Tk)

k+17 Tk+1

m

_ (@) (i)

= Hpb"" ® \xkﬂ,ykﬂ(Ble’Fk:l | Xev1> Tear) (80)
i=1

which yields (23a) written for the time instant
k+1.
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APPENDIX B.  PROOF OF PROPOSITION 2

The proof is based on the following lemmas.

LEMMA 1 Given the fault indicator vy, , and the
measurement history Y, ,, the joint distribution of x; , |
and by, is Gaussian.

PROOF The lemma follows from Assumption 2
and the facts that given the fault indicators 1) the
measurement vector y,, is a linear function of the
state vectors x,,; and b, ,, and 2) the measurement

noises v,((J)rl are all Gaussian.

LEMMA 2 The distributions x; ., | Y, and x;,; | Vi1
are Gaussian.

PROOF It follows from Assumption 2 that the
marginal distribution x;, | v.,,Y, is Gaussian. But,
due to Assumption 3, given the measurement history

A Vesy is Gaussian can be shown similarly using
Lemma 1.

APPENDIX C.  PROOF OF PROPOSITION 3

The result (45) follows from Bayes’ law and the
fact that, according to (44),

S Al

.....

= pym\x<Y<” | X). (83)
The results (47) and (48) are established as follows
YD)

.....

LYo | X,Z")
YD X,Z0)

Pyo, . yolx, Z(r)(Y(l)

aaaaaa

, the main state vector x,,, and the fault vector . (84)
Ve . b+l €55 . OF Tkl By, according to (46),
are independent, hence x,, ; | J, is Gaussian. Similarly,
due to Lemma 1, x| | 741> Vis; 1S Gaussian. The Pyt g XD, YO | X, Z0)
independence of x,,, and v,,, given ), renders
X V.., Gaussian. rree i
et | Ve - / Py, LoD YO | X,Z0, Z0)
LEMM/(A 3 (sze distributions x, ,,,b k+1 | ’y,?ll,yk and v
1 l .
xk+1,bk+1 | Yei1» Yis1 are Gaussian. « Pz(l),,”,z(r—l)\x,z(r)(Z(l),-~-,Z(H) | X,Z2")dz®D ...z
PROOF  First, according to Assumption 2, x; 1,0, |
. . - +00 r
Yes1- Vs 18 Gaussian. Therefore, xk“,b,((’)l | Yer 1> Vi _ YD x. D
. . . L P}.(z)\_m(r)( | s )
is also Gaussian. But using Assumption 3 and J-so \i
Proposition 1 yields
pxk+17bk+1\”rk+1,yk(Xk+1’Bk+1 | Fk+1’Tk)
 Pri et 2 Brs v Lt | X b YDy 19, K [ T1)
Py Than 1 1)
Q)
_ pbkn»‘r’kn\Xk+1,yk(Bk+1’Fk+1 |Xk+1’Tk)pxk+l"\/”(<lilayk(xk+1 | Fk+1’Tk)
Prrirer e Tt [ Xewrs To)
(J) )
Prort 3 Kiar | T k>Hpbn o9 e B T X T). 81)
J_
Therefore - A
o ’ (szmzm |X) |dz®--dz D
Pyt h£+l\3k+l,yk(Xk+l’Bk+1 | Dee1s 1) i=1
r—1
= Py, Xt | T T = Py V| X.Z) [ ] Py (¥ 1 0. (85)
BD =
Xp(o (i) F ,X ,T) .
h ") lxk+1,yk k+1 | k+1 k+1 k Slmllarly,
= Pyib? 0, (Xk+1sB/(clJ)r1 | Fk(:zl’Tk)' (82) o 1) " - o
Py<1)wy(»-—1>‘Mm(Y e YT X, Z) = prm\x(yl | X).

The pdf on the left hand side is Gaussian and so is the
pdf on the right hand side. The fact that x; +l,b(l

+l|
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i=1

(86)
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Substituting (85) and (86) into (84) yields

= Py (YO | X,Z0).

Now,

,,,,,

Py yu_])‘x(Y“),...,Y(’-” | X)

= pz(,)‘x(Z(’) | X) (83)

which is (47). Finally, the result (48) follows from
Bayes’ law, (87) and (88).
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