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AbstractÐA sequential nonlinear estimator is presented for satellite attitude and attitude-rate, which
utilizes vector observations in a gyroless setting. The estimator is based on a recently introduced, third-
order, minimal-parameter method for solving the attitude matrix kinematic equation. Possessing an
extremely simple kinematics, the third-order parameters render the resulting estimator highly
computationally e�cient. Employing tracking theory concepts, the angular acceleration is modeled as an
exponential autocorrelation stochastic process, thus avoiding the use of the uncertain spacecraft
dynamic model. An attitude matrix orthogonalization procedure, built into the estimator's scheme,
enhances its accuracy and robustness, yet retains reasonable simplicity. The estimator's performance is
demonstrated via a Monte Carlo simulation study. 7 2000 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Spacecraft attitude determination from vector obser-
vations has been intensively investigated over the

last three decades. In most practical implemen-
tations of attitude control systems on gyro-based
spacecraft, attitude rate information is obtained

from an onboard triad of rate gyroscopes. This rate
information is used in the propagation stage of an
attitude estimator, which utilizes noisy vector obser-
vations, resolved in both the body-®xed coordinate

system and in a reference system, to estimate the
spacecraft attitude and gyro drift rates [1]. Body-
®xed vector observations are typically obtained

from star trackers, Sun sensors, or magnetometers.
Corresponding reference observations, are obtained
by using an ephemeris routine (for a Sun obser-

vation), or from orbit data and a magnetic ®eld rou-
tine (for a magnetic ®eld observation), or from a
star catalog (for star observations).

In recent years, with the advent of accurate, high-
bandwidth vector sensors (e.g., modern star-track-
ers), the method of attitude determination from vec-

tor observations has been extended by several

researchers to address the estimation of attitude-rate

as well, thus facilitating its use on gyroless space-

craft. Gyroless attitude and attitude-rate estimation

is, obviously, of prime importance in small, inexpen-

sive spacecraft such as the Solar, Anomalous,

Magnetospheric Particle Explorer (SAMPEX),

which do not carry gyroscopes but, nevertheless,

need to determine their angular velocity for attitude

control and attitude propagation purposes.

However, even spacecraft which carry gyroscopes

can bene®t from the use of gyroless attitude-rate

estimation during contingency modes.

In Ref. [2], high-bandwidth star-tracker measure-

ments were used to solely drive an error-state

extended Kalman ®lter (EKF), which estimates both

the spacecraft attitude quaternion and its angular

rate. Challa et al. [3] proposed an attitude and atti-

tude-rate estimator, which utilizes temporal deriva-

tives of vector (Earth's magnetic ®eld)

measurements, and dynamically propagates the

angular velocity estimates using the nonlinear

Euler's equations. A similar concept was employed

in Ref. [4], which introduced an angular rate estima-

tor (assuming a known attitude), proposing to alle-

viate the computational complexity normally

associated with the Euler equations-based EKF by

using a suboptimal, extended interlaced Kalman ®l-

ter. In Ref. [5], predictive ®ltering was applied to

estimate the attitude quaternion in a gyroless set-

ting. Using the spacecraft dynamic model, which

was assumed to be accurately known, the attitude-

rate was estimated as a by-product from the esti-

mated spacecraft angular momentum.
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In this paper it is proposed to simultaneously esti-

mate both the attitude matrix and the spacecraft
angular velocity from vector measurements. The
estimator is based on the recently introduced third-

order attitude parametrization method using the
integrated-rate parameters (IRP) [6]. Extending the
results of Ref. [7], in which vector measurements

were used to estimate the attitude in a gyro-based
spacecraft, our present work di�ers from other
works addressing the same problem in three main
respects. First, the acquired vector measurements

are directly processed to extract attitude and atti-
tude-rate information, thus avoiding the precompu-
tation of temporal derivatives of these noisy

measurements, as required by some other ®ltering
schemes [3,4]. Second, no use is made of the space-
craft dynamic model, which is frequently considered

to be highly uncertain, and typically renders the
resulting estimator computationally burdensome
and sensitive to the uncertainty in the spacecraft

inertia tensor. Instead, time propagation of the esti-
mated variables is performed in the proposed ®lter
by modeling the spacecraft angular acceleration as
an exponential±autocorrelation stochastic process,

and using a polynomial kinematic model, a concept
borrowed from tracking theory [8]. Finally, in con-
trast with other methods relying mainly on the atti-

tude quaternion, the algorithm presented herein
directly estimates the attitude matrix, a natural,
nonsingular attitude representation. Building upon

the minimal IRP third-order parametrization, the
new estimator assigns just three state variables for
the estimation of the nine-parameter attitude matrix,
which is at the heart of its computational e�ciency.

In the following section we brie¯y review the IRP
method for the solution of the attitude evolution
equation. The angular acceleration kinematic model

is presented in Section 3. In Section 4 we develop
the ®ltering stage of the estimator. An attitude
matrix orthogonalization procedure, added to

enhance the algorithm's accuracy and robustness, is
described in Section 5. The prediction stage of the
estimator is then derived in Section 6. A numerical

study, used to demonstrate the algorithm's perform-
ance, is presented in Section 7, followed by conclud-
ing remarks in the last section.

2. THE IRP METHOD

Consider the matrix di�erential equation

_V�t� �W�t�V�t�, V�t0� � V0 �1�
where V(t ) $ Rn,n, W(t )=ÿW T(t ) for all t e t0,
V0V

T
0=I and the raised dot indicates the temporal

derivative. This equation arises naturally in three-

dimensional (3-D) attitude determination problems,
as well as in the square-root solution of the matrix
di�erential Riccati equation [9]. The properties of

V(t ) and W(t ) enable a minimal-parameter solution,

which should be much more e�cient than a direct

solution, based on n 2 straightforward integrations
as implied by eqn (1).
First de®ned by Bar-Itzhack and Markley in Ref.

[10], the minimal-parameter problem is to ®nd: (1) a
set of m=n(n ÿ 1)/2 parameters which unambigu-
ously de®ne V(t ); (2) the di�erential equation satis-

®ed by these parameters; (3) the transformation
which maps these parameters into the matrix V; and
(4) a simple and e�cient method to solve the par-
ameters' di�erential equation and to compute V(t ).

In Ref. [6], Ronen and Oshman have recently
introduced a new, third-order, minimal-parameter
method for the solution of eqn (1). The method is

based on the skew-symmetric matrix A(t,t0), de®ned
as

A�t, t0�,
�t
t0

W�t�dt �2�

Using A(t,t0), it can be shown that a third-order ap-
proximation of the solution V(t ) is given by

~V�t, t0�,
�
I� A�t, t0� � A2�t, t0�

2!
� A3�t, t0�

3!

� �tÿ t0�
3!

�
A�t, t0�W0 ÿW0A�t, t0�

��
V0

�3�

where W0=W(t0). Moreover, VÄ is a third-order ap-
proximation of an orthogonal matrix, in the sense
that VÄ(t,t0)VÄ

T(t,t0)=I+O((tÿt0)4) where O(x )
denotes a function of x that has the property that

O(x )/x is bounded as x4 0.
Referring to the minimal-parameter problem, the

parameters, which de®ne the third-order solution of

eqn (1), are the n(n ÿ 1)/2 o�-diagonal terms of
A(t,t0). For the 3-D case, these parameters (termed
integrated-rate parameters) have a simple geometric

interpretation: they are the angles resulting from a
temporal-integration of the three components of the
angular velocity vector o(t ),[o1(t ) o2(t ) o3(t )]

T,

where oi is the angular velocity component along
the i-axis of the initial coordinate system, and i= 1,
2, 3 for x, y, z, respectively. The di�erential
equation satis®ed by these parameters is

_A�t, t0� �W�t�, A�t, t0� � 0 �4�

which can be easily solved using any quadrature
scheme. Having solved eqn (4), the solution is then
used in eqn (3), which yields a third-order, minimal-

parameter solution of eqn (1).
In the 3-D case, the orthogonal matrix referred to

is the attitude matrix, or the direction cosine matrix
(DCM), denoted by D(t ). The di�erential equation

satis®ed by this matrix is the well-known equation

_D�t� � O�t�D�t�, D�t0� � D0 �5�

where O(t )=ÿ[o(t )�] and [o(t )�] is the cross pro-

duct matrix corresponding to o(t ), de®ned as
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�a��,
24 0 ÿa3 a2
a3 0 ÿa1
ÿa2 a1 0

35 8a 2 R3 �6�

In this case, the matrix A(t,t0) takes the form

A�t, t0�,ÿ
�
y�t� � � �7�

where the parameter vector y (t ) is de®ned as

y�t�,�
y1�t� y2�t� y3�t�

�T �8�
and

yi�t�,
�t
t0

o�t�dt, i � 1, 2, 3 �9�

3. STATE SPACE MODEL

Denote the sampling period by T,tk+1ÿtk. Using
the notation y(k ),y(tk ), the parameter vector at
time tk is

y�k� � �y1�k� y2�k� y3�k�
�T �10�

and eqn (9) implies

yi�k� �
�tk
t0

oi�t�dt, i � 1, 2, 3 �11�

From eqn (11) we have

y�k� 1� � y�k� �
�tk�1
tk

o�t�dt �12�

De®ning A(k + 1,k ) to be the discrete-time analog

of A(t,t0), i.e.,

A�k� 1, k�,ÿ ��y�k� 1� ÿ y�k�� � � �13�
eqn (3) is rewritten as

D�k� 1� �
�
I� A�k� 1, k� � 1

2
A2�k� 1,

k� � 1

6
A3�k� 1, k� � 1

6
T
�
A�k� 1,

k�O�k� ÿ O�k�A�k� 1, k���D�k�
�14�

To avoid using the uncertain spacecraft dynamic
model, the spacecraft angular acceleration is mod-

eled as a zero-mean stochastic process with expo-
nential autocorrelation function. The acceleration
dynamic model is, therefore, the following ®rst-
order Markov process,

�o�t� � ÿC _o�t� � ~n�t� �15�
For simplicity, a decoupled kinematic model is cho-

sen for the three angular rate components, i.e.,

C,diag

�
1

t1
,
1

t2
,
1

t3

�
�16�

where {ti }
3
i = 1 are the acceleration decorrelation

times along the corresponding body axes. The driv-

ing noise is a zero-mean white process, with

E~n�t�~n�s� � ~Q�t�d�tÿ s� �17�
and the power spectral density (PSD) matrix is

~Q�t� � 2CS2 �18�
where

S,diagfs1, s2, s3 g �19�
To determine the noise variances in eqn (19), the fol-
lowing angular acceleration probabilistic model is
used [8]: the angular acceleration components,
f _oi g3i�1, can be (1) equal to _oMi

with probability

pMi
; (2) equal to ÿ _oMi

with probability pMi
; (3)

equal to zero with probability p0i ; or (4) uniformly
distributed over the interval �ÿ _oMi

, _oMi
� with the

remaining probability mass. Using this model, it fol-
lows that

s2i �
_o2
Mi

3

ÿ
1� 4pMi

ÿ p0i
� �20�

Now let the system's state vector be de®ned as

x�t�,
�
yT�t� oT�t� _oT�t�

�T �21�
then the state equation is

_x�t� � Fx�t� � ~v�t� �
24 0 I 0
0 0 I
0 0 ÿC

35x�t� �
24 0
0
~v�t�

35
with obvious de®nitions of F and ~v(t ).
Corresponding to the sampling interval T, the dis-
crete-time state equation is

x�k� 1� � eFTx�k� � ~v�k� �22�
where the transition matrix is expressed by

eFT �
24 I TI Cÿ2�eÿCT ÿ I� TC�
0 I Cÿ1�Iÿ eÿCT�
0 0 eÿCT

35 �23�

and v(k ) is a zero-mean, white noise sequence, with
covariance

Q�k�,Ev�k�vT�k� �
�T
0

eF�Tÿt�diag
�
0, 0,

~Q�t�
	
eF

T�Tÿt�dt

�24�

3.1. Filter model

Since, upon observing eqn (14), the attitude
matrix at time tk+1 is expressed in terms of the IRP
vector at tk+1 and the angular rate at tk, it will be

useful for the development in the sequel to de®ne
the ®lter state vector as

xf�k� 1�,
�
yT�k� 1�oT�k� _oT�k�

�T �25�
It is easy to see that the state equation for the ®lter

state vector is
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xf�k� 1� � F�T �xf�k� � G�T �vf�k�

�
24 I TI TF23�T � � F13�T �F33�T �
0 I F23�T �
0 0 F33�T �

35x f�k�

�
24 I TI F13�T �
0 I 0
0 0 I

35vf�k�

�26�
where the e�ective process noise vf is a zero-mean
sequence with

Qf�k�,Evf�k�vT
f f�k� �

24Q11�k� 0 0
0 Q22�k� Q23�k�
0 Q32�k� Q33�k�

35
and the block matrices appearing in eqn (26) are

F13�T �,Cÿ2�eÿCT ÿ I�CT � �27a�

F23�T �,Cÿ1�Iÿ eÿCT� �27b�

F33�T �,eÿCT �27c�
The non-zero entries of Qf (k ) are obtained by expli-
citly computing the integrals in eqn (24), which
yields

Q11�k� � Cÿ4S2

�
I� 2CTÿ 2C2T 2 � 2

3
C3T 3

ÿ eÿ2CT ÿ 4CTeÿCT

�

Q22�k� � Cÿ2S2�4eÿCT ÿ 3Iÿ eÿ2CT � 2CT �

Q23�k� � Q32�k� � Cÿ1S2�eÿ2CT � Iÿ 2eÿCT�

Q33�k� � S2�Iÿ eÿ2CT�
In passing, it is noted that the e�ective process noise
vf is a time-correlated sequence. In principle, stan-
dard methods, dealing with the case of colored pro-

cess noise, could be employed. However, since this
correlation is weak, and in view of the fact that
practically every state estimator requires a tuning

process, in which the process noise covariance
matrix is empirically adjusted, this correlation will
be neglected in the sequel.

4. VECTOR MEASUREMENT PROCESSING

Let the minimum mean-squared error (MMSE) esti-

mates of y(k+1) and o(k ), based on measurements
up to and including tk, be denoted by ŷ�k� 1 j k�
and ô�k j k�, respectively. Assume that at tk+1 we

have on hand the predicted vector x̂f�k� 1 j k� and
its corresponding prediction error covariance
matrix, P�k� 1 j k�,Ef ~xf�k� 1 j k� ~xT

f�k� 1 j k�g,
where the estimation error is de®ned as

~xf � j j k�,x f� j� ÿ x̂f� j j k� �28�
As the ®rst step in developing the measurement

update algorithm, we next formulate the observation

equation.

4.1. Observation equation

Let Su and Sv denote the reference Cartesian
coordinate system and the body-®xed Cartesian
coordinate system, respectively. The new pair of cor-

responding noisy vector measurements at tk+1 con-
sists of the unit vectors u(k+1) and v(k+1), which
represent the measured values of the same vector

r(k + 1), resolved in Su and in Sv, respectively.
The direction-cosine matrix D(k + 1), representing
the true attitude of Sv relative to Su at time tk+1,
transforms the true vector representation u0 in Su

into its corresponding true representation v0 in Sv
according to

v0�k� 1� � D�k� 1�u0�k� 1� �29�
The measured vectors are assumed to be related

to the true vectors according to

v�k� 1� � v0�k� 1� � nv�k� 1� �30�

u�k� 1� � u0�k� 1� � nu�k� 1� �31�

where the measurement noises are white, Gaussian,

mutually uncorrelated sequences, with

nv�k� 1�0N�0, Rv�k� 1�� �32�

nu�k� 1�0N�0, Ru�k� 1�� �33�

and Ru(k ) and Rv(k ) are known covariance
matrices.
To relate the information contained in the

measurements to the state vector at tk+1, eqn (29) is
rewritten as

v0�k� 1� � D
�
y�k� 1� ÿ y�k�, o�k�,

D�k��u0�k� 1�
�34�

where the notation D[y(k + 1)ÿy(k ),o(k ),D(k )]

re¯ects the fact that, by eqn (13) and (14), the atti-
tude at time tk+1 is related to the attitude at time tk
via the IRP vector di�erence y(k+ 1)ÿy(k ) and the

angular rate vector o(k ).
To process the information contained in the new

vector measurements, the nonlinear measurement
eqn (34) is next linearized about a nominal state,

consisting of the most recent estimates. Assuming
that after the previous measurement update (at tk )
linearization has been performed about the a poster-

iori state estimate, the resulting nominal state vector
at tk+1 is the predicted estimate, xÃf (k + 1vk ).
Therefore, the predicted state vector is assumed to

be related to the true one according to
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xf�k� 1� � x̂f�k� 1 j k� � dxf�k� 1�

�

2664 ŷ�k� 1 j k�
ô�k j k�
_̂o�k j k�

3775�
24 dy�k� 1�
do�k� 1�
d _o�k� 1�

35 �35�

where dy�k� 1�, do�k� 1� and d _o�k� 1� are the
perturbations of the state components about the
nominal (i.e., predicted) state. Let DÃ*(kvk ) denote
the a posteriori, orthogonalized estimate of the atti-

tude matrix at time tk, to be discussed in the next
section. Using now the most recent estimates for
D(k ) and xf (k ), namely DÃ*(kvk ) and xÃf (kvk ), re-

spectively, in eqn (34), it follows from eqns (30),
(31) and (35) that

v�k� 1� ÿ nv�k� 1� � D

h
ŷ�k� 1 j k�

� dy�k� 1� ÿ ŷ�k j k�, ô�k j k�

� do�k� 1�, D̂
�
�k j k�

i
� �u�k� 1�

ÿ nu�k� 1��
�36�

As discussed in the sequel, the a posteriori IRP esti-

mate is zeroed after each measurement update (due
to full reset control of the IRP state). We will, there-
fore, use the reset value of the IRP estimate,
y c(kvk )=0, in eqn (36). Now expand D about the

nominal state using a ®rst-order Taylor series expan-
sion, i.e.,

D

h
ŷ�k� 1 j k� � dy�k� 1�, ô�k j k� � do�k� 1�,

D̂
�
�k j k�

i
� D̂�k� 1 j k�

�
X3
i�1

@D

h
y�k� 1�, ô�k j k�, D̂

�
�k j k�

i
@yi

������
ŷ�k�1jk�

� dyi�k� 1�

�
X3
i�1

@D

h
ŷ�k� 1 j k�, o�k�, D̂

�
�k j k�

i
@oi

������
ô�kjk�

� doi�k� 1� �37�
where �� jz denotes `evaluated at z' and

D̂�k� 1 j k�,D

h
ŷ�k� 1 j k�, ô�k j k�, D̂

�
�k j k�

i
(see Section 6). Using eqn (14), the sensitivity
matrices appearing in eqn (37) are expressed as

@

@yi
D

h
y�k� 1�, ô�k j k�,

D̂
�
�k j k�

i
� Gi

�
y�k� 1�, ô�k j k��D̂� �k j k� �38a�

@

@oi
D

h
ŷ�k� 1 j k�, o�k�,

D̂
�
�k j k�

i
� Fi

h
ŷ�k� 1 j k�

i
D̂
�
�k j k�

�38b�

for i = 1,2,3, where the sensitivity matrices

Table 1. Sensitivity matrices

G1�y,o� �

266666664
0

1

2
y2 ÿ 1

3
y1y3 ÿ 1

6
To2

1

2
y3 � 1

3
y1y2 ÿ 1

6
To3

1

2
y2 � 1

3
y1y3 � 1

6
To2 ÿy1 1ÿ 1

6

�
y22 � y23

�
ÿ 1

2
y21

1

2
y3 ÿ 1

3
y1y2 � 1

6
To3 ÿ1� 1

6

�
y22 � y23

�
� 1

2
y21 ÿy1

377777775

G2�y,o� �

266666664
ÿy2 1

2
y1 ÿ 1

3
y2y3 � 1

6
To1 ÿ1� 1

6
�y21 � y23� �

1

2
y22

1

2
y1 � 1

3
y2y3 ÿ 1

6
To1 0

1

2
y3 ÿ 1

3
y1y2 ÿ 1

6
To3

1ÿ 1

6
�y21 � y23� ÿ

1

2
y22

1

2
y3 � 1

3
y1y2 � 1

6
To3 ÿy2

377777775

G3�y,o� �

266666664
ÿy3 1ÿ 1

6
�y21 � y22� ÿ

1

2
y23

1

2
y1 � 1

3
y2y3 � 1

6
To1

ÿ1� 1

6
�y21 � y22� �

1

2
y23 ÿy3

1

2
y2 ÿ 1

3
y1y3 � 1

6
To2

1

2
y1 ÿ 1

3
y2y3 ÿ 1

6
To1

1

2
y2 � 1

3
y1y3 ÿ 1

6
To2 0

377777775

F1�y� � 1

6
T

24 0 y2 y3
ÿy2 0 0
ÿy3 0 0

35 F2�y� � 1

6
T

24 0 ÿy1 0
y1 0 y3
0 ÿy3 0

35 F3�y� � 1

6
T

24 0 0 ÿy1
0 0 ÿy2
y1 y2 0

35
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fGi,Fi g3i�1 are shown in Table 1. Using eqn (37) in

eqn (36) and neglecting second-order terms yields

v�k� 1� ÿ D̂�k� 1 j k�u�k� 1�

�
X3
i�1

h
Gi

h
ŷ�k� 1 j k�, ô�k j k�

i
D̂
�
�k j k�dyi�k� 1�

� Fi

h
ŷ�k� 1 j k�

i
D̂
�
�k j k�doi�k� 1�

i
u�k� 1�

ÿ D̂�k� 1 j k�nu�k� 1� � nv�k� 1�

� H�k� 1�

264 dy�k� 1�
do�k� 1�
d _o�k� 1�

375
ÿ D̂�k� 1 j k�nu�k� 1� � nv�k� 1� �39�

where the observation matrix H(k+ 1) is written in
block matrix form as

H�k� 1� � �H1�k� 1� H2�k� 1� 0
� 2 R3, 9

and the columns of the submatrices H1(k+1) $ R3,3

and H2(k+1) $ R3,3 are

H1i�k� 1� � Gi

h
ŷ�k� 1 j k�,

ô�k j k�
i
D̂
�
�k j k�u�k� 1�

H2i�k� 1� � Fi

h
ŷ�k� 1 j k�

i
D̂
�
�k j k�u�k� 1�

for i = 1,2,3. De®ne now the e�ective measurement
and measurement noise to be, respectively,

y�k� 1�,v�k� 1� ÿ D̂�k� 1 j k�u�k� 1� �41�

n�k� 1�,nv�k� 1� ÿ D̂�k� 1 j k�nu�k� 1� �42�
Then, using these de®nitions in eqn (39) yields the
following measurement, equation:

y�k� 1� � H�k� 1�dxf�k� 1� � n�k� 1� �43�
The measurement noise is a white, Gaussian
sequence with

n�k� 1�0N�0, R�k� 1�� �44�
where

R�k� 1�,Rv�k� 1�

� D̂�k� 1 j k�Ru�k� 1�D̂T�k� 1 j k�
�45�

4.2. Measurement update

From eqns (28) and (35) it follows that

dxf�k� 1� � xf�k� 1� ÿ x̂f�k� 1 j k�

� ~xf�k� 1 j k� �46�

Since xÃf (k+ 1vk ) is an unbiased, MMSE predictor,

we have

E
�
dxf�k� 1�	 � E

�
~xf�k� 1 j k�	 � 0

and

cov
�
dxf�k� 1�	 � cov

�
~xf�k� 1 j k�	 � P�k� 1 j k�

yielding

dxf�k� 1�0N�0, P�k� 1 j k�� �47�

Using the linearized measurement eqn (43) and the

statistical properties of the measurement and predic-
tion errors, eqns (44) and (47), respectively, the
MMSE estimator of dxf (k+1) is [11]

ddxf�k� 1 j k� 1� � K�k� 1�y�k� 1� �48�

where K(k + 1), the estimator gain matrix, is com-

puted as

K�k� 1� � P�k� 1 j k�H T�k� 1�

�
�
H�k� 1�P�k� 1 j k�H T�k� 1� � R�k� 1�

�ÿ1
Also, from eqn (46) we have

ddxf�k� 1 j k� 1� � x̂f�k� 1 j k� 1� ÿ x̂f�k� 1 j k�

which, used in eqn (48), yields the state measure-

ment update equation

x̂f�k� 1 j k� 1� � x̂f�k� 1 j k� � K�k� 1�y�k� 1�

To derive the covariance update equation, we sub-
tract xf (k + 1) from both sides of the last equation
and use eqns (43) and (46) to obtain

x̂f�k� 1 j k� 1� � �Iÿ K�k� 1�

�H�k� 1��x̂f�k� 1 j k� ÿ K�k� 1�n�k� 1�
�49�

from which the resulting covariance update equation
is

P�k� 1 j k� 1� � �Iÿ K�k� 1�H�k� 1��
� P�k� 1 j k��Iÿ K�k� 1�H�k� 1��T
� K�k� 1�R�k� 1�K T�k� 1�

�50�

where the ®ltering error covariance matrix
P�k� 1 j k� 1� is de®ned analogously to
P(k + 1vk ).
To compute the measurement-update attitude

matrix at time tk+1, we use the most recent estimate
xÃf (k + 1vk + 1) and the estimated attitude matrix

corresponding to time tk in eqn (14). This yields
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D̂�k� 1 j k� 1� �
�
I� Â�k� 1, k�

� 1

2
Â

2�k� 1, k� � 1

6
Â

3�k� 1, k�

� 1

6
T

h
Â�k� 1, k�Ô�k j k� 1�

ÿ Ô�k j k� 1�Â�k� 1, k�
i�

D̂
�
�k j k�

�51�

where the a posteriori estimates of A(k + 1,k ) and

O(k ) are de®ned, respectively, as

Â�k� 1, k�,ÿ
h
ŷ�k� 1 j k� 1� �

i
�52�

Ô�k j k� 1�,ÿ �ô�k j k� 1� � � �53�
Finally, since the a posteriori attitude matrix

D̂�k� 1 j k� 1�, is computed based on the a poster-
iori estimate, y(k+ 1vk+ 1), this implies a full reset

Fig. 1. Performance indices based on a Monte Carlo simulation study (100 runs): (a) convergence
index; (b) orthogonality index.
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control of the parameter vector, i.e.,

yc�k� 1� � y�k� 1� ÿ ŷ�k� 1 j k� 1� �54�
where y c(k+1) is the reset state vector at tk+1, and

a corresponding reset of the state estimate

ŷ
c�k� 1 j k� 1� � 0 �55�

5. ATTITUDE MATRIX ORTHOGONALIZATION

Due to numerical implementation errors, lineariza-
tion approximations and the third-order nature of
the attitude parametrizations used, the estimated

attitude matrix will not be orthogonal. To improve

Fig. 2. Estimated vs. true Euler angles in a typical simulation run (a) Roll angle. (b) Roll angle esti-
mation error. (c) Pitch angle. (d) Pitch angle estimation error. (e) Yaw angle. (f) Yaw angle estimation

error.
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the algorithm's accuracy and enhance its stability,

an additional orthogonalization procedure is intro-

duced into the estimator, following the measurement

update stage. In this procedure, the orthogonal
matrix closest to the ®ltered attitude matrix is com-

puted.

Given the ®ltered attitude matrix DÃ (k+ 1vk+ 1),

the matrix orthogonalization problem is to ®nd the

matrix

D̂
�
�k� 1 j k� 1�, arg min

D 2 R3, 3 k D̂�k� 1 j k� 1� ÿD k

subject to

DTD � I

Fig. 2 (continued)
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Being a special case of the orthogonal Procrustes

problem, the matrix orthogonalization problem can
be easily solved using the singular value decompo-
sition (SVD). Thus, if

D̂�k� 1 j k� 1� � U�k� 1�S�k� 1�V T�k� 1�

is the SVD of the matrix DÃ (k + 1vk + 1) where

U�k� 1� and V�k� 1� are the left and right singular
vector matrices, respectively, and a(k + 1) is the
singular value matrix, then

D̂
�
�k� 1 j k� 1� � U�k� 1�V T�k� 1� �57�

Fig. 2 (continued)
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The excessive computational burden associated
with the SVD might render its use prohibitive in cer-

tain applications, e.g., in real-time attitude control
systems under computational power constraints. In

such cases, an alternative, approximate orthogonali-
zation scheme, which constitutes a single iteration of

the iterative orthogonalization algorithm introduced

in Ref. [12], can be used. According to that scheme,
an improved (nearly orthogonal), a posteriori esti-
mate for the attitude matrix, is computed as

D̂
�
�k� 1 j k� 1� � N�k� 1�D̂�k� 1 j k� 1� �58�

Fig. 3. Estimated vs true angular velocity components in a typical simulation run. (a) o1. (b) o1 esti-
mation error. (c) o2. (d) o2 estimation error. (e) o3. (f) o3 estimation error.
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where the linear transformation that maps the a pos-

teriori attitude matrix into its orthogonalized ver-
sion is

N�k� 1�,3

2
Iÿ 1

2
D̂�k� 1 j k� 1�D̂T�k� 1 j k� 1�

As presented herein, the orthogonalization step is

performed after each measurement update.

However, in practice it was found that using the

orthogonalization procedure also after the time

propagation step, during the ®lter transient period,

improves the ®lter's convergence rate.

Fig. 3 (continued)
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6. PREDICTION

In the prediction step at tk, the reset a posteriori esti-
mate at time tk, xÃ cf (kvk ) [computed with the reset

IRP estimate according to eqn (55)] and its corre-
sponding error covariance matrix, P(kvk ), are pro-
pagated to time tk+1.

Using eqn (26), we have

x̂f�k� 1 j k� � F�T �x̂c
f �k j k� �59�

Using this result with eqn (26) yields the covariance

propagation equation

P�k� 1 j k� � F�T �P�k j k�FT�T � � G�T �Qf�k�GT�T �
�60�

To propagate the attitude matrix to tk+1 we
use the most recent IRP and attitude-rate estimates,

ŷ(k + 1vk ) and ô(kvk ), respectively, and the ortho-

Fig. 3 (continued)
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gonalized DCM estimate corresponding to tk, in eqn

(14). This yields

D̂�k� 1 j k� �
�
I� �A�k� 1, k� � 1

2
�A
2�k� 1, k�

� 1

6
�A
3�k� 1, k�

� 1

6
T

h
�A�k� 1, k�Ô�k j k�

ÿ Ô�k j k� �A�k� 1, k�
i�

D̂
�
�k j k� �61�

where the a priori estimates of A(k+ 1,k ) and O(k )
are de®ned as

�A�k� 1, k�,ÿ
h
ŷ�k� 1 j k� �

i
�62�

Ô�k j k�,ÿ �ô�k j k� � � �63�

7. NUMERICAL STUDY

To demonstrate the performance of the new estima-
tor, a numerical Monte Carlo simulation study was

performed, in which simulated vector measurements
were processed to obtain estimates of the attitude
matrix and attitude rate. The estimated DCM was

compared to the true attitude matrix using the fol-
lowing convergence and orthogonality metrics, re-
spectively

Jc�k� 1�, 1

M

XM
n�1
k D̂

�

n�k� 1 j k� 1� ÿDn�k� 1� k

J0�k� 1�, 1

M

XM
n�1
k D̂

�T
n �k� 1 j k� 1�

� D̂
�

n�k� 1 j k� 1� ÿ I k

where M is the number of simulation runs. Both the
body-frame and the reference frame vector measure-
ments were contaminated by zero-mean, white,
Gaussian noise sequences, orthogonal to the true

directions, with Rv=s 2
vI, Ru=s 2

uI, where the noise
equivalent angles were su=sv=5 arcsec. The initial
attitude estimate was set to the identity matrix (thus

assuming that Su and Sv coincide at t0) while the
true attitude corresponded to Euler angles of 30
deg, 20 deg and 10 deg in roll, pitch and yaw, re-

spectively. The true angular velocity of Sv relative
to Su was

o�t� �
24 0:02
0:05
0:03

35 sin

0B@2p
50

t�
24 p=4
p=2
3p=4

35
1CA deg =s �64�

while the initial angular velocity estimate was set to
zero. The ®lter was run at a rate of 20 Hz, i.e., the

sampling interval was T=0.05 s, while the measure-

ment processing rate was 10 Hz. The angular accel-

eration model parameters were: t � 10 s, _oM �
10ÿ4 rad=s2, pM�p0�0:001 for all three axes.
The performance indices obtained from a 100-run

Monte Carlo simulation are presented in Fig. 1. In
spite of its poor initial estimates, the estimator con-
verged in all runs to an accurate and orthogonal

DCM estimate after a relatively short transient
period, thus demonstrating its robustness.
In Fig. 2, the three Euler angles, their estimates

(computed using the estimated attitude matrix,

assuming a 3-2-1 Euler angle sequence) and their
corresponding estimation errors are shown for a
typical run. The average Euler angle steady-state

estimation error in a typical run was on the order of
0.1 arcsec, while the estimation error standard devi-
ation was on the order of 3 arcsec.

In Fig. 3, the three components of the angular
velocity vector, their estimates and their correspond-
ing estimation errors are shown for a typical run.

After the estimator's convergence period, the aver-
age rate estimation error was smaller than 0.04 arc-
sec/s, and the error standard deviation was on the
order of 3.6 arcsec/s.

8. CONCLUSIONS

In this paper we have presented a computationally
e�cient, nonlinear estimator, that directly uses vec-

tor measurements to estimate both the attitude
matrix and the angular velocity, avoiding the need
to precompute the temporal derivatives of these

noisy measurements. The algorithm is based on the
recently introduced IRP third-order minimal para-
metrization of the attitude matrix, which is at the

heart of its computational e�ciency. Avoiding the
use of the uncertain spacecraft dynamic model, the
®lter uses a polynomial state space model, in which
the spacecraft angular acceleration is modeled as an

exponential correlation stochastic process, a concept
used in tracking theory.
Simulation results have been presented, that

demonstrate the accuracy and robustness of the pro-
posed algorithm.
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