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Fault-Tolerant Particle Filtering by Using Interacting
Multiple Model-Based Rao–Blackwellization

Ilia Rapoport∗ and Yaakov Oshman†

Technion—Israel Institute of Technology, 32000 Haifa, Israel

The problem of fault-tolerant particle filtering of a highly nonlinear system with fault-prone scalar measurement
channels is addressed, in which each measurement channel is characterized by an additive measurement error
generated by a linear scalar hybrid system. Particle filtering is an emerging method that exploits the recent
advances in computer technology by using simulation-based techniques to represent probability density functions
in nonlinear, non-Gaussian systems. Because, in the system under investigation, the overall state vector includes
both the main states of the system and the parameters of the measurement channels, its size can be prohibitively
large for efficient application of ordinary particle filtering, due to the required number of particles. The Rao–
Blackwellization technique is adopted, allowing to estimate just the main system states using a reduced-size set of
particles. The parameters of each measurement channel are estimated by a separate interacting multiple model
scalar filter. A numerical example is presented, where four fault-prone magnetometers are used to estimate both
the attitude of a spacecraft and the fault parameters of the measurement channels. The new state estimator
is compared with unscented Kalman filtering-based techniques. The results demonstrate the superiority of the
proposed algorithm in terms of estimation accuracy.

I. Introduction

F AULT-TOLERANT filtering of nonlinear systems with fault-
prone measurement channels draws much attention because

1) many critical operations such as aircraft landing or spacecraft
pointing and rendezvous require very accurate estimates even in
the presence of measurement faults and 2) the majority of practical
systems is indeed nonlinear.

A sensor fault can usually be expressed as a sudden addition of
noise (white or colored) to the sensor measurement. Thus, global
positioning system (GPS) spoofing error takes, in general, the form
of colored noise and appears suddenly whenever it is activated.1 A
similar behavior is exhibited by the multipath effect.2 Magnetometer
faults, which are caused by magnetic fields generated by spacecraft
electronics and electromagnetic torquing coils, usually take the form
of biases (Ref. 3, p. 251) and appear whenever the corresponding
current starts. Rate gyro faults, caused by input accelerations if the
gyro gimbals are not perfectly balanced, are usually also modeled as
biases (Ref. 3, p. 198) and, therefore, appear whenever the spacecraft
accelerates.

A popular approach to model such fault-prone behavior is by
means of hybrid systems or systems with switching parameters.4

One of the switching parameter values corresponds in these applica-
tions to the nominal system operation, whereas the others represent
various fault situations.1,5 In systems with several independent fault-
prone sensors and fault-free main dynamics, such as spacecraft, this
general model can be simplified: The faults in different measurement
channels can be modeled as separate Markovian Bernoulli random
processes, where 1 designates a fault situation and 0 designates a
nominal (fault-free) situation in the particular channel.

It is well-known that closed-form solutions for the optimal fil-
tering problem exist only for a very narrow class of systems,
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for example, the Kalman filter (KF) for linear systems driven by
Gaussian noises (continuous or discrete time) and the Wonham fil-
ter (see Ref. 6) for continuous-time hybrid linear systems the state
vector of which is exactly measured. The optimal filtering algorithm
for a general class of hybrid systems, whose dynamics as well as the
measurement equations are linear with respect to the state vector,
requires an exponentially growing bank of KFs7 and is, therefore,
impractical. A variety of suboptimal techniques were developed to
prevent this growth.4,8 The most popular due to its accuracy and
simplicity, is the interacting multiple model (IMM) algorithm.9 If
the system dynamics is nonlinear, approximation techniques can
be used, for example, extended KF (EKF) (see Ref. 10, p. 195) or
unscented KF (UKF).11

Recent advances in computer technology gave rise to alternative
methods of nonlinear Markovian system filtering, known as sequen-
tial Monte Carlo methods or particle filtering methods. Instead of
estimating a finite number of the posterior distribution parameters,
like the mean and covariance in the KF, the entire probability density
function (PDF) is estimated. This posterior PDF is approximated by
a set of particles, each of which represents some particular value
of the system state vector. At each estimation cycle, these parti-
cles are propagated in time using the system dynamics equation and
sampled values of the process noise. The measurement update is
performed by calculating new relative weights of the particles using
the measurement likelihood function (Ref.12, p. 10). As has been
reported in, for example, Ref. 13, these Monte Carlo-based tech-
niques exhibit clear accuracy and convergence-rate advantages over
conventional closed-form suboptimal algorithms, such as the EKF
or the UKF, in highly nonlinear systems.

In ordinary particle filtering, the larger the number of the par-
ticles, the more accurate is the estimate, due to the law of large
numbers (Ref. 12, pp. 21–25). Therefore, the key requirement in
particle filtering is to maintain a sufficiently large number of par-
ticles to represent adequately the posterior state distribution. This
number grows exponentially with the state vector dimension. Low
number of particles can cause degradation of the particle set and,
consequentially, wrong state estimates. One technique for overcom-
ing the problem is regularization of the particle set (Ref. 12, p. 251),
which is equivalent to increasing the system process noise. When
this method is used, the particle set degradation can be prevented;
however, the estimate will no longer be optimal.

An alternative way to reduce the number of particles is to reduce
the state vector dimension. This is possible, if, for example, the state
vector can be partitioned into two sets, in which, given the history of
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one set, the other can be estimated in closed form using, for exam-
ple, a KF. Thus, only the remaining part of the state vector has to be
estimated using a particle set. Indeed, the number of computations
per particle grows, but the total number of particles can be greatly re-
duced, thus reducing significantly the overall computational burden.
This approach is known in the literature as Rao–Blackwellization
(R–B) (see Ref. 12, p. 91).

In particular, this approach can be applied to hybrid systems,
linear with respect to the state vector, as was done in Ref. 14. In
that work, only the mode variable is evaluated using a particle set,
whereas the state vector, conditioned on the mode, is produced by
a linear Gaussian system and, therefore, is estimated using a KF.
An extension to nonlinear hybrid systems was presented in Ref. 15.
Similar to Ref. 14, the mode variable is evaluated using a particle
set, whereas the state vector is estimated using a UKF.

The present work addresses the problem of filtering in highly non-
linear systems with independent scalar measurement channels. The
additive measurement error in each channel is generated by a hybrid
linear system with two possible modes (corresponding to the exis-
tence and nonexistence of a fault) and a single state variable. The
nominal measurement noises are assumed to be Gaussian. Faulty
measurement biases (possibly changing their values each time they
appear) or faulty measurement noises (either white or colored) are
examples of such a system. It is well known that, although an op-
timal closed-form estimation algorithm for linear hybrid systems
does not exist, the IMM algorithm provides a good approximation
of the optimal estimate. Therefore, it is proposed to apply the R–B
technique. The distribution of the main state vector, representing the
system dynamics, is approximated by a set of particles and estimated
using a particle filter (PF). The estimates of the measurement chan-
nel parameters are obtained for each one of the particles by applying
the IMM algorithm separately for each channel. Because of the sep-
arate handling of the channels and the fact that the dynamics of
each measurement channel is scalar, the computational complexity
per particle increases only by about 50–100%. The number of par-
ticles, on the other hand, can be greatly reduced, when compared
to the ordinary PF, resulting in a significant overall computation
saving.

The rest of the paper is organized as follows. The main prin-
ciples of particle filtering and the R–B technique are reviewed
in Sec. II. The estimation problem under consideration is formu-
lated in Sec. III. The proposed estimation algorithm is then de-
rived in Sec. IV. A numerical study illustrating the superiority of
the proposed algorithm over UKF-based techniques is presented
in Sec. V. Several concluding remarks are offered in the last sec-
tion. For presentation clarity, the notational convention of Ref. 16
is adopted, according to which lower case and upper case let-
ters are used to denote random variables and their realizations,
respectively.

II. Particle Filtering Review
Main Principles

Consider the following nonlinear Markovian system

zk + 1 = fk + 1(zk, wk + 1) (1)

with the following measurements:

yk = hk(zk, vk) (2)

where zk is the system state vector, {wk}∞
k = 1 is the process noise, and

{vk}∞
k = 1 is the measurement noise. Both noise processes are assumed

to be white and mutually independent. No Gaussian assumption is
made. Let k denote the measurement time history, namely,

k
�= [

yT
1 , yT

2 , . . . , yT
k

]T
(3)

At each time step k the a posteriori state distribution zk | k is repre-
sented using a set of particles {Zk( j)}N

j = 1 with associated weights

{λk( j)}N
j = 1 satisfying

N∑

j = 1

λk( j) = N , λk( j) � 0 ∀ j (4)

such that the posterior PDF is approximated as

pzk | k (Zk |ϒk) ≈ 1

N

N∑

j = 1

λk( j)δ(Zk − Zk( j)) (5)

where δ(·) is Dirac’s delta. The approximation (5) is in the integral
sense, that is,∫

g(Zk)pzk | k (Zk |ϒk) dZk

≈
∫

g(Zk)
1

N

N∑

j = 1

λk( j)δ(Zk − Zk( j)) dZk

∀ , ∀g(·) (6)
The particle filtering procedure comprises two steps: time propaga-
tion and measurement update (Ref. 12, p. 10). At the time propa-
gation step, N values of the process noise wk + 1 are sampled from
its distribution, and each one of the particles evolves according to
Eq. (1) using the sampled noise values. At the measurement update
step, the particle weights are modified in the following way:

λk + 1( j) = pyk + 1|zk + 1(Yk + 1|Zk + 1( j))λk( j) (7)

and then normalized such that condition (4) is satisfied. The like-
lihood function pyk + 1|zk + 1 is derived from the measurement equa-
tion (2) and evaluated at the value of the current measurement Yk + 1

and each one of the particles Zk + 1( j).
One can see that the time-propagation step is simply a pure sim-

ulation of the system dynamics. The principle underlying the mea-
surement update step of Eq. (7) is the Bayes law. Because
pzk + 1| k + 1(Zk + 1|ϒk + 1)

= pyk + 1|zk + 1(Yk + 1|Zk + 1)

pyk + 1| k (Yk + 1|ϒk)
pzk + 1 | k(Zk + 1|ϒk) (8)

using approximation (5) for the zk + 1| k distribution results in the
following approximation for the zk + 1| k + 1 distribution:
pzk + 1| k + 1(Zk + 1|ϒk + 1)

≈ pyk + 1|zk + 1(Yk + 1|Zk + 1)

pyk + 1| k (Yk + 1|ϒk)

1

N

N∑

j = 1

λk( j)δ(Zk + 1 − Zk + 1( j))

= 1

N pyk + 1| k (Yk + 1|ϒk)

N∑

j = 1

[pyk + 1|zk + 1(Yk + 1|Zk + 1( j))λk( j)]

× δ(Zk + 1 − Zk + 1( j)) (9)
When managed in such a way, the particle set usually tends

to degenerate because the weights of a relatively small particle
subset, which is close enough to the true state, grow while the
weights of the rest vanish. To prevent this tendency, a resampling
technique is applied (Ref. 12, pp. 10 and 28). Each of the high-
weighted particles is multiplied into several particles with smaller
weights, whereas the low-weighted particles are deleted. As a re-
sult, a rich set of particles, distributed in the vicinity of the true
state, is obtained. These particles, which have almost the same
weights, constitute a correct approximation for the posterior state
distribution.

Another problem, which usually arises in high-dimensional sys-
tems or systems with low process noise, is that after several re-
sampling steps the particle set degenerates into a small number of
subsets with identical particles. This renders the resulting particle
distribution a discrete one. One possible method for preventing this
phenomenon is by performing the regularization procedure (Ref. 12,
p. 251), which is equivalent to increasing the system process
noise.
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R–B Concept
The R–B technique (see Ref. 12, p. 91) can be applied to systems

whose state vector zk can be partitioned as

zk =
[

z(1)

k

z(2)

k

]

(10)

so that the distribution of z(1)

k given the measurement history k and
the history of the remaining states z(2)

k can be evaluated analytically.
If, for example, the states z(1)

k together with the measurements yk ,

pz(2)

k + 1
,z(2)

k
,...| k + 1

(
Z (2)

k + 1, Z (2)

k , . . . |ϒk + 1

) =
pyk + 1|z(2)

k + 1
,z(2)

k
,..., k

(
Yk + 1

∣∣Z (2)

k + 1, Z (2)

k , . . . , ϒk

)

pyk + 1| k (Yk + 1|ϒk)
pz(2)

k + 1
,z(2)

k
,...| k

(
Z (2)

k + 1, Z (2)

k , . . .
∣∣ϒk

)

=
∫ +∞

−∞ pyk + 1|z(2)

k + 1
,z(1)

k + 1

(
Yk + 1

∣∣Z (2)

k + 1, Z (1)

k + 1

)
pz(1)

k + 1
|z(2)

k + 1
,z(2)

k
,..., k

(
Z (1)

k + 1

∣∣Z (2)

k + 1, Z (2)

k , . . . , ϒk

)
dZ (1)

k + 1

pyk + 1| k (Yk + 1|ϒk)

×
∫ +∞

−∞
pz(2)

k + 1
|z(2)

k
,z(1)

k

(
Z (2)

k + 1

∣∣Z (2)

k , Z (1)

k

)
pz(1)

k
|z(2)

k
,..., k

(
Z (1)

k

∣∣Z (2)

k , . . . , ϒk

)
dZ (1)

k pz(2)

k
,z(2)

k − 1
,...| k

(
Z (2)

k , Z (2)

k − 1, . . . |ϒk

)
(14)

given the history of z(2)

k , behave as in a linear Gaussian system, then
a KF can be used to estimate these states.

In this case, it is proposed to use a particle approximation only for
the distribution of z(2)

k | k . The distribution of z(1)

k conditioned on
the measurements and on the history of z(2)

k is represented by a finite
set of parameters that are required by the appropriate closed-form
estimator. In the case of a KF, they are the mean and the covariance
matrix. These parameters are handled separately for each one of the
particles.

∫ +∞
−∞ pyk + 1|z(2)

k + 1
,z(1)

k + 1

(
Yk + 1

∣∣Z (2)

k + 1, Z (1)

k + 1

)
pz(1)

k + 1
|z(2)

k + 1
,z(2)

k
,..., k

(
Z (1)

k + 1

∣∣Z (2)

k + 1, Z (2)

k , . . . , ϒk

)
dZ (1)

k + 1

pyk + 1| k (Yk + 1|ϒk)
(16)

The entire estimation procedure consists of the following stages.
At the time-propagation step, the particles {Z (2)

k ( j)}N
j = 1 evolve ac-

cording to the following transitional distribution:

pz(2)

k + 1
|z(2)

k
,..., k

(
Z (2)

k + 1

∣∣Z (2)

k , . . . , ϒk

)

=
∫ +∞

−∞
pz(2)

k + 1
|z(2)

k
,z(1)

k

(
Z (2)

k + 1

∣
∣Z (2)

k , Z (1)

k

)

× pz(1)

k
|z(2)

k
,..., k

(
Z (1)

k

∣∣Z (2)

k , . . . , ϒk

)
dZ (1)

k (11)

using the posterior distribution of z(1)

k . The parameters of the z(1)

k
distribution are then modified for each one of the particles accord-
ing to the particular closed-form estimation algorithm used. At the
measurement update step, the particle weights are modified using
the likelihood function

pyk + 1|z(2)

k + 1
,z(2)

k
,..., k

(
Yk + 1

∣∣Z (2)

k + 1, Z (2)

k , . . . , ϒk

)

=
∫ +∞

−∞
pyk + 1|z(2)

k + 1
,z(1)

k + 1

(
Yk + 1

∣∣Z (2)

k + 1, Z (1)

k + 1

)

× pz(1)

k + 1
|z(2)

k + 1
,z(2)

k
,..., k

(
Z (1)

k + 1

∣∣Z (2)

k + 1, Z (2)

k , . . . , ϒk

)
dZ (1)

k + 1 (12)

which is computed using the parameters of the posterior distribution
of z(1)

k . Then, according to the closed-form algorithm, the measure-
ment update is applied to the z(1)

k distribution parameters. Finally,
resampling and regularization procedures are performed if deemed
necessary. Notice that, by assumption, the conditional PDFs

pz(1)

k
|z(2)

k
,..., k

(
Z (1)

k

∣∣Z (2)

k , . . . , ϒk

)

pz(1)

k + 1
|z(2)

k + 1
,z(2)

k
,..., k

(
Z (1)

k + 1

∣∣Z (2)

k + 1, Z (2)

k , . . . , ϒk

)
(13)

can be evaluated analytically. Therefore, both integrals in Eqs. (11)
and (12) can also be computed analytically for each one of the
sampled state histories.

Remark 1: The reason why this procedure provides correct results
lies in the following remarkable fact. Assume that, for some time k,
each one of the particles Z (2)

k ( j) is replaced by its time history, that
is, all of its values from time 0 to the time k. In this case, the resulting
particle set represents the posterior distribution of the entire history
of the true state, pz(2)

k
,z(2)

k − 1
,...| k

(Z (2)

k , Z (2)

k−1, . . . |ϒk). To show this,

notice the following identity:

where the expression
∫ +∞

−∞
pz(2)

k + 1
|z(2)

k
,z(1)

k

(
Z (2)

k + 1

∣∣Z (2)

k , Z (1)

k

)

× pz(1)

k
|z(2)

k
,..., k

(
Z (1)

k

∣∣Z (2)

k , . . . , ϒk

)
dZ (1)

k (15)

corresponds to the time propagation step [see Eq. (11)] and the
expression

corresponds to the measurement update step [see Eq. (12)]. Now,
with use of the proposed algorithm, the PDFs (13) or, more pre-
cisely, their representing parameters, are computed correctly for
each one of the particle time histories. Therefore, given a cor-
rect approximation of pz(2)

k
,z(2)

k − 1
,...| k

(Z (2)

k , Z (2)

k − 1, . . . |ϒk), the pro-

posed estimation procedure yields a correct approximation for
pz(2)

k + 1
,z(2)

k
,...| k + 1

(Z (2)

k + 1, Z (2)

k , . . . |ϒk + 1).

III. Problem Formulation
The model discussed in this paper is a special case of the model

defined by Eqs. (1) and (2). Consider the following nonlinear non-
Gaussian state space model:

xk + 1 = fk + 1(xk, uk + 1, wk + 1), x ∈ R
n (17)

where {uk}∞
k = 1 is a sequence of (known) deterministic inputs,

{wk}∞
k = 1 is a white sequence of the main process noise with known

distribution (not necessarily Gaussian), and x0 is the random initial
state with known distribution. The system is measured through m in-
dependent channels, each of which generates scalar measurements
and is potentially subject to a fault. The measurement equations are
given by

y(i)
k = h(i)

k (xk) + c(i)
k (γ

(i)
k )b(i)

k + v
(i)
k i = 1, 2, . . . , m (18)

where {v(i)
k }∞

k = 1, i = 1, 2, . . . , m, are independent Gaussian white
sequences of measurement noises with v

(i)
k ∼ (0, R(i)

k (γ
(i)
k )) and

R(i)
k (γ

(i)
k ) > 0; {γ (i)

k }∞
k = 1 is a Bernoulli Markov chain of fault indi-

cators; and b(i)
k is a faulty measurement error. The distribution of
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the fault indicator sequence is described by the following initial and
transition probabilities:

Pr
{
γ

(i)
0 = 1

} = �
(i)
0 (19a)

Pr
{
γ

(i)
k + 1 = ξ

∣∣γ (i)
k = η

} = P (i)
ξη (k + 1|k) ξ, η ∈ {0, 1} (19b)

The measurement error sequence {b(i)
k }∞

k = 1 is a scalar Markov pro-
cess described by the following dynamics equation:

b(i)
k + 1 = a(i)

k + 1

(
γ

(i)
k + 1

)
b(i)

k + g(i)
k + 1

(
γ

(i)
k + 1

)
w̃

(i)
k + 1 (20)

where {w̃(i)
k }∞

k = 1 are independent Gaussian white sequences, with
w̃

(i)
k ∼ (0, q (i)

k ). It is assumed that x0, {wk}∞
k = 1, {γ (i)

k }∞
k = 0,

{v(i)
k }∞

k = 1, {w̃(i)
k }∞

k = 1, and b0 are mutually independent. In the se-
quel, the explicit time dependence of the parameters P (i)

i j (k + 1|k),
c(i)

k , R(i)
k , a(i)

k , and g(i)
k is suppressed for notational simplicity.

The goal of this work is to derive an optimal minimum mean
square error estimation algorithm for the states and fault indicators
of the system.

The model addressed in this work can describe a wide class of
fault-prone measurement systems. Thus, a(i)(γ ) ≡ 1, g(i)(γ ) ≡ 0,
and c(i)(γ ) ≡ 1 correspond to a system with permanent measurement
biases, whereas

a(i)(γ ) = c(i)(γ ) =
{

0, for γ = 0

1, for γ = 1
, g(i)(γ ) =

{
1, for γ = 0

0, for γ = 1
(21)

correspond to a system with faulty measurement biases that change
their value each time they appear, and a(i)(γ ) ≡ 0, g(i)(γ ) ≡ 1, and
c(i) as in Eq. (21) yield a system with additive faulty white noises.

The following definition is used in the sequel:

yk
�= [

y(1)

k , y(2)

k , . . . , y(m)

k

]T
(22)

and the measurement history k is still defined by Eq. (3).

IV. New Filtering Algorithm
Underlying Concept

The underlying idea is based on the fact that, according to
Eqs. (18) and (20), the pairs (b(i), γ (i)) are generated by independent
linear hybrid systems, and given the history of the main state x , their
measurements are also independent across different channels. It is
well known that, although an optimal closed-form estimation algo-
rithm for linear hybrid systems does not exist, the IMM algorithm9

(detailed in the sequel) provides a good approximation of the opti-
mal estimate.

The IMM estimator consists of a bank of KFs designed each for
a different discrete mode of the system. The residuals produced by
these filters are used to form the mode likelihood functions, which
then serve in a hypothesis testing mechanism. The stage that makes
the IMM algorithm particularly powerful is the interaction stage.
During this stage, the estimates of all KFs in the bank are mixed
using mixing probabilities such that the less likely estimates are
“punished” in the sense that their covariance matrices grow relative
to those of more likely modes.

With reliance on the IMM’s well-known performance in hybrid
systems, and based on the insight just mentioned, it is proposed to
apply the R–B technique, in which at each time step k the distribu-
tion of the main state vector xk is represented by a set of particles
{Xk( j)}N

j = 1. Given the history of each particle Xk( j), the posterior
distribution of each pair (b(i), γ (i)) can be estimated using the IMM
algorithm. This computation is based on the y(i)

k measurement only,
that is, on the measurement acquired by the same channel and not
on measurements from other channels. Thus, each one of the IMM
filters is applied to a scalar system, which renders the computations
relatively simple.

According to the underlying principles of the IMM algorithm,9 it
is assumed that the distribution of

b(i)
k + 1, y(i)

k + 1

∣∣γ (i)
k + 1, xk + 1, xk, . . . , k

is Gaussian. Therefore, for each particle Xk( j), the posterior distri-
bution of the pairs (b(i), γ (i)) can be represented by the following
quantities:

b̂(i)
k|r,l(ξ ; j)

�= E
[
bk

∣∣γ (i)
r = ξ, x = Xk( j), l

]
, ξ = 0, 1

(23a)

π̂
(i)
k|r,l(ξ ; j)

�= var
[
bk

∣∣γ (i)
r = ξ, x = Xk( j), l

]
, ξ = 0, 1

(23b)

γ̂
(i)
k|l ( j)

�= Pr
{
γ

(i)
k = 1|x = Xk( j), l

}
(23c)

Remark 2: Note that the proposed approach, which approximates
only the main state’s posterior distribution by a particle set and
estimates the fault parameters in closed form, is diametrically op-
posite to the approach taken in Ref. 15: There, a particle set is used
for the fault mode parameters and a closed-form estimator is used
for all other states. This role reversal is important because, unlike
Ref. 15, no approximation is applied to the nonlinear part of the
system in the proposed algorithm. Therefore, the resulting estimate
can be expected to be more accurate than that of Ref. 15, though it
is conceivable that it should be more computationally demanding.

Filtering Algorithm
The resulting filtering algorithm can be summarized as follows. At

time k, the marginal distribution of xk | k is represented by the parti-
cle set {Xk( j)}N

j = 1. For each particle Xk( j), the conditional distribu-
tions b(i)

k , γ
(i)
k |xk, k are represented by the parameters b̂(i)

k|k,k(ξ ; j),
π̂

(i)
k|k,k(ξ ; j), γ̂

(i)
k|k ( j). Then the steps of the algorithm are as follows.

1) Propagate the main state particles {Xk( j)}N
j = 1 one time step

ahead, according to Eq. (17), for sampled values of the process noise
wk + 1.

2) For each particle Xk + 1( j) and each measurement channel i ,
perform the time propagation and mixing steps of the IMM algo-
rithm:

γ̂
(i)
k + 1|k( j) = P (i)

11 γ̂
(i)
k|k ( j) + P (i)

10

[
1 − γ̂

(i)
k|k ( j)

]
(24a)

b̂(i)
k|k + 1,k(ξ ; j) =

1∑

η = 0

µ
(i)
ξη b̂(i)

k|k,k(η; j) (24b)

π̂
(i)
k|k + 1,k(ξ ; j) =

1∑

η = 0

µ
(i)
ξη

{
π̂

(i)
k|k,k(η; j)

+ [
b̂(i)

k|k,k(η; j) − b̂(i)
k|k + 1,k(ξ ; j)

]2}
(24c)

b̂(i)
k + 1|k + 1,k(ξ ; j) = a(i)(ξ)b̂(i)

k|k + 1,k(ξ ; j) (24d)

π̂
(i)
k + 1|k + 1,k(ξ ; j) = [

a(i)(ξ)
]2

π̂
(i)
k|k + 1,k(ξ ; j) + [

g(i)(ξ)
]2

q (i) (24e)

where

µ
(i)
ξη

�= P (i)
ξη

ηγ̂
(i)
k|k ( j) + (1 − η)

[
1 − γ̂

(i)
k|k ( j)

]

ξ γ̂
(i)
k + 1|k( j) + (1 − ξ)

[
1 − γ̂

(i)
k + 1|k( j)

] (25)

and P (i)
ξη is defined in Eq. (19b).

3) Update the particles’ weights using Eq. (7) with the following
likelihood function:

pyk + 1|xk + 1,xk ,...(Yk + 1|Xk + 1( j), . . .)

=
m∏

i = 1

py(i)
k + 1

|xk + 1,xk ,...

(
Y (i)

k + 1

∣∣Xk + 1( j), . . .
)

(26)
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Each one of the PDF’s py(i)
k + 1

|xk + 1,xk ,...
[Y (i)

k + 1, Xk + 1( j), . . .] is com-
puted using the time-propagated parameters, b̂(i)

k + 1|k + 1,k(ξ ; j),
π̂

(i)
k + 1|k + 1,k(ξ ; j) and γ̂

(i)
k + 1|k( j), as follows:

py(i)
k + 1

|xk + 1,xk ,...

(
Y (i)

k + 1, Xk + 1( j), . . .
) = γ̂

(i)
k + 1|k( j) f (i)

1 ( j)

+ [
1 − γ̂

(i)
k + 1|k( j)

]
f (i)
0 ( j) (27)

where

f (i)
ξ ( j)

�=
(

1
/√

2πσ 2
ξ

)
exp

[ − (
1
/

2σ 2
ξ

){
Y (i)

k + 1 − h(i)
k (Xk( j))

− c(i)(ξ)b̂(i)
k + 1|k + 1,k(ξ ; j)

}2]
, ξ ∈ {0, 1} (28)

σ 2
ξ

�= [
c(i)(ξ)

]2
π̂

(i)
k + 1|k + 1,k(ξ ; j) + R(i), ξ ∈ {0, 1} (29)

4) For each particle Xk + 1( j) and each measurement channel i ,
perform the measurement update step of the IMM algorithm,

K (ξ) = c(i)(ξ)π̂
(i)
k + 1|k + 1,k(ξ ; j)

[
c(i)(ξ)

]2
π̂

(i)
k + 1|k + 1,k(ξ ; j) + R(i)

(30a)

Ỹ (i)(ξ) = Y (i)
k + 1 − h(i)

k (Xk + 1( j)) − c(i)(ξ)b̂(i)
k + 1|k + 1,k(ξ ; j) (30b)

b̂(i)
k + 1|k + 1,k + 1(ξ ; j) = b̂(i)

k + 1|k + 1,k(ξ ; j) + K (ξ)Ỹ (i)(ξ) (30c)

π̂
(i)
k + 1|k + 1,k + 1(ξ ; j) = [

1 − K (ξ)c(i)(ξ)
]
π̂

(i)
k + 1|k + 1,k(ξ ; j) (30d)

γ̂
(i)
k + 1|k + 1( j) = f (i)

1 ( j)γ̂ (i)
k + 1|k( j)

f (i)
1 ( j)γ̂ (i)

k + 1|k( j) + f (i)
0 ( j)

[
1 − γ̂

(i)
k + 1|k( j)

] (30e)

where f (i)
ξ ( j) are defined in Eq. (28).

5) Resample and regularize the particle set {Xk + 1( j)}N
j = 1 accord-

ing to predetermined criteria. (See, for example, Ref. 12, p. 232.)
For output purposes only the system state estimates can be ob-

tained at any time step as weighted averages of the particle values,
namely

x̂k|k = 1

N

N∑

j = 1

λk( j)Xk( j) (31a)

b̂(i)
k|k = 1

N

N∑

j = 1

λk( j)
[

b̂(i)
k|k,k(0; j)

(
1 − γ̂

(i)
k|k ( j)

)

+ b̂(i)
k|k,k(1; j)γ̂ (i)

k|k ( j)
]

(31b)

γ̂
(i)
k|k = 1

N

N∑

j = 1

λk( j)γ̂ (i)
k|k ( j) (31c)

V. Simulation Study
A numerical simulation study has been carried out to demon-

strate the superiority of the proposed algorithm over competing ap-
proaches. Specifically, two such approaches are examined: 1) the
widely accepted approach to filtering in hybrid systems, namely,
the IMM filter, and 2) the R–B approach proposed in Ref. 15, which
is reversed relative to the approach proposed in this work. According
to this approach, the fault parameters are estimated by a PF, whereas
the continuously distributed states are estimated via a closed-form
nonlinear estimator, for example, UKF. The results of this study are
presented in this section.

System
In this study, the estimation of spacecraft attitude from vector

observations of Earth’s magnetic field is considered. Let qk be the
quaternion of rotation from a reference frame R to the spacecraft
body frame B. The quaternion is defined on the four-dimensional
unit hypersphere and composed of vector and scalar parts, respec-
tively,

qk = [
�T

k q4k

]T
(32)

The reference frame is associated with the spacecraft orbit: Its X
axis is along the spacecraft path in its orbit, the Z axis is in the orbit
plane and directed toward Earth, and the Y axis complies with the
right-hand rule. The discrete-time dynamics equation of the rotating
spacecraft is given by

qk + 1 = �k(ωk)qk (33)

where the orthogonal matrix �k is expressed using ωk =
[ω1k, ω2k, ω3k]T , the angular velocity vector of B with respect to
R resolved in B. Assuming that ωk is constant during the sampling
time interval �t yields

�k(ωk) =
[

− 1
2 [ωk×]�t − 1

2 ωk�t

− 1
2 ωk�t 0

]

(34)

where the cross-product matrix associated with the vector ωk is
defined as

[ωk×] =




0 −ω3k ω2k

ω3k 0 −ω1k

−ω2k ω1k 0



 (35)

The spacecraft is equipped with four magnetometers measuring
Earth’s magnetic field components in the B frame. The observa-
tion model is accordingly given by

yk = H A(qk)rk + ek, yk ∈ R
4 (36)

where rk is the precomputed value of Earth’s magnetic field, given in
the R frame, A(qk) is the rotation matrix (also known as the attitude
matrix or direction cosine matrix) associated with the rotational
quaternion qk , H is the matrix of magnetometer directions, and ek is
the measurement error vector. One magnetometer is aligned along
the spacecraft X axis, another is aligned along its Y axis, and the
remaining two are aligned along the Z axis, that is,

H =






1 0 0

0 1 0

0 0 1

0 0 1




 (37)

For simplicity, and without losing an essential characteristic of
the example, it is assumed that the spacecraft angular rate ωk is
perfectly measured by the spacecraft rate gyros, so that the main
system dynamics associated with Eq. (33) is noise free. Note that
particle filtering of the attitude quaternion in the noisy gyros case
has been treated in Ref. 13.

The fault-prone magnetometers suffer from measurement noise
and suddenly appearing and disappearing measurement biases that
change their values each time they appear [see Eq. (21)]. As has
been mentioned earlier, such faulty behavior can be caused by space-
craft uncompensated electronics and electromagnetic torquing coils
(Ref. 3, p. 251). More specifically, for every i = 1, 2, 3, 4,

e(i)
k = γ

(i)
k b(i)

k + v
(i)
k , v

(i)
k ∼ (

0, R(i)
)

(38a)

b(i)
k = γ

(i)
k b(i)

k − 1 + (
1 − γ

(i)
k

)
w̃

(i)
k , w̃

(i)
k ∼ (

0, q (i)
)

(38b)

The Markovian Bernoulli fault sequences {γ (i)
k }∞

k = 1 are assumed to
be generated by independent random telegraph processes with rates
µ(i). It is assumed that the measurements are acquired at a rate of 1
per every 10 time steps. The initial spacecraft attitude quaternion is
assumed to be uniformly distributed over the unit four-dimensional
sphere. The mathematical model’s parameters are summarized in
Table 1.

Comparison to Alternative Filtering Schemes
In this numerical study the proposed algorithm is compared to

two alternative estimation schemes. The PF part of the proposed
estimator is based on the recently proposed quaternion PF (QPF).13

The particle set represents the posterior distribution of the attitude
quaternion (four parameters). The effective state dimension in this
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Table 1 Model parameters

Parameter Value

µ(i) 0.001 1/s
R(i) 502 nT2
√

(q(i)/R(i)) 4
Orbit semimajor axis 6.7× 106 m
Orbit eccentricity 0
Orbit inclination 35 deg
�t 1 s

case is three due to the normalization constraint. The particle set
is initialized with Ninit = 2000 particles and then reduced to the
N = 300 most likely particles. The reduction is performed when the
effective sample size, given by

Neff = (Ninit)

/
1

Ninit

Ninit∑

j = 1

λk( j)2 (39)

drops below 300, where λk( j) are the particle weights. Resampling
and regularization are performed each time the effective sample
size drops below Nth = 100 using the method described in Ref. 13.
To prevent possible degeneracy of the particle set, the particles are
reinitialized each time the likelihood value associated with the most
likely particle drops below 10−8. Obviously, every filter initialization
is associated with short-termed large estimation errors. To eliminate
these errors, a pure time propagation of the most recently available
state estimate is implemented until the particle set is reduced again
to 300 particles.

The auxiliary states (the fault parameters) are handled by sepa-
rate IMM estimators, one per each measurement channel. The state
vector in the IMM filter, designed for the i th measurement chan-
nel, is composed of a single state b(i)

k , that is, of the measurement
bias in this channel. The corresponding mode parameter is the fault
indicator γ

(i)
k , which takes two values: 0 and 1. According to the

number of measurements, one, thus, has to run four separate IMM
filters, each having a single state and a binary mode, per particle, to
implement the proposed filtering scheme.

The entire IMM-based R–B estimation scheme is termed, in the
context of the present numerical study, RB–IMM/QPF.

Comparison to a Global IMM Filter
As mentioned earlier, a natural candidate filtering algorithm for

hybrid systems, such as the system used in this example, is the IMM
filter.9 The implementation of the IMM methodology requires de-
vising a special elemental filter for each mode of the system. In the
present example, the modes of the system are given by all possible
combinations of magnetometer fault indicator values, amounting
to 24 modes. Thus, the IMM bank should consist of 16 elemental
filters. Given each mode, the estimation problem for the correspond-
ing mathematical model is nonlinear; hence, each elemental filter
is a nonlinear filter, for example, an EKF or a UKF. In the present
example, the UKF was used. The particular UKF implementation
was chosen to be the recently presented unscented quaternion es-
timator (USQUE) of Ref. 17. The USQUE state vector was aug-
mented to take into account the measurement error dynamics given
by Eqs. (38).

It is obvious that the performance of the IMM estimator critically
depends on the performance of its elemental filters; an unsatisfac-
tory performance of the elemental filters would necessarily lead to
unsatisfactory performance of the entire filter bank. Because one of
the elemental filters of the IMM scheme corresponds to the fault-free
case, this filter is first compared to the new RB–IMM/QPF scheme
in the fault-free situation, before comparing the performance of the
entire UKF-based IMM estimator to the RB–IMM/QPF estimator
in the fault-prone scenario.

In the fault-free situation, the UKF-based IMM estimator reduces
to the USQUE of Ref. 17. Similarly, in the fault-free case, the RB-
IMM/QPF filter reduces to the QPF of Ref. 13. It is assumed that both
algorithms have no a priori knowledge about the initial spacecraft

Fig. 1 RMS attitude estimation error in the fault-free scenario: ——,
QPF and – – –, USQUE.

attitude. Figure 1 presents the root mean square (RMS) attitude
estimation errors of the QPF and USQUE, obtained based on 10,000
Monte Carlo runs. The attitude estimation error is defined as the
rotation angle between the estimated and the true attitudes, that is,

�ϕk
�= 2 cos−1(q4k q̂4k|k + �

k
· �̂k|k) (40)

where

q̂k|k = [
�̂T

k|k q̂4k|k
]T

(41)

is the quaternion estimate. Figure 1 clearly demonstrates the su-
periority of the particle filtering approach over the approximate
UKF approach. (Notice the ordinate logarithmic scale.) This re-
sult, which agrees well with the results reported in Ref. 13, is due
to the strong nonlinearity in the system measurement equations.
Because the USQUE plays the role of an elemental filter in the
global UKF-based IMM scheme, and because other elemental fil-
ters in that scheme consist of the same fault-free filter when aug-
mented by the fault states, it is obvious, then, that in the fault-prone
scenario, when the fault probability is nonzero, the proposed RB–
IMM/QPF scheme would be vastly superior to the UKF-based IMM
approach.

Comparison to the Reversed R–B Approach
As already mentioned, another UKF-based approach is the re-

versed R–B method, presented in Ref. 15. According to this method,
the continuously distributed states (in the present case, the attitude
quaternion as well as the measurement biases) are estimated by a
closed-form filter. The fault mode parameters are estimated by a PF.

To compare the RB–IMM/QPF to the reversed approach of
Ref. 15, the latter filter is run with a PF employing 30 particles to ap-
proximate the distribution of the 4 binary fault indicators, whereas
a UKF is used to estimate the state vector. This filter is termed
RB–UKF/PF.

Figure 2 presents the rms attitude estimation errors of the
RB-IMM/QPF and reversed R–B algorithms. (Notice the ordi-
nate logarithmic scale.) The rms errors of the RB–IMM/QPF
and the RB–UKF/PF are based on 6000 Monte Carlo runs. Note
from Fig. 2 that the RB–IMM/QPF error is more than 20 times
smaller than that of the RB–UKF/PF. The spikes in the RB–
IMM/QPF rms error curve are due to the reinitialization logic
implemented in the RB–IMM/QPF algorithm and are associated
with the particle set dimension reduction stage. Because the fil-
ter is fully aware of the initialization procedure, this phenomenon
can be alleviated, and moreover, an indicator of the temporary
estimation vulnerability can be provided to the user during filter
initializations.



RAPOPORT AND OSHMAN 1177

Fig. 2 RMS angular errors in the fault-prone situation: ——,
RB–IMM/QPF and – – –, RB–UKF/PF.

Fig. 3 Effective measurement bias errors in the fault-prone situation:
——, RB–IMM/QPF and – – –, RB–UKF/PF.

Figure 3 shows the time behavior of the root sum square of the
components of the effective measurement bias rms estimation errors
for the two compared filters. The effective biases are defined as

b(i)
effk

�= γ
(i)
k b(i)

k , i = 1, 2, 3, 4 (42)

One can see that, whereas the RB–IMM/QPF estimation error mono-
tonically decreases with time, the estimation error associated with
the RB–UKF/PF is unable to reach even its a priori value.

VI. Conclusions
This paper has addressed the problem of fault-tolerant particle

filtering in highly nonlinear systems with fault-prone scalar mea-
surement channels. As an alternative to the straightforward but com-
putationally prohibitive state augmentation methodology, the R–B
technique has been adopted in this work to reduce the number of
particles. The filtering algorithm presented evaluates just the main
state variables using a particle set, whereas the parameters of each
measurement channel are estimated using a separate scalar IMM
algorithm. This approach is reversed compared to the approach of
another recently reported filter using the R–B methodology. The

role reversal between the PF and the closed-form filter is significant
in highly nonlinear systems because the approach taken herein ap-
plies no approximation to the nonlinear part of the system. Thus, the
proposed filtering scheme enjoys increased accuracy and robustness
relative to comparable existing algorithms.

A numerical study involving spacecraft attitude estimation using
four fault-prone magnetometers is presented. The study compares
the performance of the proposed filter to the conventional IMM
approach (using the unscented Kalman filtering technique for its el-
emental filters) and to the reversed R–B approach whereby the sys-
tem’s mode variables are estimated using a PF and all other states are
estimated via a UKF. The example clearly demonstrates the superi-
ority of the proposed technique over both UKF-based alternatives.
In particular, the study demonstrates the advantage of using the par-
ticle filtering methodology, relative to using the classical approach
based on the IMM methodology.
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