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. INTRODUCTION

Attitude determination methods using Global
Positioning System (GPS) signals have been
intensively investigated in recent years. In general,
these methods can be classified into two main
classes. Point estimation algorithms (also called
“deterministic” algorithms), in which the GPS
measurements at each time point are utilized to
obtain an attitude solution independently of the
solutions at other time points, were introduced, among
others, in [1-3]. Stochastic filtering algorithms,
which process the measurements sequentially and
retain the information content of past measurements,
can produce better attitude solutions by more
effectively filtering the noisy measurements. Such
algorithms were recently introduced in [4, 5], both
of which utilized extended Kalman filtering to
sequentially estimate the attitude from GPS carrier
phase difference measurements. Both attitude and
attitude-rate were estimated, and the filters used the
nonlinear Euler equations of motion for attitude
propagation. While avoiding the traditional usage
of the costly and unreliable gyro package, this
approach rendered the resulting filters computationally
burdensome and sensitive to inevitable modeling
errors [6]. In [4] an attempt was made to robustify
the dynamics-based filter by estimating the unknown
disturbance torques, modeled as unknown constants.

Although GPS-based attitude estimation methods
should enjoy, in principle, the low price and low
power consumption of state-of-the-art GPS receivers,
and the general availability and robustness of the
GPS, these methods are very sensitive to multipath
effects and to the geometry of the antennae baseline
configuration, and they inherently rely on precise
knowledge of the antennae baselines in the spacecraft
body frame. On the other hand, methods based
on vector observations have reached maturity and
popularity in the last three decades. However, as is
well known, they too suffer from disadvantages, that
can be attributed to the particular attitude sensors on
which they are based. Thus, while their readings are
relatively noiseless, Sun sensors are very sensitive to
Earth radiation effects, and are rendered completely
useless during Eclipse. Star trackers can provide
accuracy on the order of a few arc-seconds, but are
usually extremely expensive. Magnetometers always
provide measurements of the Earth magnetic field
in spacecraft flying in low Earth orbits, but they are
sensitive to unmodeled residual magnetic fields in the
spacecraft and to magnetic field model imperfections
and variations.

The method presented herein is a sequential
estimator for both the spacecraft attitude matrix and
attitude-rate, which mainly uses differential GPS
carrier phase measurements, but can also process
aiding vector observations (such as low accuracy
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coarse Sun sensor measurements, or magnetic field
measurements). Conceptually similar to the principle
of complementary filtering [7], the idea underlying .
this estimator is that, due to the different nature of -
these signals, the combination of both in a unified
data processing algorithm can benefit from the relative
gdvantages of both sensor systems, while alleviating '
the disadvantages of both.

The new estimator is based on a third-order
minimal-parameter method for solving the attitude
matrix evolution equation using integrated-rate
parameters (IRPs) [8]. Similarly to [4, 5], the new
estimator is a sequential filtering algorithm and not
a deterministic (point estimation) algorithm. However,
the new algorithm differs from other works addressing
the same problem in two main respects. First, the
propagation model of the estimator does not utilize
the nonlinear Euler equations. Instead, employing
an approach borrowed from linear tracking theory
[9], the uncertain dynamic model of the spacecraft
is abandoned, and the angular acceleration is modeled
as a zero-mean stochastic process with exponential
autocorrelation. (A similar, but simpler, approach
was employed in the Applied Technology Satellite 6
(ATS-6) [10]). Combined with the extremely simple-
evolution equation of the IRPs, this results ina
simple, linear propagation model. Second, in contrast
with other methods relying mainly on the attitude
quaternion, the algorithm presented herein directly
estimates the attitude matrix, a natural, nonsingular
attitude representation. Building upon the minimal,
third-order integrated-rate parametrization, the new
estimator assigns just three state variables for the
parametrization of the nine-parameter attitude matrix,
which is at the heart of its computational efficiency.

After a brief review of the IRP method for the
solution of the attitude evolution equation, the angular
acceleration kinematic model is presented. Applying
minimum mean square efror (MMSE) estimation
theory to the perturbation model, the measurement
processing algorithm is developed for both GPS
carrier phase signals and vector observations.

An attitude matrix 'orthogonalization procedure,
incorporated to enhance the vaccuracy'and‘ robustness
of the algorithm, is then introduced, followed by a
derivation of the prediction stage. Two numerical
examples are then presented, which demonstrate

the performance of the new algorithm. Concluding
remarks are offered in the last section.

Il.  INTEGRATED-RATE PARAMETERS -
Consider the matrix differential equation

VO =WOV@E), V)=V, (1)

where V(#) e R*", W(2) = ~WT () for all £ > 1,, VOVOT :
= | and the overdot indicates the temporal derivative. -
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Defining
A t
A(t,ty) = / W(r)dr 2)
WoO) W) — (t — t)W () 3

it can be shown [11] that the following matrix-valued
function is a third-order approximation of V(¢):
2 3 —
A%(t,t,) . A(t,t5) + t—1ty
2! 3! 3!

V(t,t0) 2 {I + A1) +
x [A(t, 1) W () — Wo(t)A(t,to)]}Vo. @)

Moreover, V is a third-order apprgximation of

an orthogonal matrix, i.e., V(t,)VT(t,5) = I+

O((t - t,)*) where O(x) denotes a function of x that
has the property that O(x)/x is bounded as x — 0.

In the 3-D case, the off-diagonal entries of A(t,%,),
termed IRPs, have a simple geometric interpretation:
they are the angles resulting from a temporal
integration of the three components of the angular
velocity vector

A
W) 2w w0 wOF 5
where w; is the angular velocity component along

the i-axis of the initial coordinate system, and i =
1,2,3 for x,y,z, respectively. The orthogonal matrix
differential equation (1) is rewritten, in this case, as
(6)

D@ =Q®OD@), D(t,) =D,

where D(t) is the attitude matrix, or the direction
cosine matrix (DCM), Q(¢) = —[w(t)x], and [w(f)x] is
the cross product matrix corresponding to w(t), defined
as

0 —a3 a,
ax1=| a3 0 -—q V aeR:. (7
-a, a 0

(This notation reflects the fact that [ax]b = a x b for
all a,b € R3). In this case, the matrix A(t,#,) takes the
form

At 1) = ~[6(D)x] ®)
where the parameter vector 6(¢) is defined as
01 R16,) 6,() 6,01 ©)
and , .
OE / w(dr,  i=1,23.  (10)
o

Let the sampling period be denoted by Tétk +1
—t,. Using the notation 6(k) 2 0(t,), the parameter
vector at time ¢, is 6(k) = [0,(k) 0,(k) 93(k)]T and (10)
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implies

0,(k) = /*wi(r)dT, i=1,23 (1)
From (11) we have
ok + 1) = 6(k) + / " o(nydr. a12)

Define A(k + 1,k) to be the discrete-time analog of
A1), ie.,

Atk + 1,k) 2 ~[(0(k + 1) — 0(k))x]. (13)
Also, let U (k + 1) 2 —[¢(k + 1)x], where
Pk +1) Ewk + 1) — ok + DT. 14)

Then, the corresponding discrete-time equivalent of
4) is

D(k + 1) = {I + A(k + 1,k) + }A%(k + 1,k)
+ Ak + 1,k) + LT[AKk + 1, T (k + 1)
— W (k+ DAK + 1,k)]}D(k) 15)
which, using (13) and (14), can be written as

D(k + 1) = D[0(k + 1) — 0(k),w(k + 1),w(k + 1), D)].
(16)

. KINEMATIC MOTION MODEL

To avoid using the uncertain spacecraft dynamic
model, the spacecraft angular acceleration is modeled
as a zero-mean stochastic process with exponential
autocorrelation function. The acceleration dynamic
model is, therefore, the following first-order Markov
process,

w(t) = —Aw@) + b(). a7

For simplicity, a decoupled kinematic model is
chosen for the three angular rate components,
ie., ASdiag{r;', 7", 7'}, where {r,}}, are the
acceleration decorrelation times associated with the
corresponding body axes. The driving noise is a
zero-mean white process, with power spectral density
(PSD) matrix

0 =2A%?, ¥ 2diag{o,,05,05}  (18)
The noise variances in (18) were chosen according
to the Singer angular acceleration probabilistic model
[9], in which the angular acceleration components,
{w;}2.,, can be 1) equal to w,, with probability p,,,
2) equal to —w,, with probability p,,, 3) equal to zero
with probability p,, , or 4) uniformly distributed over
the interval [~wy,,w;] with the remaining probability
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mass. Using this model, it follows that
, A,
o; = —3—'(1 +4py. — Po,)- (19)

The parameters ch_, P> and pg, are considered as
filter tuning parameters. As customarily done, they are
selected by experience with real and simulated data,
so as to optimally adapt the filter to the characteristics
of the problem at hand.

Defining now the state vector of the system as

X207 W@ SO (20)
the state equation is
0171 O 0
x()=Fx(@®)+v®=|0 0 I |x®)+]| O
0 0 —-A (t)
21

with obvious definitions of F' and ¥(f). Corresponding
to the sampling interval T, the discrete-time state
equation is

x(k + 1) = ®(T)x(k) + v(k) (22)
where the transition matrix is
I TI A2 e M —I1+TA)
dT=T=|0 1 AN — e™AT)
0 0 e AT
(23)

and v(k) is a zero-mean, white noise sequence, with
covariance matrix

Q) S E{viv" (0)}
T -~
= / T Ndiag{0,0,0()}e" Tdr. (24)
0
Explicit computation of the integrals in (24) yields the

following expressions for the entries of the symmetric
covariance matrix Q(k)

0y, (k) = A™*22(I + 2AT — 2A°T? + 2A°T?

— e AT _4ATe A7) (25a)
Q,(k) = A3SX(I — 2AT + A2T? - 27T

+e T L 2ATe ATy (25b)
Q13(k) = A222(1 — 7T _2ATe ™M) (25¢)

0y, (k) = A252(4e™ A — 31 — ¢ AT L 2AT)
(25d)
Qp3(k) = AT1T2(e7 AT 4 [ —2¢74T) (25¢)
Q33(k) = B3I — 7). (25f)
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Fig. 1. GPS phase difference measurement geometry.

IV.  MEASUREMENT PROCESSING

A. GPS Differential Phase Measurements

Consider the basic GPS antenna array, depicted in
Fig. 1. The array consists of the master antenna A,
and the slave antenna A;. These antennae are located
on the surface of the satellite, such that the baseline
vector between them, resolved in a body-fixed
coordinate system, is b;. It is assumed that the entire
system consists of m,, antennae, in addition to the
master antenna, so that there exist m, independent
baselines. It is also assumed that at time ¢, m; GPS
satellites are in view.

Consider the ith satellite, and denote the sightline
(unit) direction vector to that satellite, resolved in
an inertial coordinate system, by s;. Let D(k + 1)
be the attitude matrix transformmg vectors in the
inertial coordinate system to their body-fixed system
representations at time f;,,. Let N;(k + 1) and
Ag;;(k + 1) denote the integer and fractional patts,
respectively, of the phase difference between the two
carrier signals, corresponding to the ith satellite, as
acquired by the antennae A,, and A;. Denoting by
A the GPS carrier wavelength the true (noiseless)
signals satisfy

[Agy(k + 1) + Nk + DI =B, Dk + D)s;. (26)

The standard GPS carrier wavelength is 19.03 cm. In
this work, it is assumed that the integer part of the
phase difference between the two receivers is known
from a previous solution [1, 12].

In practice, the phase measurements are
contaminated by noise, the primary source of which
is due to the multipath effect [1]. Denoting the noise
corresponding to the baseline b; and the sightline s;
by #; j(k + 1), the real measurement equation is

[Agy(k + 1)+ Ny(k + DA = b, D(k + 1)s; + iy, (k +1)
| @7
where it is assumed that 7i;;(k + 1) ~ N(0,575(k + 1)).

Typically it can be assumed that the noise standard
deviation is on the order of 5 mm [1]. From (27) we
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obtain the normalized measurement equation

Agyik+1) + Nk +1) = bID(k + D)s; +nyy(k + 1)
(28)

where we have defined b; = /A and n; ik + 1) =
n;(k +1) /). The normalized Measuremeént noise

satisfies ni(k +1) ~ N(O, o%(k + 1)), where
ok + 1) = &,k + /A, (29)

1) GPS Measurement Linearization: At
the MMSE predicted vector is x(k + 1 { £), and its
corresponding prediction error covariance matrix is

P(k+1|k)2E{F(K + 1| k)F(k + 1| k)}, where the
estimation error is

5 |6) 2x() = 3G | ©)- (30)
Using (16), (28) is rewritten as
Nk + 1)+ Agy(k + 1)
= bID[O(k + 1) — 6(k),w(k + 1),w(k + 1),D(K)]s;
+n;;(k +1). 31

Next, we linearize the nonlinear measurement
equation (31) about the most recent estimate at £,
ie.,

xk+ 1) =Rk + 1] k) +6xk+ 1)

Ok +1 k) 50(k + 1)
=|0k+1[0)] + [bwk+D]| (32
ok +1]k) sk + 1)

where 80(k + 1), éw(k + 1), and bw(k + 1) are the
perturbations of the state components about the
nominal (i.e., predicted) state. Let D*(k | k) denote the
a posteriori, orthogonalized estimate of the attitude
matrix at time #,, to be discussed in the next section.
Using now the most recent estimates for D(k) and
x(k), namely D*(k | k) and X(k | k), respectively, in
(31), it follows that

Agb,.j(k +1)+ N,.j(k +1)
= bTD[Ok + 1| k) + 86k + 1) — 6k | ),
Ok + 11k) + bw(k + 1),
Gk + 1] k) + 6@tk + 1),D°(k | )]s, +n;(k + 1).
' (33)

As discussed in the sequel, the a posteriori IRP
estimate is zeroed after each measurement update (due
to full reset control of the IRP state). Wq, therefore,
use the reset value of the IRP estimate, 6°(k | k) = 0, in

(33). Now expand D about the nominal state using
a first-order Taylor series expansion, i.e.,

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 35, NO. 3 JULY 1999



DIk +1 | k) + 800k + 1).5Ck + 1| k) + Sw(k + 1),k + 1 [ k) + 6ok + 1), D*(k | k)]

3

OD[Ok + 1), 5k + 1 | k), ik + 1 | k), D*(k | k)]

=Dx+110)+>

i=1

3

60.(k + 1)
Ok+11k)

a6,

ow;

i=1 t

3

S ADIOKk + 1 | k),w(k + 1),00(k + 1 | k), D*(k | k)]

Suwy(k + 1)

k+1]k)

Ow;

i=1

where ()| denotes “evaluated at ¢” and

D+ 11k) 2Dk + 1| k), 5k + 1 k),
Gk + 16,0k | k)] (35)

Differentiating (15), the sensitivity matrices appearing
in (34) are computed as '

%D[a(k + 1,00k + 10,00+ 1K), D*(k | b)]

= G,[0k + 1),k + 1| k)]D*(k | k) (36a)
E%D[é(k +1]k),wk + 1),0k + 1| k),D* (k | k)]

= LTE[6k + 1| 1D*(k | k) (36b)

a%p[é(k + 1]k, + 1| k),w(k + 1),D*(k | k)]
= ~L1T2F[8(k + 1 | K)]D*(k | k) (36¢)
fori=1,2,3, where
Pl+11K)20Kk+1|k)~Tok+11k)  (37)

and

G(0,9) = 3(Bel +€,8T) — 6,1 — (1 — L]16]*)[e; x]
+ $T(We! —ey") + 16,16x] (38a)
F(0) = e67 —6¢T (38b)

where ¢; is the unit vector on the ith axis, i = 1,2,3.

Using (34), (36), and (38) in (33) yields
Ag;(k+1) + Nk + 1)~ bTD(k + 1| b)s;
=hl(k+ 1)éx(k+ 1) +n,(k+1)  (39)

where the observation vector hijjk+1) € R? is defined
as

hytk+ D =[h] (k+1) K (k+1) KL (k+ DI
(40)
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S ODAGk + 1| k), &0k + 1| b),0k + 1), D" (k | K))

buw;k +1) (34)

e+ 1[k)

and the elements of the vectors hy (k+1) € R3,
h,,(k+1)€R® and h;, (k + 1) € R® are

hy,, (k+1) = TG 10k + 1| k), 9k + 1| K)ID* (k | k)s;»

p=123 (4la)
hyy, (k+1) = gTHIF,[8(k + 1| DID*(k | b)s;,

p=123 (41b)
hy, (k+1) = ~Th, (k+1),

rp=123 41c)

Define now the effective GPS measurement to be

Yotk + D2 AG,(k +1) + N, —bT Dk + 1| s,
(42)

Then, using this definition in (39) yields the following
scalar measurement equation:

Yk + 1) = hl(k + D)éx(k + 1) + ny(k + 1) (43)

For the m,, baselines and m_ sightlines, there exist

mg x m,, scalar measurements like (43). We next
aggregate all of these equations into a single vector
equation, such that the measurement associated with
the baseline b; and sightline s; corresponds to the pth
component of the vector measurement equation, where
p = (j— 1)mg +i. This yields

Yk + 1) =HGk+ Doxtk+ 1) +nfk+1) (44)

where the pth row of the matrix H?(k + 1) is Af;(k + 1),
the measurement noise satisfies

n®(k + 1) ~ N(O,R*(k + 1)) (45)
and the covariance R¢(k + 1) is a diagonal matrix
whose diagonal elements are

RS (k+1) =0}, (46)
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B. Vector Observation Aiding

If the sole source of attitude information is the
GPS carrier phase signals, then (44) should serve as
the basis for the development of the measurement
update algorithm (in the next section). In the case
that vector observations are available, this information
structure needs to be augmented.

Assume that a new pair of corresponding noisy
vector measurements is acquired at ¢, ,. This pair
consists of the unit vectors u(k + 1) and v(k + 1),
which represent the values of the same vector
r(k + 1), as modeled in the reference coordinate
system and measured in the body coordinate system,
" respectively. The DCM D(k + 1) transforms the true
vector representation u into its corresponding true
representation v, according to

volk + 1) = D(k + Dug(k + 1). 47

Assuming no constraint on the measurement noise
direction, the body-frame measured unit vector .
v(k + 1) is related to the true vector according to

volk + 1) +nj(k + 1)
[lvolk + 1) + nl,(k + 1)||

vk+1) = (48)
where the white sensor measurement noise is 7, (k + 1)
~ N(0,R!(k + 1)). Since both vy(k + 1) and v(k + 1)
are unit vectors, it follows from (48) that

vik+1)=vyk+1)+n,(k+1) - (49)
where n,(k + 1) 2PL(k + Dr(k + 1) and PEk + 1)
ar- vk + DI (k + 1) is the orthogonal projector
onto the orthogonal complement of span{vy(k + 1)}.
To a good approximation, the effective measurement
noise is a zero-mean, white Gaussian sequence with
covariance

R(k+1)= Pvf)(k + DR (k + 1)’Pj;(k +1). (50)

To account for nonideal effects (e.g., star catalog
errors), it is assumed that the modeled reference
vector is related to the true vector according to

u(k +1) = ug(k + 1) + ny(k + 1) (51)

where n, L u, is a zero mean, white Gaussian
noise, that is uncorrelated with n, and has a known
covariance matrix R, (k).

1) Vector Measurement Linearization:
(47) can be rewrltten as

Using (16),

volk + 1) = D[6(k + 1) —6(k), w(k +1),
w(k + 1),D(k)uy(k + 1). (52)
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Linearizing about the predicted estimates and using
(32), (49), and (51), it follows that

vk +1)—n,k+ 1)
= DOk + 1| k) + 86(k + 1),0(k + 1| k) + bw(k + 1),

Gk + 1] k) + 8k + 1),D*(k | )]

x[utk +1)—n,k+1)] (53)

where, as previously done in the GPS measurement
linearization, the reset value of the IRP estimate,

Hc(k | k) = 0, has been used. Expanding D about the
nominal state using the first-order Taylor series (34)

yields
v(k + 1) = D(k + 1 | kyu(k + 1)

3 .
= (G0 + 1| k), ik + 1| k)}66,(k + 1)

i=1
+ ATELBG + 1) K16,k + 1)
~ IT?F[8k + 1| 0160,k + DID* (k | kpu(k + 1)
—Dk+1|kn(k+1)+n,(k+1)
=H"(k+ 1)5$(k +1) =Dk +1[bn,k+1)+nk+1)
(54

where the observation matrix H”(k + 1) is written in
block matrix form as

H'(k+ ) =[H(k+1) Hyk+1) Hyk+1)]
(55)

and the columns of the submatrices Hk +1) e R33,
i=1,2,3 are

Hy (k+1) = G;[0(k +1 | k), (k + 1] ©)]
x D*(k | k)u(k + 1)

Hy (k+1) = LTF[6(k + 1 [K)1D" (k | kyuck + 1)
(56b)
(56¢)

(562)

Hy (k+1) = ~THy (k+1)

for j = 1,2,3. Notice that the same sensitivity matrices
are used here, as in the linearized GPS measurement
equation, which implies obvious computational
saving. Define now the effective measurement and
measurement noise to be, respectively,

Y+ D2+ 1) - Dk +1[utk+1) (57

n’ e+ 1) 2n,k + - Dk +1|K)nyk +1). (58)

Then, using these definitions in (54) yields the
following measurement equation:

Yk+1)=H'(k+1)bxtk+1)+n"k+1) (59)
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where n”(k + 1) ~ N(0,R*(k + 1)) is the white
measurement noise, and

R'(k+ 1)ER (k+ 1)+ Dk + 1| R, (k + DDT(k + 1 | k).
(60)
C. Measurement Update

To process the measurements, define now

4 H? é
Al ] w
yl/ HV nl/

where n ~ N(0,R) and R édiag{R‘l’,R”}. Since

e

Sxk+ 1) =xtk+1)—X(k+1|k)y=%k+1]k)
(62)

and %(k + 1 | k) is an unbiased MMSE predictor, we
" have

E{éx(k+ 1)} =E{x(k+1]|k)} =0 (63)
and
cov{éx(k + 1D} = cov{x(k+ 1 |k)} =Pk + 1 k)
' (64)
thus
Sx(k + 1) ~ N(0,P(k + 1 | k). (65)

Using the linearized measurement equation and
the statistical properties of the measurement and
prediction errors, the MMSE estimator of dx(k + 1)
is

Sx(k+1|k+1)=K(k+ Dy(k +1) (66)

where K (k + 1), the estimator gain matrix, is
computed as

Kk+1)=Pk+1|H (k+1)
X [H(k+ DPk+1|H Tk + 1) + Rk + D]
(67)
CAlso, bx(k+1k+1)=%k+1|k+1)—R(k+1]k) -

which, used in (66), yields the state measurement
update equation

Ak+1]k+1)=%k+1 k) + K+ yk+1).
' (68)
Subtracting x(k + 1) from both sides of the last 4
equation yields
Mk+1|k+1)=[ —K(k+ DHK+ D)Ek + 1| k)
—K(k+ Dnlk+1) (69)
from which the resulting covariance update equation is
Plk+1|k+1)=[I —K(k+ DH(k + 1)IP(k +1|k)
x [I —K(k+ DHk+ D"

+K(k+ DRk + DKk +1) (70)
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Fig. 2.

where the filtering error covariance is P(k + 1 lk+1)
SEGFU+1k+Di7(k+1k+D}.

To compute the measurement-updated attitude
matrix at time 7, ,,, we use the most recent estimate
X(k + 1|k + 1) and the estimated attitude matrix
corresponding to time ¢, in (15). This yields

Dk +1|k+1)
= {1+ A%k +1,k) + A%k + l,k)‘+ LAk + 1,k
+ 1T[AG + LU (e + 1|k +1)
— Gk +1|k+ DAK+ 1,k)]}D*k | k) | (71)
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"Fig. 3. Example I. Effect of vector observation aiding on Euler angle estimation. (a) Roll, GPS only. (b) Roll, with vector observation
aiding. (c) Pitch, GPS only. (d) Pitch, with vector observation aiding. (¢) Yaw, GPS only. (f) Yaw, with vector observation aiding.

where the a posteriori estimates of A(k + 1,k) and
W (k + 1) are defined, respectively, as '

A(}; +LOS—[6k+1]k+Dx] (72
Gk+11k+DE—[Pk+1]k+1)x] (73).

where

Ph+1k+DEOKk+1k+1)~Tok+1|k+1)
- - N . . (74)

and D*(k | k) is the a posteriori, orthogonalized
estimate of the attitude matrix at time #,, to be
discussed in the next section.
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Finally, since the a posteriori attitude matrix
D(k + 1|k +1) is computed based on the a posteriori
estimate é(k + 1|k + 1), this implies a full reset control
[13, p. 332] of the parameter vector, i.e.,’

o

Fhk+1)=0k+1)—0k+1|k+1)  (75)

where 6°(k + 1) is the reset state vector at 7, ,, and a
corresponding reset of the state estimate,

6+ 1k+1)=0 L (76)
which is then used in the ensuin'g" time propagation
step. Since the reset control is applied to both the state
vector and its estimate, no changes are necessary in
the estimation error covariance matrix.
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Fig. 4. Example 1. Effect of vector observation aiding on angular rate estimation. (a) wy, GPS only. (b) w;, with vector observation .
aiding. (c) w,, GPS only. (d) w,, with vector observation aiding. (¢) wy, GPS only. (f) w,, with vector observation aiding.

V. ATTITUDE MATRIX ORTHOGONALIZATION

To improve the accuracy of the algorithm, and
enhance its stability, an additional orthogonalization
procedure is introduced into the estimator, following
the measurement update stage. In this procedure, the
-attitude matrix closest to the filtered attitude matrix is
computed. o

Given the filtered attitude matrix D(k + 1 | k + 1),
the attitude matrix orthogonalization problem is to
find'the matrix

D*(k+1(k :Déargbmﬁj& 1Dk + 1|k +1)—DJ|
: €R>. .
(77a)

OSHMAN & MARKLEY: SPACECRAFT ATTITUDE/RATE ESTIMATION USING VECTOR-AIDED GPS OBSERVATIONS

subject to

DID=] and detD = +1. (77b)

Being a special case of the orthogonal Procrustes
problem [14], the matrix orthogonalization problem
can be easily solved using the singular value
decomposition (SVD) [15]. Thus, if

Dk +1]k+1)=Uk+ DSk + DV (K + 1)
: (78)

is the SVD of the matrix D(k + 1 | £+ 1) where

Uk + 1) and V(k + 1) are the left and right singular

vector matrices, respectively, and £(k + 1) =
diag{s,,s,,5,} is the singular value matrix where
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5, > s, > 55, then
D'k +1|k+1)

= U(k + 1)diag{1,1,detU(k + 1)detV(k + D}V (k + 1).
79

In real-time attitude determination and control the
excessive computational burden associated with the
SVD might render its use prohibitive. In such cases,
the following approximate orthogonalization method,
consisting of a single-step application of the iterative
. method introduced in [16], can be utilized

ﬁ*_(k+ 1 ]k+,1)=N(k+1)l§(k+ 1k+1)
(80)
where

&

N(k+1) %-% k+1[k+1)DT(k+1|k+1)

(81)

REMARK 1 Using an approach similar to that

used in [17], it can be shown that, to first-order,

the orthogonalization procedure does not affect the
statistical properties of the estimator and, therefore,
does not necessitate any adjustments in the algorithm.

VI.  PREDICTION

In the prediction step at ¢, the reset a posteriori
estimate at time f,, X°(k | k) (computed with the reset
IRP estimate) and its corresponding error covariance
matrix P(k | k), are propagated to time ;.

Using (22), we have

Xk + 1| k)= d(Mx°(k | k).

Using this result with (22) yields the covariance
propagation equation o
Ptk+1| k) = ®(T)P(k | k)<I>T(T) +T (T)Q)TT(T).
(83)

(82)

To propagate the attitude matrix to #,,,; we use the
most recent IRP, attitude-rate and angular acceleration
esti‘mates, and the orthogonalized DCM estimate
corresponding to #;, in (15). This yields

D+ 1) k) ={I + Ak + 1,k) + 1A (k + 1,k)
+ 12k + 1,k
+ LT[AGK + 1,OW (k + 1K)

— Wk +1]|AK + 1,0)1}D*k | k)
. (84)
-where the a priori estimates of A(k + 1,k) and
Uk + 1) are defined, respectlvely, as
A(k+1 k)-—[&(k+ 1]k)x] (85)
. ‘Il(k+ 1~i k)=—v[1p(k‘+ 1]k)x]. (86)
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VIl.  NUMERICAL STUDY

Two numerical examples are presented in this
section, to demonstrate the performance of the new
estimator, and illustrate the performance enhaﬁcement
achieved by using aiding vector observations.

A. Example |

In this example, three nonorthogonal baselines
were used: b, = [1.0,1.0,0.017, b, = [0.0, 1.0,0.0)",
b, = [0.0,0. O 1.0]7. Two fixed sightlines were
observed at all times, s, = 1/+/3[1.0,1.0,1.0]" and
s, = 1/v/2[0.0,1.0,1.0]". The nonnormalized GPS
signal noise standard deviation was 5.0 mmi. When
vector measurements were used, the noise equivalent
angle of the inertially referenced observations was
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Fig. 6. Example II: Effect of vector observation aiding on Euler angle estimation. (a) Roll, GPS only. (b) Roll, with vector observation
aiding. (¢) Pitch, GPS only. (d) Pitch, with vector observation aiding. (¢) Yaw, GPS only. (f) Yaw, with vector observation aiding.

set to 5.0 arc-sec, while the body-referenced vector
measurements were simulated to be acquired by a low
accuracy attitude sensor with a noise equivalent angle
of 0.1 deg. These measurements corresponded to a
randomly selected vector, which was kept constant
throughout the run.

The angular rates of the satellite satisfied w,(f) =
A;sin(2w /Tt + ¢,), where the amplitudes A; are 0.02,
0.05, and 0.03 deg/s, the phases ¢, are w/4, 7/2, and
37/4 rad, and the periods T; are 85, 45, and 65 s
for i = 1,2,3, respectively. The initial angular rate
estimates were all set to zero. The true initial attitude:
corresponded to Euler angles of 30 deg, 20 deg, and
10 deg in roll, pitch, and yaw, respectively, while the
initial state of the filter corresponded to Euler angles

OSHMAN & MARKLEY: SPACECRAFT ATTITUDE/RATE ESTIMATION USING VECTOR-AIDED GPS OBSERVATIONS

of 25 deg, 15 deg, and 5 deg, respectively. The filter
was run at a rate of 20 Hz, and the measurement
processing rate was 10 Hz. The Singer angular
acceleration model was used with parameters set to
7=10s, wy, =107 rad/s’, py, = po = 0.001 for all
three axes. ‘

In Fig. 2, the three true Euler angles are shown for
a typical run. These angles were computed from the
true attitude matrix assuming a 3-2-1 angle sequence.
The Euler angle estimation errors, computed from
the estimated attitude matrix assuming a 3-2-1 Euler
angle sequence, are shown in Fig. 3. Fig. 4 presents
the angular rates estimation errors for the same run,’
with and without vector measurement aiding. The
mean and standard deviation of the estimation errors
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Fig. 7. Example II: Effect of vector observation aiding on angular rate estimation. (a).w;, GPS only. (b) w,, with vector observation .
aiding. (c) w,, GPS only. (d) w,, with vector observation aiding. (e) w;, GPS only. (f) w,, with vector observation aidingt

are summarized in Table I, which demonstrates the
effect of the vector observation aiding in reducing the
estimation errors standard deviation.

B. Example II

In this example, the same parameters were used
as in Example I, except for the following. The
three baselines used are now b, = [0.1,1.0,0.1]7,
b, = [0.0,1.0,0.017, b; = [0.0,0.0,1.0]”. As can
be observed, the first two baselines are almost
colinear. The angular velocity of the satellite is
w = [0,236,0]7 deg/hr, which is typical for an
Earth-pointing, low Earth orbit satellite, with pitch
rate of one revolution per orbit. The Singer angular
acceleration model parameters are set to 7 = 10 s,

1030

Wy = 1075 rad/s?, py, = p, = 0.001 for all three axes.
As in the first example, vector measuréements, when
available, correspond to a randomly selected vector,
which is kept constant throughout the run. -

In Fig. 5, the three true Euler angles are shown
for a typical run. Fig. 6 shows the Euler angle,
estimation errors (the estimated angles were computed
from the estimated attitude matrix assuming a 3-2-1
Euler angle sequence). Fig. 7 presents the angular
rates estimation errors for the same run, with and
without vector measurement aiding. The estimation
error statistics are presented in Table II. As can be
observed, especially from Fig. 6 and Table II, the
robustifying effect of aiding the GPS measurements
with vector observations is very significant in this
ill-conditioned case. - :
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TABLE I

Example I: Effect of Vector Observation Aiding on Estimation Performance

GPS Only Vector Observation Aiding
( ‘ Standard Standard
Error Mean Deviation Mean Deviation
Roll angle (deg) - - ~92x 1074 5.8x1072 —42x1073 39x1072
Pitch angle (deg) 3.0x 1073 8.1 x 1072 —14x1073 22x 1072
Yaw angle (deg) 7.1x 1073 9.5x 1072 9.9 x 1074 22x 1072
wy (degfsy —58x1074 9.5x 1073 5.1 %1073 8.2x1073
w, (degls) 20x107* 2.7 x 1072 —28x107* 1.2x 1072
wy (degls) 40x 1075 1.5%x 1072 39x10™ 6.5x 1073

_ TABLE Il |
Example II: Effect of Vector Observation Aiding on Estimation Performance

GPS Only Vector Observation Aiding
Standard i Standard
Error Mean Deviation Mean Deviation

Roll angle (deg) 7.2 x 1073 6.4 x 1072 1.3 %1073 2.0x 1072

Pitch angle (deg) 1.1x 103 3.8x 1072 —4.8x1074 2.0x 1072

Yaw angle (deg) 7.7x 1073 8.7x 1072 46x1073 22x1072°

w; (degfs) —9.6 x 10-6 48x 1074 2.5x1076 3.3x 1074

wy (deg/s) 2.8x107° 9.9% 10 3.7%x107° 51x1074

wy (deg/s) 3.4 x 1075 9.3x107* -58x 107 3.5%107*

VI CONCLUSIONS [2] Crassidis, J. L., and Markley, F. L. (1997)

A nonlinear sequential estimator has been 3:::;:6 determination using Global Positioning System
presented, .that uses fiifferentlal GPS carrier phase In Proceedings of the AIAA Guidance, Navigation and
measurements to estimate both the attitude matrix Control Conference, New Orleans, LA, Aug. 1997,
and the angular velocity. of a spacecraft. The pp- 23-31. :
algorithm is based on the IRP third-order minimal . [3] Bar-Iizhack, I. Y., Montgomery, P. Y., and Garrick, J. C.
parametrization of the attitude matrix, which is at (1997)
the heart of its computational efficiency. Avoiding Algorithms for attitude determination using GPS.
the use of the typically uncertain (and fre quently In Proceedings of the AIAA Guidance, Navigation and

: . Control Conference, New Orleans, LA, Aug. 1997,
unknown) spacecraft dynamic model, the filter pp. 841-851
uses a polynomial state space model, in which the .. .
spacecraft lar acceleration is modeled as an (4 Fujikawa, S. J,, and Zimbelman, D. . (1995)
P t angular 1 18 MO Spacecraft attitude determination by Kalman filtering of
exponentially autocorrplated stochgstw process. ; Global Positioning System signals.
When vector observations are available (e.g., from Journal of Guidance, Control, and Dynamics, 18, 6
low accuracy Sun sensors or magnetometers), the - (Nov.—Dec. 1995), 1365-1371.
structure of the estimator can be easily modified [5] Axelrad, P, and Ward, L. M. (1996)
to exploit this additional information and, thereby, Spacecraft attitude estimation using the Global
significantly enhance the robustness and accuracy Positioning system: Methodology and results for
of the algorithm. Numerical examples have been RADCAL. .
’ Journal of Guidance, Control, and Dynamics, 19, 6
presented, that demonstrate the performance of the (Nov—Dec. 1996), 12011209
osed algorithm and the advantages of aiding th T ’ )
gligg .erg hase: . 1 ith v tg l()) tig ¢ [6] Lefferts, E. J., and Markley, F. L. (1976)
carrier p Signals wr ector observal (_)ns, Dynamic modeling for attitude determination.
even when the vector measurements are of relatively In Proceedings of the AIAA Guidance and Control
low accuracy. Conference, San Diego, CA, Aug. 1976, paper 76-1910.
[7] Merhav, S. (1996)
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