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A Cramér–Rao-Type Estimation Lower Bound for
Systems With Measurement Faults

Ilia Rapoport and Yaakov Oshman, Senior Member, IEEE

Abstract—A Cramér–Rao-type lower bound is presented for
systems with measurements prone to discretely-distributed faults,
which are a class of hybrid systems. Lower bounds for both the
state and the Markovian interruption variables (fault indicators)
of the system are derived, using the recently presented sequential
version of the Cramér–Rao lower bound (CRLB) for general
nonlinear systems. Because of the hybrid nature of the systems
addressed, the CRLB cannot be directly applied due to violation
of its associated regularity conditions. To facilitate the calculation
of the lower bound, the hybrid system is first approximated by a
system in which the discrete distribution of the fault indicators is
replaced by an approximating continuous one. The lower bound is
then obtained via a limiting process applied to the approximating
system. The results presented herein facilitate a relatively simple
calculation of a nontrivial lower bound for the state vector of
systems with fault-prone measurements. The CRLB-type lower
bound for the interruption process variables turns out to be triv-
ially zero, however, a nontrivial, non-CRLB-type bound for these
variables has been recently presented elsewhere by the authors.
The utility and applicability of the proposed lower bound are
demonstrated via a numerical example involving a simple global
positioning system (GPS)-aided navigation system, where the GPS
measurements are fault-prone due to their sensitivity to multipath
errors.

Index Terms—Estimation error lower bound, fault detection and
isolation, hybrid systems.

I. INTRODUCTION

MODERN multisensor applications, such as navigation
and target tracking systems, require the fusion of data

acquired by a large number of different sensors. In many sit-
uations these sensors might be subjected to faults, either due
to internal malfunctions, or because of external interferences.
These sensor faults are usually manifested as a sudden addi-
tion of noise (white or colored) to the sensor measurements,
or even interruption of the output signal. Thus, global posi-
tioning system (GPS) jamming and spoofing signals take, in
general, the form of colored noises and appear suddenly when-
ever they are activated [1]. Magnetometer faults, caused by mag-
netic fields generated by spacecraft electronics and electromag-
netic torquing coils, usually take the form of biases [2, p. 251]
and appear whenever the corresponding current starts. Rate gyro
faults, caused by input accelerations if the gyro gimbals are not
perfectly balanced, are also usually modeled as biases [2, p.
198] and appear whenever the spacecraft accelerates. In view of
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present day systems’ high accuracy requirements, the problem
of fault tolerant filtering in multisensor systems is of major im-
portance.

Characterized by sudden structural changes, fault-prone
system behavior is usually modeled and analyzed using the
framework of hybrid systems [3, p. 177]. The total state of these
systems comprises two kinds of parameters: the continuously
distributed parameters, usually referred to as the system states,
and a Markovian switching parameter, which takes values in a
finite set and is referred to, in general, as the system mode. Con-
sidering fault-prone systems, one of the switching parameter
values corresponds to the nominal system operation, whereas
the others represent various fault conditions [1], [4]. In systems
with independent fault sources and fault-free dynamics, such
as GPS-aided inertial navigation systems, the aforementioned
model can be simplified: The faults caused by different sources
can be modeled as separate Markovian Bernoulli random pro-
cesses, where “1” stands for a fault situation and “0” stands for
no fault situation. Since the state vector is free of faults, these
fault indicators affect only the system measurements.

Because of its importance, the problem of stability and
control of hybrid systems has drawn considerable research
efforts over the past several decades. Depending on the partic-
ular engineering problem, a varying level of certainty in the
hybrid models was assumed in various works. Thus, in [3] and
[5]–[7] the stability and control of hybrid systems was inves-
tigated under the assumption that both the state and the mode
variables are known. In other works (see, e.g., [8] and [9]), a
partial-knowledge structure was adopted: only the state vector
was assumed to be known, whereas the system mode was not
directly observed and, consequently, had to be estimated.

In systems with fault-prone sensors, direct access to both the
state and the mode parameters is naturally unavailable, so that
the problem of their simultaneous estimation is of prime impor-
tance. It is well-known that the mean square optimal filtering
algorithm for hybrid systems, that provides the estimates of the
state vector and the switching parameters, requires infinite com-
putation resources [10]. Therefore, a variety of suboptimal esti-
mation techniques was proposed [11]–[16]. Since the estimates
of the state vector and the fault indicators are suboptimal, it is
of particular interest to obtain some measure of their efficiency.
The natural means for this purpose is the comparison to a lower
bound on the estimation error.

The most popular lower bound is the well-known
Cramér–Rao lower bound (CRLB). This bound is presented
in [17, p. 84] in the context of Bayesian estimation of static
random parameters. In that formulation, also known as the
Van Trees version of the CRLB, the underlying static random

0018-9286/$20.00 © 2005 IEEE



RAPOPORT AND OSHMAN: A CRAMÉR–RAO-TYPE ESTIMATION LOWER BOUND 1235

system is assumed to satisfy the so-called CRLB regularity
conditions [17, p. 72], that is, absolute integrability of the
first two derivatives of all related probability density functions
(pdfs). Later, [18] and [19] provided a CRLB derivation under
less restrictive requirements, but even these weaker conditions
state, among others, that all related pdfs must be continuously
differentiable [19].

The first derivation of a sequential CRLB version appli-
cable to discrete-time dynamic system filtering, the problem
addressed in this paper, was done in [20] and then extended
in [21]–[23]. Recently, the most general form of sequential
CRLB for discrete-time nonlinear systems was presented in
[24]. Together with the original static form of the CRLB, these
results served as a basis for a large number of applications
[25]–[29].

Unfortunately, albeit being a very useful tool for systems with
continuously distributed parameters, the CRLB cannot be di-
rectly calculated for both the state and the mode variables of
a hybrid system. The reason lies in the fact that the system of
interest must satisfy the CRLB regularity conditions. Clearly,
this is not the case in hybrid systems in general and in systems
with fault-prone measurements in particular, since the mode
variables, or fault indicators, are discrete Markovian sequences.
The CRLB can be applied directly only to the state vector (see,
e.g., [29]), which is continuously distributed and, in most cases,
satisfies the regularity conditions. However, the application of
the sequential form of the CRLB [24] is based on a special re-
quirement regarding the structure of the system measurements,
which, as will be shown later, is not satisfied by a general class
of systems with fault-prone measurements. Another approach
is based on treating the discretely-distributed fault indicators
as nuisance parameters, known to the observer. Originally pro-
posed in [30] for a general class of systems, this approach was
applied in [31] to target tracking using sensors with detection
probability smaller than one. Using the fact that the measure-
ment interruption process is white the authors derived an ap-
proximation of the CRLB for the tracking errors. However, in
the case of general (nonwhite) Markov sequences such deriva-
tion becomes cumbersome. Moreover, this lower bound cannot
be evaluated in closed form, calling for the use of extensive
Monte-Carlo simulations.

A new approach for the calculation of a CRLB-type lower
bound for hybrid systems is presented in this paper. The ap-
proach is based on the approximation of the discrete distribu-
tions of the fault indicators by appropriate smooth distributions.
Satisfying the regularity conditions, the approximating distri-
butions allow the calculation of the CRLB using its sequential
version for general discrete-time nonlinear systems [24]. The
CRLB-type lower bound for the original hybrid system is then
obtained via a limiting process applied to the approximating
system. Unlike the result of [30], the bound presented herein can
be evaluated in closed-form. Therefore, its application to com-
plex systems entails only a modest computational load. More-
over, this result enables the practitioner to analytically evaluate
the effects of various system parameters on the attainable esti-
mation performance. The utility of the proposed lower bound,
as well as the simplicity of its application, are demonstrated via
a numerical example involving a GPS-aided navigation system.

The remainder of this paper is organized as follows. The
system model is defined and the problem is formulated in
Section II. The underlying idea behind the derivation of the
proposed lower bound is presented and justified in Section III.
The formal derivation procedure is then detailed in Section IV.
The main result of this paper, namely, the lower bound for
systems with fault-prone measurements, is presented and
discussed in Section V. A numerical example demonstrating
the application of the new lower bound to the assessment of
navigation accuracy in a simple GPS-aided navigation system
is presented in Section VI. Concluding remarks are offered
in the final Section. To enhance readability, some auxiliary
calculations and developments are deferred to Appendices.

II. PROBLEM FORMULATION

Consider the system

(1a)

(1b)

where is a sequence of (known) deterministic inputs,
and are white sequences of process and

measurement noise, respectively, with
and is the random initial

state with is the vector of
mode variables, and every sequence is a Bernoulli
Markov chain with distribution

(2a)

(2b)

It is assumed that the chains, , are homogenous, i.e.,
the transition probabilities are constant in time.

It is also assumed that and the chains
, are mutually independent. In addi-

tion, the observation matrix is assumed to satisfy the following
structural constraint:

(3)

The hybrid system defined previously is denoted by .
For notational simplicity the explicit time-dependence is sup-

pressed in the sequel in all places where it is clear by context.
Also, the transition matrix is assumed to be nonsingular.

The model defined above can represent a wide class of
systems in the area of fault detection and isolation. In these
systems, the state vector comprises two parts: The primary
part is associated with the system dynamics and the secondary
part is associated with the dynamics of the sensors when sensor
faults occur. These fault states can describe various kinds of
sensors’ faulty behavior, e.g., measurement biases, or additive
faulty measurement noises (white or colored). The interruption
variables play the role of fault indicators. An example of
such a system is presented in Section VI.
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The following definitions will be used in the sequel. Let

(4)

be the augmented state vector of the system. Denote, also, the
accumulated history of the measurements as

(5)

Any estimator of a vector based on the measurement history
is denoted as . Let

(6)

and

(7)

In addition, define the operator as

(8)

where

(9)

is the gradient operator. Finally, for presentation clarity, the no-
tational convention of [17] is adopted, according to which lower
case and upper case letters are used to denote the pdf’s associ-
ated random variables and their realizations, respectively.

The goal of this work is to derive a lower bound for the es-
timation error covariance matrix of the augmented state vector
(4).

III. UNDERLYING IDEA

In this section, the idea underlying the derivation of the new
lower bound is proposed and justified. The derivation is based
on the sequential form of the CRLB [24], which is summarized
in the next theorem.

Theorem 3.1 (Tichavský, Muravchik, and Nehorai,
1998): Let denote a Markovian state process.
Let denote the corresponding measurement process,
assumed to be of the form

(10)

where is a white sequence independent of the process
noise. Then

(11)

where , termed Fisher information submatrix in [24], is com-
puted sequentially according to the recursion

(12a)

(12b)

with

(13a)

(13b)

(13c)

Remark 3.1: It follows from the derivation presented in [24]
that the matrices are blocks of the Fisher information matrix
corresponding to the joint distribution of the history of all the
states and all the measurements . Moreover,
is the block of the inverse of this global Fisher
information matrix.

Remark 3.2: If the CRLB regularity conditions are satisfied,
the resulting Fisher information matrix is nonsingular [18]. It
follows, therefore, that the Fisher information submatrix
is also nonsingular.

Straightforward use of the sequential CRLB, presented
above, to compute an estimation bound for both the state
and the fault of the system , defined in Section II, is impos-
sible. This follows from the discrete nature of the distribution
of the fault vector, which violates the requirement that the joint
pdf of the state vector and the measurement vector be twice
differentiable. Moreover, since in the system addressed in this
paper the measurements are related to the state through

(14)

the sequential CRLB cannot be applied to the primary state, ,
alone, unless is white, because the structural require-
ment (10) is not satisfied.

To circumvent the aforementioned problem, it is proposed
herein to adopt the following two-stage derivation procedure. In
the first stage, the original hybrid system is approximated by
a continuous system which is identical to except that the dis-
crete distribution of is replaced by a continuous one. Specif-
ically, the Bernoulli Markov chain is replaced by a
continuously distributed Markov process . The tran-
sition and initial pdfs of this new process are defined as

(15a)

(15b)

where is some positive real parameter, is the probability
defined in (2b) and the function has the following prop-
erties:

1) is twice continuously differentiable;
2) the first two derivatives of , namely,

and , are bounded;
3) and ;
4) and ;
5) is monotonic.

Notice that each pdf defined in (15) has the form of a two-peak
function. The steepness of the peaks is determined by the pa-
rameter . Intuitively it is clear that the smaller the value of ,
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the better the approximation of the discrete distribution (2) by
the continuous distribution (15). A thorough discussion of the
properties of the distribution (15) can be found in [32].

Now, denote by the continuous system resulting from
replacing in the discrete distribution (2) by the continuous
distribution (15) for some . As shown in Appendix B,
the resulting joint pdf of the measurements and the estimated
variables satisfies the regularity conditions even in their most
restrictive form [17, p. 72]. Thus, the recursive CRLB cor-
responding to can be computed for any . In the
second stage of the derivation, a limiting process is applied to
this CRLB as . As the next two theorems show, this
two-stage procedure leads to a lower bound for the original
system , since: 1) the continuous system approximates
the hybrid system in the sense that the estimation error
covariance matrices resulting from the application of any
admissible estimator to both systems can be made arbitrarily
close by letting , and 2) the CRLB obtained for
provides a lower bound for the original hybrid system via a
limiting procedure, as .

To present the next theorems let be any estimator satisfying
the CRLB requirements. Let and be the estima-
tion error covariance matrices resulting from the application of

to and to using measurements up to and including
time , respectively, where . In addition, let be
the Fisher information submatrix obtained by applying the se-
quential CRLB to .

Theorem 3.2: The system can be approximated by sys-
tems with continuously distributed interruption variables [as in
(15)] to an arbitrary degree of accuracy, in the sense that

(16)

Proof: The proof makes use of some results that are pre-
sented in Appendix A (and numbered accordingly). Let

(17)

(18)

Then, the smoothing property of conditional expectation yields

(19a)

(19b)

where the inner conditional expectations in both (19a) and (19b)
are identical matrix functions of some sets of values of ’s and

’s, respectively. It will be shown now that the element
of these expectations, denoted by , is a continuous function
of the conditioning variables.

First, it can be seen that every element of the conditional ex-
pectations can be expressed as a second-order polynomial of the
conditioning variables with coefficients of the form

(20)

where the function is determined by the particular
estimator. Therefore, it is sufficient to show that the integrals

defined by (20) are continuous functions of ’s. To this end it
is assumed that

(21a)

(21b)

meaning that the estimation errors have finite second-
and fourth-order moments. Now, the conditional pdf

is Gaussian. Since ’s
appear linearly in (3), the mean and the covariance matrix of
this distribution are continuous functions of ’s. On the other
hand, by Lemma A.1, the integral defined in (20) and satisfying
conditions (21) is a continuous function of the mean and the
covariance matrix. Therefore, this integral is a continuous
function of ’s.

To demonstrate (16), it is sufficient to show that

(22)

First, notice that due to the Markov property

(23)

where each of the conditional pdfs is given by (15a). It will be
shown now that

(24)

Notice that

(25)

As previously mentioned, is a continuous function of
. In addition, by Lemma A.2, being an element of a pos-
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itive–semidefinite matrix, is absolutely integrable with
respect to the conditional distribution of . Therefore,
by Lemma A.3

(26)

and (24) is obtained recalling that

(27)

Applying these arguments for each and using the fact that
are continuous functions of finally yields (22).

Theorem 3.3: The Fisher information submatrix , ob-
tained by applying the CRLB to the approximating continuous
system , provides an estimation error lower bound for the
hybrid system via a limiting process, namely

(28)

Proof: Since is, by definition, the Fisher informa-
tion submatrix computed for the approximating continuously
distributed system for some , then

(29)

Therefore, Theorem 3.2 yields

(30)

IV. LOWER BOUND DERIVATION

This section presents a derivation of the new lower bound,
based on the underlying idea proposed in Section III. The new
lower bound itself, which constitutes the paper’s main result,
is presented in the next section. The derivation comprises two
steps: 1) application of the sequential CRLB to the approxi-
mating continuous system for some , and 2) com-
putation of the CRLB limit as . For the sake of brevity
only the main highlights of the derivation are presented. The in-
terested reader is referred to [32] for a detailed derivation.

To facilitate the derivation the matrix is initially as-
sumed to be nonsingular. This assumption is relaxed in the se-
quel via a procedure proposed in [24].

A. CRLB for

Analogously to (4), let

(31)

Since and the elements of are mutually independent, the
augmented state vector has the marginal density

(32)

and the following transitional density:

(33)

The distribution of is Gaussian with

(34)

Therefore

(35)

where

(36)

and

(37)

The distribution of the measurements conditioned on is also
Gaussian, hence

(38)

Using (35) and (38) in (13), the following expressions for the
matrices, defined in Theorem 3.1, are obtained

(39a)

(39b)

(39c)

In (39), the following terms are used.
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1) is a diagonal matrix whose th diagonal entry
is

(40)

2) is a diagonal matrix whose th diagonal entry
is

(41)

3) The matrix is given by

(42)

4) The element of is

(43)

5) The th column of is

(44)

6) is a diagonal matrix whose th diagonal entry is

(45)

It is shown in [32] that

(46a)

(46b)

(46c)

Now, substituting (39) into (12a) yields the following propa-
gation formula for the Fisher information submatrix:

(47)

Since in the approximating system the CRLB regularity
conditions are satisfied, Remark 3.2 renders the global Fisher
information matrix nonsingular. Therefore, the Fisher informa-
tion submatrix is also nonsingular.

To avoid the need to explicitly invert in (47), the ex-
pression (47) can be rewritten in the following form, using the
well-known matrix inversion lemma [33, p. 19]:

(48)

B. Limiting Case

The limiting value of the CRLB for is presented in
the following theorem.

Theorem 4.1: For every finite time instant , the inverse
of the limiting Fisher information submatrix satisfies the fol-
lowing relation:

(49)

where is a positive–definite matrix satisfying
the following recursion:

(50a)

(50b)

In (50a) is the discretely-distributed fault indicator vector
of the original hybrid system.

Proof: The proof uses mathematical induction. First,
using (12b) and following the derivation procedure of (39c), it
can be shown that, for

(51)

In (51) is a diagonal matrix, whose th diagonal entry is

(52)

that satisfies

(53)

Therefore

(54)
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which implies both (49), for , and (50b). Notice that the
positive–definiteness of follows from that of .

Now, assuming that the Theorem is valid for the finite time
instant , it will be shown that it also holds for time instant .
The induction recursion is proved in the following three steps.

Step
1) Using continuity arguments, the induction assumption,

the matrix inversion lemma and the fact that, by (46a)
and (46b)

(55)

yields

(56)

Step
2) Applying the matrix inversion lemma to the inverse on

the right-hand side (RHS) of (48) and using (46b) and
(56) yields

(57)

Step
3) Finally, it is shown that

(58)

where is calculated using (50a). Notice that all the
terms on the RHS of (48), except for , are finite for

. Therefore, using (48)

(59)

with implied definitions of the finite matrices , and . Since

(60)

the matrix is nonsingular for sufficiently small values of .
Similarly, for sufficiently small values of the term

is also nonsingular. Using Schur’s formula for the inversion of
partitioned matrices [33, p. 18] yields

(61)

In addition, the expression de-
pends only on the first and second moments of . Therefore

(62)

which yields

(63)

Substituting (63) into (61) gives (58). The positive–definiteness
of follows from (50a) where the second term on the RHS
is nonsingular.

Finally, the assumption regarding the regularity of ,
made at the beginning of the derivation, is relaxed in the fol-
lowing theorem.

Theorem 4.2: Theorem 4.1 applies also in systems where
is singular.

Proof: The proof is motivated by a procedure shown in
[24]. Replace by for some small positive
. This new matrix is nonsingular and, therefore, Theorem 4.1

applies. Sending to zero and using the continuity of the second
term on the RHS of (50a) yield a CRLB-type lower bound for a
singular , which is also given by (50a).

V. MAIN RESULT

The main result of this paper is now stated in the following
theorem.

Theorem 5.1: A CRLB-type lower bound for the system de-
fined in Section II is given by

(64a)

(64b)

where is computed using the recursion (50).
Proof: The Theorem follows immediately from Theorems

3.3 and 4.2.

A. Lower Bound Computational Algorithm

The lower bound presented in Theorem 5.1 can be easily eval-
uated using the following recursive algorithm.

1) Initialize the matrix using (50b).
2) At each time step update the a priori

probabilities

(65)
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3) Update the value of using (50a), where the
term can be computed as

(66)

4) Finally, the CRLB-type lower bound is given by (64).

B. Lower Bound Properties

The result given by (64a) and (50) presents a relatively
simple, nontrivial lower bound on the covariance of the esti-
mation error of the state vector . Similarly to the covariance
recursion in the information form of the Kalman filter (KF),
this bound can be easily computed and used to evaluate the per-
formance of estimators designed for systems with fault-prone
measurements.

On the other hand, the lower bound on the estimation error
covariance of the fault indicators, given by (64b), is trivial. An
intuitive reason for this result lies in the fact that the fault indica-
tors , being discretely distributed parameters, are character-
ized by sharp changes in the cumulative distribution function. It
has been reported previously in the literature [34] that the CRLB
tends to zero in systems with sharp intensity functions. A direct
conclusion from this observation is that in order to obtain a non-
trivial lower bound on the discretely distributed fault indicators
one must examine lower bounds that are not based on the CRLB.
An example of such a lower bound has been recently presented
in [35].

C. Comparison to a Monte-Carlo Lower Bound

Yet another lower bound can be obtained for the system by
treating the fault vector sequence as nuisance parame-
ters that are known to the observer. Originally proposed in [30],
this approach is as follows. Assume that the fault vector se-
quence is known. Under this assumption, the addressed system
takes the form of an ordinary linear Gaussian system, yielding
the following CRLB:

(67)

where the Fisher information matrix is governed by the fol-
lowing recursion:

(68)

Taking mathematical expectation of both sides of (67) gives

(69)

The main drawback of this lower bound is the fact that it cannot
be evaluated in closed-form. In practice, extensive Monte-Carlo
simulations must be performed, rendering the computation of
the bound rather difficult, compared to the result of Theorem

5.1. This bound is regarded in the present context as a Monte-
Carlo lower bound (MCLB).

Remark 5.1: Since the MCLB explicitly assumes that the
fault vector sequence is known to the observer, it does not take
into account the effect of the fault vector estimation error on the
state vector estimation accuracy.

The next proposition relates the lower bound presented in
Theorem 5.1 to the MCLB.

Proposition 5.1: The lower bound presented in Theorem 5.1
is less tight than the MCLB, i.e.,

(70)

Proof: It is first proved that

(71)

The proof is by mathematical induction. First, according to
(50b)

(72)

Assume now that inequality (71) holds for some . Then, (50a),
(68), and Lemma A.4 of Appendix A yield

(73)

so that (71) is established.
Now, it follows from (71) that

(74)

Finally, Lemma A.4 yields

(75)

Remark 5.2: The arguments presented here can be inter-
preted as an alternative derivation of the lower bound given
by Theorem 5.1. Moreover, this derivation is valid for a larger
class of systems than that of Theorem 5.1 because no specific
assumptions were made on the structure of the observation
matrix , as was done in (3). However, this derivation
does not demonstrate the fact that the proposed lower bound is
a limiting case of the CRLB.

Corollary 5.1: The lower bound presented in Theorem 5.1
does not take into account the effect of the fault vector estima-
tion errors on the state vector estimation accuracy.

Proof: The Corollary follows from Proposition 5.1 and
Remark 5.1.

VI. NUMERICAL EXAMPLE

A numerical proof-of-principle example is presented to
demonstrate the applicability and utility of the new lower
bound. The example involves a system comprising an inertial
navigation system (INS), a GPS receiver and an additional po-
sition source, e.g., a terrain following system. Let ,
and denote the INS position error, velocity error and
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GPS receiver clock drift, respectively. The following simplified
dynamics is assumed:

(76a)

(76b)

(76c)

where is the speed of light. The clock drift noise, , is
assumed to be a zero-mean, Gaussian white noise with power
spectral density (PSD) equal to . The velocity noise, ,
is also assumed to be zero-mean, white and Gaussian with PSD

.
The measurements in this navigation system are taken at a

rate of 1 Hz and the continuous-time system (76) is discretized
accordingly. Assume that the GPS receiver tracks 4 satellites.
Let denote the GPS pseudorange error, defined as

(77)

where is the range from the receiver’s position, as computed
by the INS, to the th satellite, and is the pseudorange to the
th satellite as measured by the GPS receiver. Each of the GPS

receiver channels may be subjected to a multipath measurement
error, so that the pseudorange error is given by the following
linear equation:

(78)

for , where is the unit direction vector to
the th satellite, is the pseudorange measure-
ment white noise, is a multipath parameter and indi-
cates the presence of multipath error. For simplicity, the satellite
constellation is assumed to be constant throughout the scenario
with geometric dilution of precision (GDOP) equal to 2.13. The
multipath parameters are assumed to behave as a stationary,
zero-mean, Gaussian colored noise with autocorrelation

(79)

which corresponds to the following state–space model

(80)

where is a zero-mean, white process noise
satisfying

(81)

In addition to the GPS measurements the navigation system
makes use of a terrain-following system, generating measure-
ments modeled as:

(82)

where is the measurement white noise. The
terrain-following measurements are assumed to be less accurate

TABLE I
NUMERICAL STUDY PARAMETERS

TABLE II
TEST CASE PARAMETERS

than those of the GPS receiver. On the other hand, these mea-
surements are assumed to be fault-free over the scenario du-
ration. The numerical example parameters are summarized in
Table I.

The newly proposed lower bound and the MCLB are used to
assess the estimation performance of the following two filters.

1) The first filter utilizes the fault-free terrain-following
measurements only. This filter serves as a baseline
filter with a minimal measurement configuration.
Notice, that this is the only minimal measurement
configuration: the other potential minimal configura-
tion, namely, the configuration utilizing the fault-prone
GPS measurements only, renders the system described
above not completely observable. Since the system
with terrain-following measurements only is linear
and Gaussian, the baseline filter is a standard KF.

2) The second filter is designed to examine the possible
estimation accuracy contribution of the fault-prone
GPS measurements, when used in addition to the base-
line terrain-following measurements. Since the total
system is hybrid, it is proposed to use the interacting
multiple model (IMM) algorithm [14], which is known
to be a powerful tool in filtering of hybrid systems.

1000 Monte-Carlo runs are used to evaluate the performance
of the KF and 400 Monte-Carlo runs are used to evaluate the
performance of the IMM filter. Three test cases, whose numer-
ical parameters are summarized in Table II, are studied. In all
three cases the initial fault probabilities, , are assumed to be
zero. The position and velocity estimation performance metrics
used in this study are defined as the root-sum-square (RSS) of
the components of the position and velocity root mean square
(RMS) estimation errors, respectively, namely

(83)

where , is the estimation error in the position
or velocity component at the th time step of the th Monte-
Carlo run, and is the total number of Monte-Carlo runs.
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Fig. 1. Estimation errors achieved by IMM (bold solid line) and KF (thin solid
line) vs the CRLB-type lower bound (thin dashed line) and the MCLB (thin
dashed–dotted line) in the nominal case. (a) Position. (b) Velocity.

The results of the first case study are presented in Fig. 1, that
shows the position [Fig. 1(a)] and velocity [Fig. 1(b)] estimation
errors. Comparing the absolute errors of the filters one can see
that the IMMfilter is about two timesmore accurate than theKF in
position estimation [see Fig. 1(a)] and about 1.5 more accurate in
velocity estimation [see Fig. 1(b)]. However, a direct comparison
to the CRLB-type lower bound reveals that the IMM is much
more efficient (in the statistical sense) than the KF: The position
estimation error is about 3 times closer to the lower bound than
the position estimation error of the KF. Considering the velocity
estimates one can see that the IMM velocity error almost reaches
the lower bound. This means that the IMM velocity estimates are
almost optimal in the minimum variance sense, and also that the
proposed lower bound is tight in this case.

The results of the second case are presented in Fig. 2. Due
to the high multipath probability, the position error of the IMM
filter and the corresponding CRLB-type lower bound increase
[see Fig. 2(a)]. The KF performance remains about the same as
in the previous case, since the KF estimates do not depend on
the GPS measurements. Again, whereas its position estimate is
better by only 70% than that of the KF, a direct comparison to
the lower bound reveals that the IMM is 3.6 times more efficient
than the KF, and its velocity estimate can be regarded as optimal
(rendering the corresponding lower bound tight).

Fig. 2. Estimation errors achieved by IMM (bold solid line) and KF (thin
solid line) vs the CRLB-type lower bound (thin dashed line) and the MCLB
(thin dashed–dotted line) in the high multipath probability case. (a) Position.
(b) Velocity.

Examining the third case (see Fig. 3) one can notice that due
to the low process noise the estimation errors of both filters, as
well as the CRLB-type lower bounds, diminish. Now the ve-
locity estimates of both filters can be considered as optimal [see
Fig. 3(b)]. As for the position errors, the KF performance be-
comes closer to that of IMM filter relatively to the previous two
cases: The IMM estimation error is only 1.2 times better than
that of the KF and only 1.6 times closer to the lower bound.

Figs. 1–3 also show the MCLB of (69). 100 Monte-Carlo runs
were used to evaluate this bound, which is associated with a
computational load a hundred times larger than that of the pro-
posed CRLB-type lower bound. One can see, especially in the
position errors [Figs. 1(a), 2(a), and 3(a)], that the CRLB-type
lower bound is indeed less tight than the MCLB, as has been
predicted in Proposition 5.1.

VII. CONCLUSION

A CRLB-type lower bound for a class of systems with fault-
prone measurements is presented. Lower bounds for both the
state and the Markovian interruption variables (fault indicators)
of the system are derived, based on the recently presented se-
quential version of the CRLB for general nonlinear systems. The
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Fig. 3. Estimation errors achieved by IMM (bold solid line) and KF (thin solid
line) vs the CRLB-type lower bound (thin dashed line) and the MCLB (thin
dashed–dotted line) in the low process noise case. (a) Position. (b) Velocity.

derivation is based on an approximation of the discrete distribu-
tion of the interruption variables by a continuous one. The lower
bound is then obtained via a limiting process applied to the ap-
proximating system.

The results presented in this paper facilitate a relatively
simple calculation of a nontrivial CRLB-type lower bound for
the state vector of systems with fault-prone measurements.
Application of the CRLB-type lower bound to both the state
vector and the measurement interruption variables does render
the bound for the interruption process variables trivially zero,
and shows that it is unable to take into account the effect of
the fault vector estimation errors on the state vector estimation
accuracy. However, an alternative, non-CRLB-type nontrivial
lower bound for the interruption variables has been recently
presented elsewhere by the authors.

The utility and applicability of the proposed lower bound
are demonstrated via a numerical example involving a simple
navigation system aided by a fault-prone GPS receiver and ter-
rain-following position measurements. It is shown that the new
lower bound serves as an efficient tool in the design of filters for
this fault-prone system, as it facilitates the assessment of candi-
date filters, designed for different measurement system config-
urations.

APPENDIX A
AUXILIARY RESULTS

In this appendix, some auxiliary results are presented, that
are used in the derivation and discussion of the lower bound
(Sections IV and V). The proofs of the Lemmas are omitted for
brevity, and can be found in [32].

Lemma A.1: Let be a Gaussian pdf family with
and denoting the mean and covariance matrix of each of its
members, respectively. Let be some particular values of

, with . Then, for a function that satisfies

(A.1a)

(A.1b)

for all that belong to some neighborhood of , the
following holds true:

(A.2)

Lemma A.2: Let be the pdf of a random vector . Let
be some positive–semidefinite matrix such that

(A.3)

Then, every element of is absolutely integrable in the
sense that

(A.4)

Lemma A.3: Let be a function, continuous at some
point , that satisfies

(A.5)

Then

(A.6)

Lemma A.4: Let be a positive–definite random matrix
with nonsingular mathematical expectation, and let be some
deterministic positive–semidefinite matrix of the same dimen-
sions. Then

(A.7a)

(A.7b)

APPENDIX B
REGULARITY CONDITIONS

The regularity conditions for the system defined by (1),
(3), and (15) are that the first two derivatives of the joint pdf

with respect
to ’s and ’s are absolutely integrable, and that the first
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moments of the estimation errors are finite (see [17, p. 72]).
Notice that

(B.1)

Now, all the pdfs in (B.1) are either Gaussian or linear
combinations of Gaussian distributions with coefficients
depending on ’s. Recalling that the functions

’s are twice differentiable with bounded deriva-
tives yields absolute integrability of the joint pdf

.
As for the requirement that the first moments of the estima-

tion errors be finite, the discussion is restricted to those estima-
tors that produce finite second moments of the estimation error.
Therefore, this requirement is naturally satisfied.
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