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Sequential Attitude and Attitude-Rate Estimation
Using Integrated-Rate Parameters
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A sequential nonlinear algorithm is presented for gyroless satellite attitude and attitude-rate estimation using
vector observations. Based on a third-order, minimal-parametermethod for solving the attitude matrix kinematic
equation, the resulting estimator is rendered computationally ef� cient. Employing tracking theory concepts, the
angular acceleration is modeled as an exponentially autocorrelated stochastic process, thereby avoiding the use of
the typically uncertain spacecraft dynamic model. The estimator’s performance is demonstrated via a numerical
example, in which it is compared with the estimator implemented onboard the gyroless Solar, Anomalous, and
Magnetospheric Particle Explorer spacecraft.

Introduction

S PACECRAFT attitude determination from vector observations
has been intensively investigated over the last three decades.

In most practical implementations of attitude control systems on
gyro-basedspacecraft,attitude-rateinformation is obtained from an
onboard triad of rate gyroscopes. This rate information is used in
the propagation stage of an attitude estimator, which utilizes noisy
vector observations,resolved in both the body-� xed coordinatesys-
tem and in a reference system, to estimate the spacecraft attitude
and gyro drift rates.1;2

With the recent advent of accurate, high-bandwidthattitude sen-
sors, the method of attitudedetermination from vector observations
has been extended by several researchers to address the estimation
of attitude rate as well, thus facilitating its use on gyroless space-
craft. Gyroless attitude and attitude-rate estimation is, obviously,
of prime importance in small, inexpensive spacecraft such as the
Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX),
which do not carry gyroscopesbut, nevertheless,need to determine
their angular velocity for attitude control and attitude propagation
purposes.3 However, even spacecraft that were designed to carry
gyroscopes can bene� t from the use of attitude-rate estimation in
the event of an unexpected gyro failure.4

In Ref. 5, high-bandwidth star-tracker measurements were used
to solely drive an error-state extended Kalman � lter (EKF), which
estimates both the spacecraft attitude quaternion and its angular
rate. Reference 6 proposed an attitude and attitude-rate estimator,
whichutilizestemporalderivativesof vector(Earth’s magnetic � eld)
measurements and dynamically propagates the angular velocity es-
timates using the nonlinear Euler’s equations. A similar concept
was employed in Ref. 7, which introducedan angular-rateestimator
(assuming a known attitude), proposing to alleviate the computa-
tional complexity normally associated with the Euler equations-
based EKF by extending the suboptimal interlaced Kalman � lter
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scheme proposed in Ref. 8. In Ref. 9, predictive � ltering was ap-
plied to estimate the attitude quaternion in a gyroless setting.Using
Euler’s equations (assuming that the spacecraft dynamic model is
accurately known), the attitude rate was estimated as a byproduct
from the estimated spacecraft angular momentum.

A major disadvantage of model-based estimation methods is
that this model is frequently highly uncertain and typically ren-
ders the resultingestimator computationallyburdensomeand sensi-
tive to uncertainties in the spacecraft parameters,10 e.g., the space-
craft inertia tensor, momentum wheel dynamic model, and thruster
pressure-thrust calibration. The inherent dif� culty in obtaining ac-
curate spacecraft dynamic models has been well recognized in pre-
vious works. Thus, Ref. 11 proposed a method, based on the batch
minimum model error estimator, which can estimate the attitude of
a poorly modeled spacecraft and, moreover, can be used to gener-
ate a dynamic model for the system in a postestimation analysis. In
Ref. 12, the attitude and attitude-rate estimator utilized the space-
craft dynamic model, but the disturbance torque (representing a
variety of unmodeledeffects, e.g., atmosphericdrag, solar radiation
pressure, etc.) was stochastically modeled as a random-walk pro-
cess. Reference 6, while also employing the Euler’s equations for-
mulation, suggested solving the associated uncertainty problem by
modeling the inherent rate errors using a � rst-order Markov model.

The algorithm proposed in the present work simultaneously es-
timates both the attitude matrix and the spacecraft angular velocity
from vector measurements, using a third-order attitude parameteri-
zation based on the integrated-rate parameters (IRP).13 In contrast
with previousmodel-basedestimation methods, the approach taken
here makes no use of the spacecraft dynamic model. Instead, time
propagationof the estimated variables is performed in the proposed
� lter by modeling the spacecraft angular acceleration as an expo-
nentially autocorrelated stochastic process and using a polynomial
kinematicmodel, a conceptborrowed from tracking theory,14 where
it has been widely used to estimate the motion of noncooperative
targets. A similar, but simpler, approach was employed for the Ap-
plied Technology Satellite 6 (Ref. 15). Extending the approach of
Ref. 16, in which vector measurementswere used to estimate the at-
titude of a gyro-basedspacecraft, the presentwork also differs from
previous work in the following two respects. First, the acquired
vector measurements are directly processed to extract attitude and
attitude-rate information, thus avoiding the precomputationof tem-
poral derivativesof these noisy measurements, as required by some
other � ltering schemes.7;17 Second, in contrast with other methods
relying mainly on the attitude quaternion, the algorithm presented
here directly estimates the attitude matrix, a natural, nonsingular
attituderepresentation.Buildingon the minimal IRP third-orderpa-
rameterization, the new estimator assigns just three state variables
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for the estimation of the nine-parameterattitude matrix, which is at
the heart of its computationalef� ciency.

In the following section we brie� y review the IRP method for
the solution of the attitude evolution equation. This is followed
by a presentation of the angular acceleration kinematic model.
The � ltering stage of the estimator is then developed, applying
minimum mean-squared error estimation theory to a perturbation
model, obtained by linearizing the observation equation about the
predicted state. An attitude matrix orthogonalizationprocedure, in-
corporated to enhance the algorithm’s accuracy and robustness, is
then discussed, followed by a presentation of the estimator’s pre-
diction stage. The algorithm’s performance is demonstrated via a
numerical example, in which it is compared with the performance
of the estimator used in the SAMPEX spacecraft. Concluding re-
marks are offered in the last section.

Integrated-Rate Parameters
Consider the matrix differential equation

PV .t/ D W .t/V .t/; V .t0/ D V0 (1)

where V .t/ 2 Rn;n , W .t/ D ¡W T .t/ for all t ¸ t0, V0V T
0 D I , and

the overdot indicates the temporal derivative. This equation arises
naturally in three-dimensional attitude determination problems, as
well as in the square-root solution of the matrix differential Riccati
equation.18 Let the skew-symmetric matrix A.t; t0/ be de� ned as

A.t; t0/

t

t0

W .¿/ d¿ (2)

Then, a third-order, minimal-parameter solution of Eq. (1) [using
only the m D n.n ¡ 1/=2 off-diagonal terms of A.t; t0/] is13

QV .t; t0/ I C A.t; t0/ C
A2.t ; t0/

2!
C

A3.t; t0/

3!

C
.t ¡ t0/

3!
[A.t ; t0/W0 ¡ W0 A.t ; t0/] V0 (3)

where W0 D W .t0/.
In the three-dimensionalcase, the off-diagonalentries of A.t ; t0/,

termed IRPs, are the angles resulting from a temporal integra-
tion of the three components of the angular velocity vector !.t/
[!1.t/ !2.t/ !3.t/]T , where !i is the angular velocity component
along the i axis of the initial coordinate system and i D 1; 2; 3 for
x; y; z, respectively.

Remark 1. The distinction between the IRP and Euler angles
shouldbe emphasized.Unlike the latter, the IRP set can onlyserve as
an approximate, third-order attitude parameterization [in the sense
of Eq. (3)], and, hence, the parameters’ usefulnessdependson their
size. In the � ltering algorithmpresented in this work, the size of the
IRP vector is controlledby proper selection of the � lter’s sampling
intervaland,aswill be shownin the sequel,by applyingresetcontrol.

Notice that in Eq. (3) the approximate solution QV .t; t0/ is com-
puted using the matrix W evaluatedat t0 . For the sake of the ensuing
development, it will prove useful to derive an alternativethird-order
solution, which is directly based on W .t/.

Theorem 1. Let the matrix-valued function NW0.t/ be de� ned as

NW0.t/ W .t/ ¡ .t ¡ t0/ PW .t/ (4)

Then, the following matrix-valuedfunction is a third-orderapprox-
imation of V .t/:

QV1.t; t0/ I C A.t; t0/ C
A2.t ; t0/

2!
C

A3.t ; t0/

3!

C
t ¡ t0

3!
[A.t ; t0/ NW0.t/ ¡ NW0.t/A.t; t0/] V0 (5)

Proof. To obtainEq. (5), the followingTaylor’s expansionfor W0:

W0 D W .t/ ¡ PW .t/.t ¡ t0/ C O .t ¡ t0/
2 (6)

is used in the commutator term of Eq. (3).

That QV1.t; t0/ constitutesa third-orderapproximationof the solu-
tion is proven by showing that all of the derivatives of this function
up to order three are equal to the corresponding derivatives of the
exact solution at t0. This can be done by a straightforward, albeit
tedious, direct comparison of the � rst three derivativesof V .t/ and
QV1.t ; t0/ at t0 .

In the three-dimensionalcase, the orthogonal matrix differential
equation (1) is rewritten as

PD.t/ D Ä.t/D.t/; D.t0/ D D0 (7)

where D.t/ is the attitude matrix, or the direction cosine matrix
(DCM), Ä.t/ D ¡[!.t/£], and [!.t/£] is the usual cross product
matrix corresponding to !.t/. In this case, the matrix A.t; t0/ takes
the form

A.t ; t0/ ¡[µ.t/£] (8)

where the parameter vector µ.t/ is de� ned as

µ.t/ [µ1.t/ µ2.t/ µ3.t/]
T (9)

and

µi .t/
t

t0

!i .¿ / d¿; i D 1; 2; 3 (10)

Now let the sampling period be denoted by T tk C 1 ¡ tk . Using
the notation µ.k/ µ.tk/, the parameter vector at time tk is

µ.k/ D [µ1.k/ µ2.k/ µ3.k/]T (11)

and Eq. (10) implies

µi .k/ D
tk

t0

!i .¿/ d¿; i D 1; 2; 3 (12)

From Eq. (12) we have

µ.k C 1/ D µ.k/ C
tk C 1

tk

!.¿ / d¿ (13)

De� ning A.k C 1; k/ to be the discrete-time analog of A.t ; t0/, i.e.,

A.k C 1; k/ ¡[.µ.k C 1/ ¡ µ.k//£] (14)

Eq. (3) is rewritten as

D.k C 1/ D I C A.k C 1; k/ C 1
2 A2.k C 1; k/ C 1

6 A3.k C 1; k/

C 1
6
T [A.k C 1; k/Ä.k/ ¡ Ä.k/A.k C 1; k/] D.k/ (15)

Similarly, let PÄ.k C 1/ ¡[ P!.k C 1/£] and 9.k C 1/ ¡[Ã.k C
1/£], where

Ã.k C 1/ !.k C 1/ ¡ P!.k C 1/T (16)

Then the correspondingdiscrete-time equivalent of Eq. (5) is

D.k C 1/ D I C A.k C 1; k/ C 1
2 A2.k C 1; k/

C 1
6 A3.k C 1; k/ C 1

6 T [A.k C 1; k/9.k C 1/

¡ 9.k C 1/A.k C 1; k/] D.k/ (17)

Kinematic Motion Model
To avoid using the uncertain spacecraft dynamic model, we treat

the spacecraft as a noncooperative target whose motion is to be
tracked by our estimator. Using this approach, the attitude/attitude-
rate estimator to be developed in the sequel becomes a motion
tracker. To develop our estimator we can, therefore, use any of
the many methods that have been developed over the years in the
tracking theory area. In this work we have chosen the Singer time-
correlated maneuvering-acceleration model, proposed in 1970 for
the purpose of estimating the states of maneuvering targets.14 Ac-
cording to this model, which has been one of the foundations in
the area of maneuvering target tracking (e.g., air-to-air missile vs
aircraft scenario) since its introduction,19;20 the target acceleration
is modeled as a zero-mean, exponentiallyautocorrelatedstochastic
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process. It should be noted that, although more sophisticated mod-
els, which have been developedover the years,20;21 could have been
used for the purposeof the presentwork, the Singer model has been
chosen here to simplify the ensuing development and clarify the
main approach.

Using the Singer model, then, the angular accelerationkinematic
model is the following � rst-order Markov process:

R!.t/ D ¡3 P!.t/ C Qº.t/ (18)

For simplicity, a decoupledkinematic model is chosen for the three
angular-rate components, i.e.,

3 diagf1=¿1; 1=¿2; 1=¿3g (19)

where f¿i g3
i D 1 are the acceleration decorrelation times along the

corresponding body axes (a more elaborate model can be used, as
a simple extension of the present approach). The driving noise is a
zero-mean white process, with

Ef Qº.t/ QºT .s/g D QQ.t/±.t ¡ s/ (20)

and the power spectral density matrix is

QQ.t/ D 2362 (21)

where

6 diagf¾1; ¾2; ¾3g (22)

To determine the noisevariancesin Eq. (22), the Singer acceleration
probabilisticmodel is used14: The angular accelerationcomponents
f P!i g3

i D 1 can be 1) equal to P!Mi with probability pM i , 2) equal to
¡ P!Mi with probability pM i , 3) equal to zero with probability p0 i ,
or 4) uniformly distributed over the interval [¡ P!Mi ; P!Mi ] with the
remaining probability mass. Using this model, it follows that

¾ 2
i D P!2

Mi
3 1 C 4pM i ¡ p0i (23)

Remark 2. The parameters P!Mi , pM i , and p0i are considered tun-
ing parameters. As is customarily done, they are selected before
the mission by experience with real and simulated data, so as to
tune the � lter to match the characteristics of the speci� c problem.
However, we note that adaptive trackingalgorithmscan be used that
automatically adapt the model parameters on-the-� y.21

Now let the system’s state vector be de� ned as

x.t/ [µT .t/ !T .t/ P!T .t/]T (24)

then the state equation is

Px.t/ D Fx.t/ C Qv.t/ ´
0 I 0

0 0 I

0 0 ¡3

x.t/ C
0

0

Qº.t/

(25)

with obvious de� nitions of F and Qv.t/. Corresponding to the sam-
pling interval T , the discrete-time state equation is

x.k C 1/ D 8.T /x.k/ C v.k/ (26)

where the transition matrix is

8.T / ´ eFT D
I T I 3¡2.e¡3T ¡ I C T 3/

0 I 3¡1.I ¡ e¡3T /

0 0 e¡3T

(27)

and v.k/ is a zero-mean, white noise sequence, with covariance

Q.k/ E fv.k/vT .k/g D
T

0

eF .T ¡ t/ diagf0; 0; QQ.t/geF T .T ¡ t/ dt

(28)

Explicit computation of the integrals in Eq. (28) yields the follow-
ing expressions for the entries of the symmetric covariance matrix
Q.k/:

Q11.k/ D 3¡462 I C 23T ¡ 232T 2 C 2
3
33T 3

¡ e¡23T ¡ 43T e¡3T (29a)

Q12.k/ D 3¡362.I ¡ 23T C 32T 2 ¡ 2e¡3T

C e¡23T C 23T e¡3T / (29b)

Q13.k/ D 3¡262.I ¡ e¡23T ¡ 23T e¡3T / (29c)

Q22.k/ D 3¡262.4e¡3T ¡ 3I ¡ e¡23T C 23T / (29d)

Q23.k/ D 3¡162.e¡23T C I ¡ 2e¡3T / (29e)

Q33.k/ D 62.I ¡ e¡23T / (29f)

Measurement Processing
Assume that at tk C 1 we haveon handthe minimum-mean-squared

error (MMSE) predicted vector Ox.k C 1 j k/ and its correspond-
ing prediction error covariance matrix P.k C 1 j k/ E fQx.k C
1 j k/QxT .k C 1 j k/g, where the estimation error is de� ned as

Qx. j j k/ x. j/ ¡ Ox. j j k/ (30)

As the � rst step in developingthe measurementupdatealgorithm,
we next formulate the observation equation, relating the acquired
vector measurements to the state.

Observation Statistical Model
Let a new pair of corresponding noisy vector measurements be

acquired at tk C 1. This pair consists of the unit vectors u.k C 1/
and v.k C 1/, which represent the realizations of the same vector
as modeled in the reference coordinate system and measured in the
body coordinate system, respectively. The direction-cosine matrix
D.kC1/, representingthe trueattitudeof thebodycoordinatesystem
relative to the reference system at time tk C 1 , transforms the true
vector representationu0 in the reference coordinate system into its
corresponding true representationv0 in the body coordinate system
according to

v0.k C 1/ D D.k C 1/u0.k C 1/ (31)

Assuming no constraint on the measurement noise direction, the
body-frame measured unit vector v.k C 1/ is related to the true
vector according to

v.k C 1/ D
v0.k C 1/ C n0

v .k C 1/

kv0.k C 1/ C n0
v .k C 1/k

(32)

where n0
v.k C 1/ » N .0; R 0

v.k C 1// is the white sensor measure-
ment noise. Because both v0.k C 1/ and v.k C 1/ are unit vectors, it
follows from Eq. (32) that

v.k C 1/ D v0.k C 1/ C nv .k C 1/ (33)

where nv.k C 1/ P?
v0

.k C 1/n0
v.k C 1/ » N [0; Rv.k C 1/] is

the effective white measurement noise, P?
v0

.k C 1/ I ¡ v0.k C
1/vT

0 .k C 1/ is the orthogonal projector onto the orthogonal com-
plement of spanfv0.k C 1/g, and the measurement noise covariance
matrix is

Rv .k C 1/ P?
v0

.k C 1/R 0
v.k C 1/P?

v0
.k C 1/ (34)

To account for nonideal effects, e.g., star catalog errors, it is as-
sumed that themeasuredreferencevectoris related to the true vector
according to

u.k C 1/ D u0.k C 1/ C nu.k C 1/ (35)

where nu ? u0 is a white measurement noise that is uncorrelated
with nv and satis� es nu.k/ » N [0; Ru.k/], with Ru.k/ being a
known covariance matrix.

Measurement Linearization
To relate the information contained in the measurements to the

state vector at tk C 1 , Eq. (31) is rewritten as

v0.k C 1/ D

D[µ.k C 1/ ¡ µ.k/; !.k C 1/; P!.k C 1/; D.k/]u0.k C 1/ (36)

where the notation re� ects that by Eqs. (14), (16), and (17) the
attitude at time tk C 1 is related to the attitude at time tk via the IRP



388 OSHMAN AND MARKLEY

vector difference µ.k C 1/ ¡ µ.k/, the angular rate !.k C 1/, and
the angular acceleration P!.k C 1/.

To process the information contained in the new vector measure-
ments, the nonlinear measurement Eq. (36) is next linearized about
a nominal state, consisting of the most recent estimates. Assuming
that after the previous measurement update (at tk ) linearization has
been performed about the a posteriori state estimate, the resulting
nominal state vector at tk C 1 is the predicted estimate Ox.k C 1 j k/.
Therefore, the predicted state vector is assumed to be related to the
true one according to

x.k C 1/ D Ox.k C 1 j k/ C ±x.k C 1/

´
Oµ.k C 1 j k/

O!.k C 1 j k/
OP!.k C 1 j k/

C
±µ.k C 1/

±!.k C 1/

± P!.k C 1/

(37)

where ±µ.k C 1/, ±!.k C 1/, and ± P!.k C 1/ are the perturbations
of the state components about the nominal, i.e., predicted, state.
Let OD¤.k j k/ denote the a posteriori,orthogonalizedestimate of the
attitude matrix at time tk , to be discussed in the sequel. Using now
the most recent estimates for D.k/ and x.k/, namely, OD¤.k j k/ and
Ox.k j k/, respectively, in Eq. (36), it follows from Eqs. (33), (35),
and (37) that

v.k C 1/ ¡ nv.k C 1/ D D[ Oµ.k C 1 j k/ C ±µ.k C 1/

¡ Oµ.k j k/; O!.k C 1 j k/ C ±!.k C 1/; OP!.k C 1 j k/

C ± P!.k C 1/; OD¤.k j k/][u.k C 1/ ¡ nu.k C 1/] (38)

As discussed in the sequel, the a posteriori IRP estimate is ze-
roed after each measurement update (due to full reset control
of the IRP state). We will, therefore, use the reset value of the
IRP estimate, Oµc.k j k/ D 0, in Eq. (38). Now expand D about
the nominal state using a � rst-order Taylor series expansion, i.e.,

D[ Oµ.k C 1 j k/ C ±µ.k C 1/; O!.k C 1 j k/ C ±!.k C 1/; OP!.k C 1 j k/ C ± P!.k C 1/; OD¤.k j k/]

D OD.k C 1 j k/ C
3

i D 1

@ D[µ.k C 1/; O!.k C 1 j k/; OP!.k C 1 j k/; OD¤.k j k/]

@µi Oµ.k C 1 j k/

±µi .k C 1/

C
3

i D 1

@D[ Oµ.k C 1 j k/; !.k C 1/; OP!.k C 1 j k/; OD¤.k j k/]

@!i
O!.k C 1 j k/

±!i .k C 1/

C
3

i D 1

@D[ Oµ.k C 1 j k/; O!.k C 1 j k/; P!.k C 1/; OD¤.k j k/]
@ P!i

OP!.k C 1 j k/

± P!i .k C 1/ (39)

where . /j³ denotes evaluated at ³ and

OD.k C 1 j k/

D[ Oµ.k C 1 j k/; O!.k C 1 j k/; OP!.k C 1 j k/; OD¤.k j k/] (40)

Differentiating Eq. (17), the sensitivity matrices appearing in
Eq. (39) are computed as

@

@µi
D[µ.k C 1/; O!.k C 1 j k/; OP!.k C 1 j k/; OD¤.k j k/]

D G i [µ.k C 1/; OÃ.k C 1 j k/] OD¤.k j k/ (41a)

@

@!i
D[ Oµ.k C 1 j k/; !.k C 1/; OP!.k C 1 j k/; OD¤.k j k/]

D
1

6
T Fi [ Oµ.k C 1 j k/] OD¤.k j k/ (41b)

@

@ P!i
D[ Oµ.k C 1 j k/; O!.k C 1 j k/; P!.k C 1/; OD¤.k j k/]

D ¡
1
6

T 2 Fi [ Oµ.k C 1 j k/] OD¤.k j k/ (41c)

for i D 1; 2; 3, where OÃ.k C 1 j k/ O!.k C 1 j k/ ¡ T OP!.k C 1 j k/
and the sensitivity matrices fG i ; Fi g3

i D 1 are

G i .µ; Ã/ D 1
2 µeT

i C ei µ
T ¡ µi I ¡ 1 ¡ 1

6 kµk2 [ei £]

C 1
6 T ÃeT

i ¡ ei Ã
T C 1

3 µi [µ£] (42a)

Fi .µ/ D ei µ
T ¡ µeT

i (42b)

where ei is the unit vector on the i th axis, i D 1; 2; 3.
Remark 3. In a typical application, it can be assumed that the

parameters fµi g3
i D 1 are small, such that the second-orderquantities

fµi µ j g3
i; j D 1 are negligible in Eq. (42a). Using this small-angle ap-

proximationresults in much simpler forms for G i .µ; Ã/. The actual
use of either Eq. (42a) or its small-angleapproximationdepends, in
practice, on the dynamics of the speci� c application.

Using Eq. (39) in Eq. (38) and neglecting second-order terms
yields

v.k C 1/ ¡ OD.k C 1 j k/u.k C 1/ D H .k C 1/±x.k C 1/

¡ OD.k C 1 j k/nu.k C 1/ C nv.k C 1/ (43)

where the observation matrix H .k C 1/ is written in block matrix
form as

H .k C 1/ ´ [H1.k C 1/ H2.k C 1/ H3.k C 1/] (44)

and the columns of the submatrices Hi .k C 1/ 2 R3;3 , i D 1; 2; 3,
are

H1 j .k C 1/ D G j [ Oµ.k C 1 j k/; OÃ.k C 1 j k/] OD¤.k j k/u.k C 1/

(45a)

H2 j .k C 1/ D 1
6
T F j [ Oµ.k C 1 j k/] OD¤.k j k/u.k C 1/ (45b)

H3 j .k C 1/ D ¡T H2 j .k C 1/ (45c)

for j D 1; 2; 3. De� ne now the effective measurement and mea-
surement noise to be, respectively,

y.k C 1/ v.k C 1/ ¡ OD.k C 1 j k/u.k C 1/ (46)

n.k C 1/ nv.k C 1/ ¡ OD.k C 1 j k/nu.k C 1/ (47)

Then, using these de� nitions in Eq. (43) yields the following mea-
surement equation:

y.k C 1/ D H .k C 1/±x.k C 1/ C n.k C 1/ (48)

The white measurementnoise is n.k C 1/ » N [0; R.k C 1/] where

R.k C 1/ Rv .k C 1/ C OD.k C 1 j k/Ru.k C 1/ ODT .k C 1 j k/

(49)
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Measurement Update
From Eqs. (30) and (37) it follows that

±x.k C 1/ D x.k C 1/ ¡ Ox.k C 1 j k/ D Qx.k C 1 j k/ (50)

Because Ox.k C 1 j k/ is an unbiased, MMSE predictor, we have

Ef±x.k C 1/g D E f Qx.k C 1 j k/g D 0 (51)

and

covf±x.k C 1/g D covf Qx.k C 1 j k/g D P.k C 1 j k/ (52)

yielding

±x.k C 1/ » N [0; P.k C 1 j k/] (53)

Using the linearized measurement equation (48) and the statistical
properties of the measurement and prediction errors, the MMSE
estimator of ±x.k C 1/ is

±x.k C 1 j k C 1/ D K .k C 1/y.k C 1/ (54)

where K .k C 1/, the estimator gain matrix, is computed as

K .k C 1/ D P.k C 1 j k/H T .k C 1/

£ [H .k C 1/P.k C 1 j k/H T .k C 1/ C R.k C 1/]¡1 (55)

Also, from Eq. (50) we have

±x.k C 1 j k C 1/ D Ox.k C 1 j k C 1/ ¡ Ox.k C 1 j k/ (56)

which, used in Eq. (54), yields the state measurement update equa-
tion

Ox.k C 1 j k C 1/ D Ox.k C 1 j k/ C K .k C 1/y.k C 1/ (57)

To derive the covariance update equation, subtract x.k C 1/ from
both sides of the last equation and use Eqs. (48) and (50) to obtain

Qx.k C 1 j k C 1/ D [I ¡ K .k C 1/H .k C 1/]Qx.k C 1 j k/

¡ K .k C 1/n.k C 1/ (58)

from which the resulting covarianceupdate equation is

P.k C 1 j k C 1/ D [I ¡ K .k C 1/H .k C 1/]

£ P.k C 1 j k/[I ¡ K .k C 1/H .k C 1/]T

C K .k C 1/R.k C 1/K T .k C 1/ (59)

where the � ltering error covariance matrix P.k C 1 j k C 1/ is

P.k C 1 j k C 1/ E[Qx.k C 1 j k C 1/QxT .k C 1 j k C 1/] (60)

To compute the measurement-updated attitude matrix at time
tk C 1, we use the most recent estimate Ox.k C 1 j k C 1/ and the es-
timated attitude matrix corresponding to time tk in Eq. (17). This
yields

OD.k C 1 j k C 1/ D I C OA.k C 1; k/ C 1
2

OA2.k C 1; k/

C 1
6

OA3.k C 1; k/ C 1
6 T [ OA.k C 1; k/ O9.k C 1 j k C 1/

¡ O9.k C 1 j k C 1/ OA.k C 1; k/] OD¤.k j k/ (61)

where the a posteriori estimates of A.k C 1; k/ and 9.k C 1/ are
de� ned, respectively,as

OA.k C 1; k/ ¡[ Oµ.k C 1 j k C 1/£] (62)

O9.k C 1 j k C 1/ ¡[ OÃ.k C 1 j k C 1/£] (63)

and where OÃ.k C1 j kC1/ O!.kC1 j k C1/¡T OP!.k C1 j k C1/ and
OD¤.k j k/ is the a posteriori, orthogonalizedestimate of the attitude

matrix at time tk , to be discussed in the sequel.
Finally, because the a posterioriattitude matrix, OD.k C1 j k C1/,

is computedbased on the a posterioriestimate, Oµ.k C 1 j k C 1/, this
implies a full reset control22 of the parameter vector, i.e.,

µc.k C 1/ D µ.k C 1/ ¡ Oµ.k C 1 j k C 1/ (64)

where µc.k C1/ is the reset state vector at tk C 1 and a corresponding
reset of the state estimate

Oµc.k C 1 j k C 1/ D 0 (65)

which is then used in the ensuing time propagation step.
Remark 4. Notice that, because the reset control is applied to

both the state vector and its estimate, no changes are necessary in
the estimation error covariance matrix.

Attitude Matrix Orthogonalization
To improve the algorithm’s accuracy and enhance its stability,

an additional orthogonalization procedure is introduced into the
estimator, following the measurement update stage. In this proce-
dure, the orthogonal matrix closest to the � ltered attitude matrix is
computed.

Given the � ltered attitude matrix OD.k C 1 j k C 1/, the matrix
orthogonalizationproblem is to � nd the matrix

OD¤.k C 1 j k C 1/ arg min
D 2 3;3

k OD.k C 1 j k C 1/ ¡ DkF (66a)

subject to

DT D D I; det D D C1 (66b)

where k kF is the Frobenius matrix norm.
The matrix orthogonalizationproblem can be easily solved using

the singular value decomposition (SVD)23 as follows. Let

OD.k C 1 j k C 1/ D U .k C 1/6.k C 1/V T .k C 1/ (67)

be the SVD of OD.k C1 j k C1/, where U .k C1/ and V .k C1/ are the
left and right singular vector matrices, respectively, and 6.k C 1/
is the singular value matrix. Then

OD¤.k C 1 j k C 1/ D U .k C 1/

£ diagf1; 1; detU .k C 1/ det V .k C 1/gV T .k C 1/ (68)

The excessive computational burden associated with the SVD
might render its use prohibitive in certain applications,e.g., in real-
time attitude determination and control. In such cases, an iterative,
fast orthogonalizationscheme, introduced in Ref. 24, can be used.
Usinga singlestep of this iteration,an improved(nearlyorthogonal),
a posteriori estimate of the attitude matrix, is computed as

OD¤.k C 1 j k C 1/ D N .k C 1/ OD.k C 1 j k C 1/ (69)

where the linear transformation that maps the a posteriori attitude
matrix into its orthogonalizedversion is

N .k C 1/ 3
2 I ¡ 1

2
OD.k C 1 j k C 1/ ODT .k C 1 j k C 1/ (70)

Remark 5. As presented, the orthogonalizationstep is performed
after each measurement update. However, in practice it was found
that using the orthogonalizationprocedure also after the time prop-
agation step, during the � lter transient period, improves the � lter’s
convergence rate.
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Remark 6. The introductionof the externalorthogonalizationstep
into the estimator may, conceivably,affect its statisticalcharacteris-
tics, thus callingfor appropriateadjustmentsin the algorithmto pre-
serve its theoretical properties.However, using an approach similar
to that used in Ref. 16, it can be shown that, to � rst-order accuracy,
the orthogonalizationprocedure does not affect the estimator.

Time Propagation
In the prediction step at tk , the reset a posteriori estimate at time

tk , Oxc.k j k/ [computed with the reset IRP estimate according to
Eq. (65)] and its correspondingerror covariancematrix P.k j k/ are
propagated to time tk C 1 .

Using Eq. (26), we have

Ox.k C 1 j k/ D 8.T /Oxc.k j k/ (71)

Using this result with Eq. (26) yields the covariance propagation
equation

P.k C 1 j k/ D 8.T /P.k j k/8T .T / C 0.T /Q.k/0T .T / (72)

To propagate the attitude matrix to tk C 1 , we use the most recent
IRP, attitude-rate and angular acceleration estimates, and the or-
thogonalized DCM estimate corresponding to tk , in Eq. (17). This
yields

OD.k C 1 j k/ D I C NA.k C 1; k/ C 1
2

NA2.k C 1; k/

C 1
6

NA3.k C 1; k/ C 1
6 T [ NA.k C 1; k/ O9.k C 1 j k/

¡ O9.k C 1 j k/ NA.k C 1; k/] OD¤.k j k/ (73)

where the a priori estimates of A.k C1; k/ and 9.k C1/ are de� ned
as

NA.k C 1; k/ ¡[ Oµ.k C 1 j k/£] (74)

O9.k C 1 j k/ ¡[ OÃ.k C 1 j k/£] (75)

Numerical Example
To demonstratethe performanceof thenew estimator,a numerical

simulation study was performed. Simulating the unitized output of
complete vector sensors that measure all three vector components,
e.g., magnetometers,the measurementswere generatedaccordingto
the following procedure.At each measurement epoch, a reference-
frame modeled (true) unit observationwas randomly generated,and
the correspondingtrue body-frameobservationwas computedusing
Eq. (31). Zero-mean, white Gaussian measurement noise, orthogo-
nal to the true observation directions, was then added to these ob-
servations. The unitized noisy observations then satis� ed Eqs. (33)
and (35), with Rv D ¾ 2

v I and Ru D ¾ 2
u I , where the noise equiv-

alent angles were ¾u D ¾v D 5 arcsec. The initial attitude matrix
estimate was set to the identity matrix (thus assuming that the body
and reference coordinate systems coincide at t0), while the true at-
titude corresponded to the 3–2–1 Euler angle rotation sequence of
Á3 D 10, Á2 D 20, and Á1 D 30 deg, where Ái is the Euler angle
rotation about body axis i . The true angular rate of the body co-
ordinate system relative to the reference coordinate system was set
to

!.t/ D
0:02 sin..2¼=85/t C .¼=4//

0:05 sin..2¼=45/t C .¼=2//

0:03 sin..2¼=65/t C .3¼=4//

deg/s (76)

(i.e., the angular velocity’s direction was time varying), while the
initial angular rate estimateswere all set to zero.The � lter was run at
a rate of 20 Hz, i.e., the sampling intervalwas T D 0:05 s, while the
measurement processing rate was 10 Hz. The angular acceleration
model parameters were set to: ¿ D 10 s, P!M D 10¡4 rad/s2 , pM D
p0 D 0:001 for all three axes.

To quantify the attitude estimation accuracy using a scalar mea-
sure, the attitude error angle is de� ned as the rotation angle that
maps the true attitude to the estimated attitude. This angle, whose
statistical properties were discussed in Ref. 25, can be expressed
as26

’.k/ D 2 arcsin
k OD¤.k j k/ ¡ D.k/kFp

8
(77)

In a similar manner, the attitude-rate estimation error is assessed
using the following scalar rate error measure:

´.k/ k O!.k j k/ ¡ !.k/k (78)

To further demonstrate the performance of the new algorithm,
the same numerical example was also run with the attitude and
attitude-rate estimation algorithms used in the gyroless SAMPEX
spacecraft.3 (SAMPEX, the � rst of NASA’s new small explorer se-
ries, was launched on July 3, 1992, carrying four instruments de-
signed to measure energetic nuclei and electrons over a broad dy-
namic range.) The SAMPEX estimator is brie� y described in the
following.

SAMPEX Attitude/Attitude-Rate Estimator
In the SAMPEX attitude control system, the attitude matrix is

estimated using the TRIAD27 algorithm. Thus, if v1 and v2 are two
unit vector measurements resolved in the body coordinate system
and u1 and u2 are the correspondingunit measurements resolved in
the reference coordinate system, then the TRIAD attitude matrix is

ODTR D V U T (79)

where the matrices V and U are de� ned as

V v1
v1 £ v2

kv1 £ v2k
v1 £ .v1 £ v2/

kv1 £ v2k
(80)

U u1
u1 £ u2

ku1 £ u2k
u1 £ .u1 £ u2/

ku1 £ u2k
(81)

The angular velocity is estimated by averaging the off-diagonalen-
tries of the angular velocity cross-product matrix, computed using
the kinematic attitude evolution equation

[ O!.k/£] D ¡ OPDTR.k/ ODT
TR.k/ (82)

where the attitudematrix rate is estimated using the � nite difference
scheme

OPDTR.k/ D
ODTR.k/ ¡ ODTR.k ¡ 1/

T
(83)

Remark 7. Notice that the SAMPEX estimator is designed to
operate on two vector measurement pairs at each update, whereas
the new estimator requires no more than one pair at each update. In
the simulationsperformedin this study, theSAMPEX algorithmwas
indeed run on twice the amount of data used by the new algorithm.

Results
Figure 1 shows the true Euler angle time histories for the simula-

tion run. These angles were computed from the true attitude matrix
(assuming, according to the conventionadopted at the beginningof
this section,a 3–2–1 Euler angle sequence). Figure 2 shows the time
histories of the attitude error angle, de� ned in Eq. (77), for both
the TRIAD method and the new algorithm. Whereas the TRIAD
algorithm, which is a point estimation algorithm, has no conver-
gence period, it takes the new � lter about 10 s to converge (from
the grossly erroneous initial attitude assumed); however, its steady-
state performance is clearly much better than that of the TRIAD
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a) Á1

b) Á2

c) Á3

Fig. 1 True Euler angle time histories.
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algorithm.Figure 3 presents the time historiesof the rate error mea-
sure, de� ned in Eq. (78), for both the SAMPEX rate estimator and
the new algorithm. Again, and even more than in the case of the
attitude error angle, it is clearly seen that after the new estimator’s
convergence period (of about 10 s), its performance surpasses by
far the performance of the SAMPEX rate estimator. In addition
to the earlier mentioned fact that the SAMPEX rate estimator is
a memoryless algorithm, the inferior performance of this estima-
tor can be attributed to its use of derivatives of noisy vector mea-
surements, which implies ampli� cation of the measurement noise
(the inherent noise ampli� cation associated with differentiation of
noisy measurements is independent of the order of the numerical
differentiation scheme used). In comparison, the new estimator di-
rectly processes the vector measurements to generate attitude-rate
estimates.

Using Figs. 2 and 3 to compare the estimationperformanceof the
new algorithm to the performance of the correspondingalgorithms
implemented in the SAMPEX attitude control system, and noting
that the new algorithmused only half the numberof vector measure-
ments processed by the SAMPEX estimator, the superiority of the
new estimator becomes evident. This should come as no surprise,
though, because the SAMPEX estimators are just memoryless point
estimation (deterministic) algorithms.

a) TRIAD

b) New algorithm

Fig. 2 Attitude error angle: new algorithm vs TRIAD.

To further demonstrate the performanceof the new estimator, the
steady-state estimation error standard deviations of the three Euler
angles, i.e., the angles computed from the estimated attitude matrix
assuming a 3–2–1 rotation sequence, and the three angular velocity
components, are compared in Table 1 for both the new algorithm
and the SAMPEX estimator. (Actual plots of the Euler angle and
rate estimationerror time historiesare presented in Ref. 28.) As can
clearly be observed from Table 1, the new algorithm’s Euler angle
estimation error standard deviations are about three times smaller
than thoseof theTRIAD algorithm,whereasthe rateestimationerror
standarddeviationsaremore thananorderofmagnitudesmaller than
the correspondingSAMPEX estimator’s values.

Table 1 Steady-state estimation error standard deviations
of new algorithm and SAMPEX estimator

Error SAMPEX estimator New algorithm

Á1 , arcsec 8:9 2:9
Á2 , arcsec 9:2 3:1
Á3 , arcsec 8:5 2:9
!1, arcsec/s 114:6 3:2
!2, arcsec/s 119:0 5:0
!3, arcsec/s 126:2 3:1
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a) SAMPEX estimator

b) New algorithm

Fig. 3 Attitude rate error measure: new algorithm vs the SAMPEX estimator.

Conclusions
A computationally ef� cient, nonlinear estimator has been pre-

sented that directly uses vector measurements to estimate both the
attitude matrix and the angular velocity, avoiding precomputation
of the temporal derivatives of these noisy measurements. The al-
gorithm is based on the IRP third-order minimal parameterization
of the attitude matrix, which is at the heart of its computational
ef� ciency. Avoiding the use of the uncertain spacecraft dynamic
model, the � lter uses a polynomial state-space model, in which the
spacecraft angular acceleration is modeled as an exponentially au-
tocorrelated stochastic process, a concept borrowed from tracking
theory. Although the kinematic model used in this study was a sim-
ple, decoupled one, the method can be easily extended if needed
to include more complex, coupled models, to track high-dynamics
spacecraft. Moreover, adaptive estimation algorithms can be used
to identify the parameters of the � lter online.

Simulationsdemonstratetheviability,accuracy,and robustnessof
thenew algorithm.Inparticular,theperformanceof theestimatorhas
beenshownto be superiorto theperformanceof theattitude/attitude-
rate estimator implemented in the SAMPEX spacecraft.
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