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Robust Navigation Using the Global Positioning System
in the Presence of Spoofing

Yaakov Oshman∗ and Mark Koifman†

Technion—Israel Institute of Technology, 32000 Haifa, Israel

The conventional approach used for identifying faults in global positioning system (GPS) receivers is based on
snapshot algorithms belonging to the class of receiver autonomous integrity monitoring (RAIM) algorithms. A new
approach is presented for alleviating the effects of spoofing disturbances in GPS receivers. Based on the interacting
multiple model (IMM) estimator, this approach may be used in stand-alone GPS systems and in integrated systems,
such as GPS-embedded inertial navigation systems. The IMM-based method not only provides (implicit) detection
and identification of the interference, but also an optimal estimate of the state of the system in the presence of
this interference. In addition, contrary to the conventional detect, identify, and exclude RAIM approach, the
new method’s probabilistically weighted estimate is obtained without excluding any satellite from the solution.
Numerical simulations are used to demonstrate the superiority of the proposed approach over the conventional
RAIM approach in scenarios having unfavorable satellite constellation geometries. The robustness of the new
approach is shown for a wide range of spoofing signal types. In addition, the new algorithm is shown to perform
adequately with just five satellites, which is below the minimum number of satellites required for RAIM fault
identification.

I. Introduction

T HE Global Positioning System (GPS) is increasingly used as
the main navigation system in various applications (ground,

airborne, maritime, civil, and military). This is because of its high
performance-to-cost ratio, especially after the cancellation of the
selective availability intentional error. The system can be used in
stand-alone mode or as part of an integrated system, such as a GPS-
embedded inertial navigation system (INS). Nevertheless, because
GPS signals can be jammed or interfered with quite easily, this
system cannot be relied on for certain critical applications without
additional measures that will provide an indication about the in-
tegrity state of its output. The system indeed provides the user with
basic integrity data as part of the navigation message broadcast from
the satellite to the receiver; however, this is not sufficient for certain
civilian applications and certainly not for military uses, where unin-
tended or deliberate interference (electronic warfare) by an enemy
must be taken into account. For this reason, additional means are
needed to monitor the soundness of the system.

The problem addressed in this paper is that of GPS navigation
in the presence of spoofing, which is a deliberate transmission of
falsified signals, meant to fool a GPS receiver.1,2 In the present work
it is assumed that GPS spoofing can be represented as a deliberate,
time-varying bias, introduced in the measurements of one or more of
the acquired satellites. The case of signal jamming, manifested as a
uniform increase of the measurement noise or a complete blocking of
the signals, is not dealt with here. This case is easier to detect and is,
usually, handled well by signal conditioning algorithms embedded
in GPS receivers or by estimation methods.3

In receiver autonomous integrity monitoring (RAIM) algorithms,
the receiver itself decides on the integrity of the system, based only
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on testing the consistency of information arriving from the GPS
satellites. Clearly, this approach may be used only in cases where
there is redundancy in the acquired data. This approach is especially
suitable for applications where the autonomy of the system is a
prime factor. The RAIM concept was first proposed by Kalafus in
1987.4 Two different classes of algorithms have been suggested for
the implementation of the RAIM approach. The first is the class of
snapshot algorithms. In this approach, the integrity measure of the
system is computed based only on the present measurement, without
reference to the past. RAIM algorithms belonging to the second class
are called in the literature filtering (or averaging) algorithms. These
algorithms use all of the measurements acquired up to the moment
of decision, as well as a priori information (if available) about the
dynamics of the user. Based on the assumption that a fault can occur
only in a single satellite at a given time, the snapshot approach is
the one commonly used today for RAIM purposes.

One of the common RAIM algorithms is based on the parity
space approach for failure detection and isolation (FDI).5,6 In this
approach, the measurement is mapped into the orthogonal comple-
ment of the range space of the observation matrix, called the parity
space. The result of this transformation is the parity vector, which
is used as a statistic for detecting and identifying the faults. An
underlying assumption of RAIM algorithms (which is common to
many FDI methods) is that a fault can occur in just one satellite at a
time. Detecting a fault is done by comparing the norm of the parity
vector to an externally predetermined threshold value. (If the norm
is greater than the threshold value a fault is declared.) Identifica-
tion of the faulty satellite is done by comparing the parity vector’s
direction to the directions of the columns of the transformation ma-
trix. (The number of columns is as many as the number of satellites
acquired.) The faulty satellite is the one whose characterizing col-
umn in the transformation matrix is closest in direction to the parity
vector. Experience shows that this algorithm copes very well with
detecting faults, with a negligible false alarm rate; however, its false
identification rate might be, in some situations, unacceptable. The
identification process requires a minimum of six satellites to be ac-
quired. When working close to this constraint, with six or seven
satellites only, there might exist a proximity of directions between
a number of columns of the transformation matrix. In this case, if
a fault has indeed occurred in one of the satellites, a false identifi-
cation of the faulty satellite is possible due to measurement noise.
Because the snapshot method works on the principle of removing the
satellite identified as faulty from the solution, that is, the faulty satel-
lite is not used for solving for the position and velocity, a situation
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is possible where a healthy satellite is removed, while the faulty
satellite is retained in the solution. When only a few satellites are
acquired, removing a healthy satellite and retaining a faulty satellite
in the navigation solution might result in positioning errors larger
than those that would have been expected had all satellites (includ-
ing the faulty one) been used for the solution. Moreover, because
the spoofer chooses the location and time for generating the inter-
ference signal, it knows the geometry of the satellites in the area
at the relevant time. Thus, the spoofer can compute the transforma-
tion matrix and optimize the spoofing effectiveness by choosing the
satellite whose corresponding column is close in direction to other
columns of the matrix. Clearly, then, in such a case the use of the
snapshot algorithm might not be very effective. Note that this con-
clusion is true for the entire range of snapshot algorithms because
it is possible to demonstrate their equivalence.6

The disadvantages of snapshot algorithms in coping with the
problem of intentional interference with GPS operation gave rise
to the hope that the filtering approach would provide a better solu-
tion to the disturbance problem because it uses more information
than the snapshot approach. Da and Lin7 present a method based
on using a main Kalman filter, which processes all acquired mea-
surements, and a bank of auxiliary filters processing subgroups of
measurements. The detection process is based on testing the consis-
tency of the results using the χ2 test. No attempt is made to estimate
the interference, but only to identify the faulty satellite to remove
it from the solution. Thus, the method is similar in nature to snap-
shot RAIM algorithms because the navigation solution is obtained
after making a binary decision on the health of each of the satel-
lites and removing the faulty satellite. In Ref. 2, two independent
algorithms for dealing with jamming and spoofing disturbances are
presented. The spoofing problem is handled via a bank of Kalman
filters, whereby the spoofing detection is performed via a χ2 inno-
vations test. The satellite identified as faulty is excluded, rendering
this method as well similar in nature to snapshot RAIM algorithms.
In Ref. 1, it is suggested to use a static multiple-model estimator
to identify jamming and spoofing disturbances. Although White
et al.1 state that “an intelligent spoofer would place unique offsets
on each of the satellite vehicles (SV) pseudorange measurements,
producing a specific position offset desired by the spoofer,” it is as-
sumed that spoofing biases are inserted as either step or ramp offsets
added uniformly to all GPS SV measurements. Obviously, this kind
of disturbance is equivalent to an added clock bias, which can be
handled quite effectively by the GPS receiver without resorting to
special means and algorithms. Chen and Harigae3 have recently sug-
gested the use of the interacting multiple model (IMM) algorithm to
identify jamming in a differential GPS/INS integrated system. Jam-
ming is represented by an increased measurement noise, acting uni-
formly on all acquired channels, and the method presented in Ref. 3
aims at alleviating a jamming situation by identifying the true level
of the measurement noise covariance out of three possible prede-
fined values, corresponding to system states designated as “normal,”
“interference,” and “jamming.”

This paper introduces a method for making the GPS solution
more robust in the presence of intentional spoofing by using the
IMM filtering algorithm. Compared to snapshot RAIM algorithms,
the adaptive algorithm presented herein offers a significant perfor-
mance improvement, which results from its different mode of op-
eration. Contrary to RAIM algorithms, the IMM-based approach is
not based on binary decisions regarding the integrity of each of the
acquired signals; instead, a probabilistic integrity measure is used,
which facilitates the computation of the scheme’s overall navigation
solution based on all (properly weighted) available data. A simu-
lation study is used to compare the performance of the proposed
algorithm to that of the common snapshot RAIM algorithm in a
wide range of scenarios.

The remainder of this paper is organized as follows. In the next
section, a mathematical definition of the GPS navigation problem
and the underlying assumptions are presented. A well-known snap-
shot RAIM algorithm, which serves here as a baseline to which the
IMM-based algorithm is compared, is presented next. In the follow-
ing section, the IMM algorithm is described and implemented in

a form that best suits the problem under investigation. The results
of an extensive simulation study that was performed to assess the
performance of the IMM algorithm are then presented. Concluding
remarks are offered in the final section.

II. GPS Navigation Problem
The basic measurement carried out by all GPS receivers is that

of the time it takes the signal to cross the distance between the GPS
satellite and the receiver. The errors in this measurement stem from
nonsynchronization of the satellite clock with that of the receiver,
as well as from delays in the signal as it passes through various
parts of the atmosphere. Called pseudorange, the measured range
is obtained by multiplying the measured time by the speed of light.
For n acquired satellites, the pseudoranges are given by

ρi = ri + b + vi , i = 1, 2, . . . , n (1)

where ρi is the pseudorange corresponding to satellite i , ri is the
true range, b is the unknown bias of the receiver clock, in units
of distance, and vi is the measurement error due to atmospheric
delays, which are not accounted for in the model. The true range
can be computed as

ri =
√(

x − six

)2 + (
y − siy

)2 + (
z − siz

)2
, i = 1, 2, . . . , n

(2)
where x , y, and z are the receiver’s position coordinates and
si

�= [six siy siz]T is the position vector of the i th satellite. Eq. (1)
may be rewritten as

ρ = ϕ(s1, s2, . . . , sn, ξ) + v (3)

where ϕ= [ϕ1 ϕ2 . . . ϕn]T and ϕi
�= ri + b, ρ

�= [ρ1 ρ2 . . . ρn]T

is the vector of measured pseudoranges, ξ
�= [x y z b]T is the vec-

tor of unknowns of the GPS navigation problem, and v is the mea-
surement noise vector, commonly assumed to be a white, zero-
mean, Gaussian distributed stationary sequence with covariance
σ 2

v In , where In is the n-dimensional identity matrix.
Linearization of Eq. (3) about a nominal value of the unknowns

vector ξ� yields

y = Gδξ + v (4)

where

y = ρ − ϕ(s1, s2, . . . , sn, ξ
�) (5a)

δξ = ξ − ξ� (5b)

G = ∂ϕ(s1, s2, . . . , sn, ξ)

∂ξ

∣∣∣∣
ξ = ξ�

=




x − s1x

ρ1 − b

y − s1y

ρ1 − b

z − s1z

ρ1 − b
1

x − s2x

ρ2 − b

y − s2y

ρ2 − b

z − s2z

ρ2 − b
1

...
...

...
...

x − snx

ρn − b

y − sny

ρn − b

z − snz

ρn − b
1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ = ξ�

(5c)

Eq. (4) constitutes the basis for the well-known iterated least-squares
(ILS) solution of the GPS navigation equations, as well as for all
snapshot RAIM algorithms. As already noted, it is common to as-
sume that v, which describes the unmodeled measurement errors,
can be characterized as a white or wideband noise. Obviously, if
there is a deliberate interference or a malfunction in one or more
of the satellites (or a multipath error), this assumption is no longer
valid. In this case, the role of RAIM algorithms is to identify the
satellite (or satellites) that are affected and to remove them from the
solution.
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To complete the description of the GPS navigation problem, it is
assumed that the external disturbance (or malfunction) can appear
in only one of the acquired satellites at a time. The extension of the
algorithm presented in this paper to the multisatellite spoofing case
is discussed in Sec. IV.B, Remark 4.

III. Snapshot RAIM Algorithm
The well-known and widely used parity space-based snapshot

RAIM algorithm5,6,8 serves in this work as a baseline algorithm to
which the proposed filtering algorithm is compared. The algorithm
comprises the following two stages.

A. Fault Detection
Let H0 denote the null hypothesis, that is, the hypothesis that all

acquired satellites perform nominally. Let H1 denote the alternate
hypothesis, that is, the hypothesis that there is a malfunction in one
of the acquired satellites. The detection problem can be formulated
as a statistical problem of deciding between the two hypotheses.

The first stage in the detection process consists of a check on
the number of acquired satellites. Thus, to detect a malfunction,
the number of acquired satellites, n, must satisfy the following
condition:

n ≥ 5 (6)

The detection process is based on the parity vector p, which is
defined as a transformation of the measurement vector y into the
null space of GT (the orthogonal complement of the range space of
G), which is termed the parity space. The parity vector is computed
as

p = Py, p ∈ R
n − 4 (7)

The matrix P ∈ R
n − 4,n satisfies

PT P = S (8)

where

S
�= I − G(GT G)−1GT (9)

The matrix P can be computed via a QR decomposition of G, yield-
ing P as the lowest n − 4 rows of the matrix QT .

The decision regarding the existence of malfunction is made by
examining the square of the norm of the parity vector. Thus,

‖p‖2

H1
>=
<
H0

TD (10)

where TD is the decision threshold. TD is computed offline and
is a function of the prespecified false alarm probability PFA, the
variance of the measurement noise σ 2

v , and the number of redundant
measurements, n − 4. TD can be computed from the equation5

PFA = 	
(
TD

/
σ 2

v

∣∣n − 4
)

(11)

where 	(χ 2|r)
�= 1 − P(χ2|r) and P(χ 2|r) is the χ2 cumulative

probability distribution function with r degrees of freedom,

P(χ 2|r) =
[

2r/2


(
r

2

)]−1 ∫ χ2

0

tr/2 − 1 exp

(
− t

2

)
dt (12)

When six satellites are observed, the threshold can be computed as8

TD = 2σ 2
v ln(1/PFA) (13)

When ‖p‖ is chosen as the test statistic, the threshold value is set to√
TD .

B. Fault Identification
For the purpose of fault identification, the number of acquired

satellites must satisfy the following constraint:

n ≥ 6 (14)

Notice that, as could be expected, more satellites are needed to
enable fault identification than the number of satellites required for
fault detection. The identification process is based on the vector
f ∈ R

n , computed as

f = Sy (15)

where S ∈ R
n,n is given by Eq. (9). Now compute

αi
�= f 2

i

/
Sii , i = 1, 2, . . . , n (16)

where fi is the i th component of f and Sii is the i th diagonal entry
of the matrix S. The faulty satellite, corresponding to the index i f ,
is declared according to the maximum likelihood approach as5

i f = arg max
i = 1,2,...,n

αi (17)

With the faulty satellite identified, it can now be removed from
the set of acquired satellites, and the (ILS or filtering) navigation
solution can be carried out using the remaining n − 1 satellites.

Remark 1: If a snapshot RAIM algorithm is used and the position
solution is obtained by means of the ILS algorithm, the decision
concerning the affected satellite and the position solution are based
solely on present measurements, without consideration of measure-
ment history. Moreover, in this case the solution completely disre-
gards the acceleration of the carrying platform, rendering it applica-
ble to both static and dynamic platforms. This is a clear advantage of
the snapshot approach, whose disadvantages were discussed earlier
in this paper, because the use of a filtering method necessitates mak-
ing assumptions regarding the dynamics of the carrying platform,
which renders the solution case dependent and not general.

IV. IMM Navigation in the Presence of Spoofing
The IMM filter9 assumes that at any point in time the system un-

der consideration obeys one of a finite number of models (modes)
and that it can switch between these modes in accordance with a
known transition probability matrix. The approach is based on us-
ing a filter bank consisting of elemental filters, each tailored to one
of the possible modes of the system, that is, n filters correspond-
ing to n modes, or hypotheses on the behavior of the system. At
the beginning of each filtering cycle, the IMM algorithm mixes the
previous cycle’s mode-conditioned estimates and covariances us-
ing mixing probabilities computed in the previous cycle. The mixed
variables are then used to initialize the elemental filters, which pro-
cess the measurements to derive the updated estimates, covariances,
and mode likelihood functions. The likelihood functions then serve
to compute the mode probabilities and the mixing probabilities for
the next cycle, whereas the updated estimates and covariances serve
to compute combined state estimate and covariance. These can be
regarded as the outputs of the IMM scheme.

For completeness, the IMM is briefly described herein. The inter-
ested reader is referred to Ref. 10, Sec. 11.6, for complete details.

A. IMM Estimator
The IMM algorithm comprises four stages.

Interaction
For i, j = 1, 2, . . . , n, assume that M j (k) is the j th system mode,

corresponding to the j th hypothesis on the model of the system at
time k. The known mode transition probability matrix, whose entries
are defined as

pi j
�= Prob[M j (k) | Mi (k − 1)] (18)
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allows to calculate the mixing probability as

µi | j (k − 1)
�= Prob

[
Mi (k−1)|M j (k),Zk − 1

] = pi jµi (k − 1)∑n
i = 1 pi jµi (k − 1)

(19)
where the mode probability is

µ j (k)
�= Prob

[
M j

∣∣Zk
]

(20)

and Zk denotes the measurement history up to time k. The mixed
state and covariance matrix for the filter assuming the model M j (k),
denoted by x̂ j

0(k − 1|k − 1) and P j
0 (k − 1|k − 1), respectively, are

x̂ j
0(k − 1|k − 1) =

n∑
i = 1

x̂i (k − 1|k − 1)µi | j (k − 1|k − 1) (21a)

P j
0 (k − 1|k − 1) =

n∑
i = 1

µi | j (k − 1|k − 1)
{

Pi (k − 1|k − 1)

+ [
x̂i (k − 1|k − 1) − x̂ j

0(k − 1|k − 1)
]

× [
x̂i (k − 1|k − 1) − x̂ j

0(k − 1|k − 1)
]T }

(21b)

Filtering
For j = 1, 2, . . . , n, a bank of n Kalman filters is used to compute

the state estimate x̂ j (k|k) and estimation covariance matrix P j (k|k),
starting from the estimate and covariance in Eqs. (21a) and (21b),
respectively, and assuming model M j for the transition from time
k − 1 to time k. The likelihood function corresponding to mode j
can be computed using the innovations generated by the associated
Kalman filter as

� j (k) = p
[
z(k)

∣∣M j ,Zk − 1
] = 1

/{
(2π)n/2[det A j (k)]

1
2
}

× exp
{− 1

2 rT
j (k)A−1

j (k)r j (k)
}

(22)

where r j (k) and A j (k) are the innovations sequence and innovations
covariance corresponding to mode j , respectively.

Mode Probabilities
Each mode probability µ j (k), j = 1, 2, . . . , n, is computed by

µ j (k) = p
[
z(k)

∣∣M j ,Zk − 1
]
Prob

[
M j

∣∣Zk − 1
]

p[z(k)|Zk − 1]
(23)

Using � j (k), which is computed using the innovations process
statistics as shown in Eq. (22), Eq. (23) can be rewritten as

µ j (k) = � j (k)
∑n

i = 1 pi jµi (k − 1)∑n
j = 1 � j (k)

∑n
i = 1 pi jµi (k − 1)

(24)

Final Estimates
The mode probabilities, along with each filter’s state estimate

and estimation error covariance matrix are used to compute a new
combined state estimate and covariance. These constitute the output
of the IMM scheme,

x̂(k|k) =
n∑

j = 1

x̂ j (k|k)µ j (k) (25a)

P(k|k) =
n∑

j = 1

µ j (k){P j (k|k) + [x̂ j (k|k) − x̂(k|k)]

× [x̂ j (k|k) − x̂(k|k)]T } (25b)

In the case under investigation in this paper, the IMM filter bank
comprises a set of extended Kalman filters (EKFs), one per each
hypothesis regarding the disturbance character. EKFs are used be-
cause of the nonlinearity of the measurement equation. These filters
are briefly described next.

B. IMM Elemental Filters
Each EKF in the IMM filter bank is based on the following model.

Propagation Model
Assuming that the platform carrying the GPS receiver is not un-

dergoing severe accelerations, the propagation model used in this
work is based on Singer’s kinematic model (see Ref. 11). The plat-
form acceleration is modeled as a zero-mean random process with
exponential autocorrelation. Let

ζ
�= [x y z ẋ ẏ ż ẍ ÿ z̈]T (26)

be the platform’s state vector, then Singer’s discrete-time model is

ζk + 1 = �(T )ζk + wk (27)

The transition matrix �(T ) is given by

�(T ) =




I3 T I3 (αT − 1 + e−αT )
/

α2 I3

0(3 × 3) I3 (1 − e−αT )
/

α I3

0(3 × 3) 0(3 × 3) e−αT I3


 (28)

where T is the sampling period and 1/α is the acceleration decor-
relation time constant (selected to best characterize the platform at
hand). The discrete-time process noise wk has covariance Q ∈ R

9,
whose matrix elements are

Q11 = (
σ 2

m

/
α4

)
(1 − e−2αT + 2αT + 2α3T 3/3

− 2α2T 2 − 4αT e−αT )I3 (29a)

Q12 = (
σ 2

m

/
α3

)
(e−2αT + 1 − 2e−αT + 2αT e−αT − 2αT + α2T 2)I3

(29b)

Q13 = (
σ 2

m

/
α2

)
(1 − e−2αT − 2αT e−αT )I3 (29c)

Q22 = (
σ 2

m

/
α2

)
(4e−αT − 3 − e−2αT + 2αT )I3 (29d)

Q23 = (
σ 2

m

/
α
)
(e−2αT + 1 − 2e−αT )I3 (29e)

Q33 = σ 2
m(1 − e−2αT )I3 (29f)

where σ 2
m is the variance of the platform acceleration.

The entire filter’s state is defined as

x
�= [

ζT b b̃(i)
]T

(30)

where b̃(i) is the error in the range measurement of the i th satellite
due to the sum of the effects of the clock bias and the external
disturbance. The clock bias and the range error states are modeled
in the filter as discrete-time random walk processes,

bk + 1 = bk + nk (31a)

b̃(i)
k + 1 = b̃(i)

k + ηk (31b)

where nk ∼N (0, σ 2
n ) and ηk ∼N (0, σ 2

η ).
Remark 2: Model (31) is, obviously, a crude model, and more

elaborate ones could be used, for example, the model used in Ref. 12.
However, as will be shown in the next section, this crude model satis-
factorily copes with a very wide range of external disturbances, ren-
dering the use of more sophisticated clock and disturbance models
unnecessary.

Remark 3: If the GPS receiver is under high acceleration, it is
possible to use one of the following two approaches. The first and
the most widespread approach consists of integration of INS and
GPS, as described in Ref. 13. In this approach, there is no need for
any assumptions about the dynamics of the platform because the ac-
celeration and angular velocity are measured directly by the inertial
sensors, whereas the task of the GPS is to prevent the divergence
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of the position, velocity and attitude estimates in the EKF solu-
tion. The disadvantage of this method is in the need for additional
hardware [inertial measurement unit (IMU)]. A second approach
suggests using the IMM estimation algorithm to choose between
various feasible platform motion models.14

Measurement Model
Assuming that the j th satellite is faulty, the measurement model

of Eq. (1) becomes

ρi =





√
(x − six )

2 + (y − siy )
2 + (z − siz )

2 + b + vi ,

i = 1, 2, . . . , n, i �= j
√

(x − six )
2 + (y − siy )

2 + (z − siz )
2 + b̃( j) + vi , i = j

(32)

The EKF’s observation matrix, obtained via linearization of the
measurement equation (32), is

H =




x − s1x

ρ1 − b

y − s1y

ρ1 − b

z − s1z

ρ1 − b
1 0

x − s2x

ρ2 − b

y − s2y

ρ2 − b

z − s2z

ρ2 − b
1 0

...
...

...
...

...
...

...
... 0n × 6 1 0

x − s jx

ρ j − b̃( j)

y − s jy

ρ j − b̃( j)

z − s jz

ρ j − b̃( j)
0 1

...
...

... 1 0
...

...
...

...
...

x − snx

ρn − b

y − sny

ρn − b

z − snz

ρn − b
1 0




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ= ξ�

(33)

where the single 0 in the 10th column and the single 1 in the 11th
column appear in the j th row.

Remark 4: Following the customary assumption in RAIM algo-
rithms, the IMM filter bank employed in this paper assumes the
existence of a spoofing signal in one satellite, at most. In principle,
the extension of this scheme to two spoofers (or more) is straight-
forward, provided, of course, that the system is observable: With
n acquired satellites, no more than n − 4 spoofing signals can be
identified. When this condition is met, the required number of fil-
ters in an IMM bank designed for estimating m spoofers is

(
n
m

)
. For

n = 6 and m = 2, this gives a bank of 15 elemental filters. This num-
ber might seem prohibitively large for various applications; how-
ever, note that 1) a filter bank designed for m spoofers covers all
l-spoofer cases with l < m (because each m-spoofer elemental filter
can identify spoofing in any subset of its measurement channels, as
will be demonstrated in the next section) and 2) the fact that the plat-
form dynamics is common to all models should allow for massive
parallelization to be used, reducing the overall computation time.

C. Discussion
Compared to the RAIM approach, the IMM algorithm is based

on an entirely different mode of operation. Based on a dichotomy
approach, the RAIM algorithm employs a binary decision procedure
regarding each of the satellites involved in the navigation solution:
By the comparison of the parity vector-based statistic against a preset
threshold, the health state of each satellite is determined as either
healthy or faulty, and, accordingly, this satellite is either retained
in the solution or removed from it. Erroneous fault identification,
which might happen in unfavorable satellite geometries, might lead
to severe consequences in GPS applications: A healthy, correctly
functioning satellite is removed from the solution, whereas the faulty
satellite is retained in the navigation solution computations. Thus,

the accuracy of the solution is reduced not only because of the faulty
satellite, but also because of the removal of the functioning satellite.

In contradistinction to the detect, identify, and exclude method-
ology of the snapshot RAIM approach, the IMM adaptive filtering
algorithm does not entail a hard, binary decision on the health state
of the satellites involved in the solution. Rather, each satellite is
assigned a probabilistic measure of its health (the posterior mode
probability), and the solution is obtained by probabilistically weight-
ing all available data (from all available satellites). Thus, the implied
decision on the health status of each satellite is not a hard, binary one
and is not achieved by comparing a statistic against an externally set
threshold; rather, in the new method, the (implicit) decision is soft
and is achieved by comparing each satellite’s posterior probability
against the probabilities assigned to the other satellites. As will be
shown in the next section, this property yields a much improved
identification capability and, at the same time, significantly reduces
the effect of a wrong identification, should one occur, because no
hard decisions are taken and no satellite is excluded (where wrong
identification means, in the context of IMM methodology, wrong as-
signment of mode probabilities). Moreover, because the IMM algo-
rithm estimates the disturbance (as opposed to the RAIM algorithm
that tries to identify the disturbed satellite and exclude it), it can op-
erate successfully with as few as five available satellites. (Recall that
the minimum number of satellites required for RAIM identification
is six.) Five available satellites operation will be shown next.

V. Simulation Study
To examine the performance of the new algorithm, an extensive

simulation study was conducted. In this study, the IMM algorithm
was compared to the RAIM algorithm, in the presence of a wide
range of spoofing signals. This wide range was used to render the
simulation conditions as general as possible. The number of satel-
lites acquired throughout most of the simulation was six, the mini-
mum required for fault identification using the RAIM algorithm. At
the final stage of the simulation, this number was reduced to five,
to examine the performance of the new method outside the RAIM
operational envelope.

A. Simulation Description
In the simulated scenario, the platform performed a maneu-

ver combined of east and north accelerations as shown in Fig. 1.
The platform’s initial position was latitude = 32◦46.4764′ N and
longitude = 035◦01.3434′ E. The platform’s altitude was 262 m.
The maneuver started on 20 June 2002 at 12:05:00 Coordinated
Universal Time and lasted for 1000 s. During this period, the fol-
lowing GPS satellites were observed under elevation mask of 10 deg:
SV-01, SV-07, SV-11, SV-13, SV-19, and SV-20.

Throughout the simulation study, the IMM elemental filters were
implemented with the parameter values shown in Table 1. The IMM

a)

b)

Fig. 1 Platform accelerations over 1000 s: a) north and b) east.
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Table 1 Simulation parameters

Parameter Value

ση 100 m
σn 70 m
σv 3 m
1/α 100 s
T 1 s
σm 4.66 m/s2

Table 2 Clock bias model parameters for various timing standards
(Ref. 15)

Timing standard h0 h−1 h−2

Temperature-compensated crystal 2 × 10−19 7 × 10−21 2 × 10−20

Ovenized crystal 8 × 10−20 2 × 10−21 4 × 10−23

Rubidium 2 × 10−20 7 × 10−24 4 × 10−29

transition probability matrix was

pi j =
{

0.95 + 0.05/n, i = j

0.05/n, i �= j (34)

where n is the number of acquired satellites.
The initial state estimate is obtained via the use of the ILS solution

at time t0. The initial estimation error covariance matrix was set in
this study to

P0 = diag{1002, 1002, 1002, 1, 1, 1, 1, 1, 1, 1002, 1002} (35)

where the respective variances are in units of square meters, square
meters per square seconds, and square meters/s4.

The GPS clock model used in this study is the common model
described in Ref. 15 (pp. 428–431). This model is based on the
assumption that both the clock frequency and its phase behave like a
random walk process over short-time intervals. Hence, the discrete-
time clock bias model is given by

xc
k = �c(�t)xc

k − 1 + wc
k − 1 (36)

where

xc �=
[

b

ḃ

]
, �c(�t) =

[
1 �t

0 1

]
(37)

Qc �= E[wc(wc)T ] =
[
(h0/2)�t + 2h−1�t2 + 2

3 π2h−2�t3 h−1�t + π2h−2�t2

h−1�t + π2h−2�t2 h0/(2�t)+4h−1+ 8
3 π 2h−2�t

]

(38)

Typical values for spectral density parameters associated with
various types of clocks are given in Table 2. All clock types of
Table 2 were tested in the simulations, without changing the filter’s
tuning parameters. In these simulations, the filter has exhibited no
visible sensitivity to the clock model used. All simulations presented
herein are based on the temperature-compensated crystal oscillator.

Remarks 5: Notice that the described clock model is used only in
the “truth world” simulation and not in the IMM elemental filters.
In these filters, the model used for the clock bias is the random walk
model of Eq. (31a).

Finally, the RAIM algorithm’s threshold value was com-
puted using Eq. (13) for a required false alarm probability of
PFA = 3.33 × 10−7. (This value was suggested in Ref. 16 and used
in Ref. 8.)

B. Constant Spoofing
The performance of the RAIM algorithm is initially examined

under the assumption that the measurements corresponding to SV-
01 are contaminated by a constant 100-m bias. The GPS navigation
solution is done via the common ILS algorithm.

Fig. 2 Horizontal positioning error under a 100-m bias in the range
measurement of SV-01, with RAIM algorithm operative (dashed line)
and inoperative (solid line). Geometry of a spoofed signal is favorable
for identification by RAIM algorithm.

Fig. 3 Horizontal positioning error under a constant 100-m bias in the
range measurement of SV-13, RAIM algorithm operative (dashed line)
and inoperative (solid line) signal is not favorable for identification by
RAIM algorithm.

Figure 2 shows the performance of the ILS algorithm with and
without the RAIM algorithm. As can be observed, when the RAIM
algorithm is inoperative, the horizontal positioning error reaches
35 m. The vertical positioning error (not shown for conciseness) be-
haves similarly and reaches about 60 m. Notice that this error is not
constant in time, despite the fact that the pseudorange measurement
bias is time invariant, because the geometry of the satellite constel-
lation changes over time, which is known to affect the positioning
error. When the RAIM algorithm is operative, both horizontal and
vertical positioning errors are reduced significantly, indicating that
the RAIM algorithm works flawlessly.

Suppose now that the bias of 100 m exists in the range mea-
surement of the fourth acquired satellite, SV-13, instead of the first
satellite. The estimation results in this case are shown in Fig. 3.
Note that without the RAIM algorithm (solid line) the horizontal
positioning error is about 65 m. The vertical positioning error (not
shown for conciseness) is about 100 m. This solution is based on all
six acquired satellites, including the faulty one.

When the RAIM algorithm is active (Fig. 3, dashed line), it al-
ways properly detects a fault. Hence, it identifies a satellite as faulty
and removes it from the solution. Thus, the RAIM-based navigation
solution is always based on just five satellites. Now, when the faulty
satellite is correctly identified and removed, the solution is based on
the five healthy satellites; this solution corresponds in Fig. 3 to the
low-level error (about 5–10 m), which is the error that would have
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Fig. 4 Horizontal positioning error under a constant 100-m bias in
the range measurement of SV-13, IMM algorithm. Geometry of spoofed
signal is not favorable for indentification by RAIM algorithm.

been obtained had there been no spoofing bias. On the other hand,
the high-level error spikes (about 140 m) correspond to the many
instances where the RAIM algorithm, due to the adverse geometry,
incorrectly identifies a healthy satellite, namely, SV-20, as faulty. In
these cases, the RAIM-based solution is based on four healthy satel-
lites and one faulty satellite, all of which receive equal weighting
in the solution. The navigation errors thus obtained are larger than
those reached when the RAIM algorithm is not operative at all. This
demonstrates the sensitivity of the RAIM algorithm to the geometry
of the satellite constellation, when the number of acquired satellites
is marginal, and emphasizes the potentially serious consequences
of a wrong identification made by the RAIM algorithm.

Figure 4 shows the corresponding horizontal positioning error
when the IMM algorithm is run. It can be seen that the 1-σ position-
ing error is no larger than 10 m. (The vertical error, not shown here, is
similar.) When these results are compared to those obtained with the
RAIM algorithm (Fig. 3), it can be concluded that the performance
improvement obtained via using the IMM algorithm is about one or-
der of magnitude. As earlier explained, unlike the RAIM algorithm,
the IMM algorithm does not exclude any satellite from its naviga-
tion solution, which is, thus, based on all six satellites. Instead, the
IMM algorithm estimates the spoofing signal and assigns proper
probabilistic weight to the particular (spoofed) satellite, which is
then taken into account along with all healthy satellites.

C. Periodically Switching Harmonic-Amplitude Spoofing
In reality, the spoofing disturbance can be of any kind and no a

priori knowledge as to its character can be safely assumed. Thus,
the performance of the algorithm was also examined in the presence
of time-varying errors of an unknown model. To this end, the sinu-
soidal range measurement error shown in Fig. 5a was simulated.
Moreover, to simulate a smart spoofer, the range measurement error
was assigned to four of the six acquired satellites in the following
manner, unknown to the GPS receiver: In the first 250 s, the faulty
satellite was SV-01; between 250 and 500 s, the faulty satellite was
SV-13; between 500 and 750 s, SV-07 was faulty; and between 750
and 1000 s, the fault was in SV-20. In each of these 250-s time inter-
vals, the appropriate part of the sinusoidal range measurement error
(Fig. 5a) was assigned to the corresponding satellite. Notice, that
only one satellite (out of the six acquired) was faulty at all times, but
the fault switched among the first, fourth, second, and sixth acquired
satellites.

Figure 5a, which shows the true spoofing signal and its estimate,
demonstrates that the IMM algorithm copes very well with this
problematic scenario, which substantiates the random walk mod-
eling of the error in the elemental IMM filters. The a posteriori
mode probabilities obtained via the IMM algorithm are shown in
Fig. 5b. Observe that the algorithm indeed correctly identifies the
faulty satellite at nearly all times.

a)

b)

Fig. 5 Estimation performance of the IMM algorithm, periodic spoof-
ing: a) spoofing signal: ——, true and – – –, estimated and b) mode
probabilities.

The horizontal positioning errors with both IMM and RAIM al-
gorithms in the presence of a periodic spoofing signal are compared
in Fig. 6. (For conciseness, the vertical positioning error, which
exhibited identical behavior, is not shown). The results are not sig-
nificantly different than those obtained in the constant spoofing case.
Whereas the IMM-based algorithm copes well with the presence of
the spoofing signal, yielding positioning errors smaller than 10 m,
the RAIM algorithm does not correctly identify the fault over a sig-
nificant part of the estimation interval, generating positioning errors
of up to 80 m when it is operative.

D. Randomly Switching Random-Amplitude Spoofing
The performance of the IMM algorithm was next examined in

a scenario where the disturbance signal randomly switches among
all acquired satellites at every measurement. The malfunctioning
satellite was uniformly randomly selected from all observed satel-
lites. The magnitude of the external disturbance was also randomly
assigned at each measurement epoch, by sampling from a normal
distribution with zero mean and variance of 1002 m2.

Figure 7 shows the horizontal positioning error of both methods
under random spoofing. (Again, the vertical positioning error, which
exhibited identical behavior, is not shown for conciseness.) The
IMM algorithm copes well with the type of spoofing employed, and
the positioning errors in this case are not significantly different than
those obtained with a constant bias. In comparison, the snapshot
RAIM algorithm exhibits errors larger than 100 m at times.

E. No Spoofing
The IMM filter introduced herein is not typical in that it does not

include in its bank a filter matched to the null hypothesis, which is
that no spoofing is active, that is, that all satellites are healthy. Thus,
it might seem as if this scheme is not set to cope with a nominal,
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a)

b)

Fig. 6 Horizontal positioning error under periodic spoofing with a)
IMM algorithm and b) RAIM algorithm: – – –, operative and b) ——,
inoperative.

disturbance-free scenario. To demonstrate that this is not the case,
a simulation is performed for the scenario where a random distur-
bance (identical to the one considered in the preceding subsection)
is activated only after 500 s of disturbance-free operation.

Figure 8 shows the estimation performance of the IMM filter in
this case. It can be clearly seen that there is no noticeable difference
in the filter’s performance before and after the disturbance is started.
This can be explained by noting that no-spoofing (zero bias) is just
a special case of the general random bias case. Hence, when there is
no bias, any of the IMM elemental filters can estimate the (zero) bias
equally well. Figure 8b shows the mode probability time histories
obtained using the IMM in this case. Because all elemental filters
can serve to estimate the zero bias, the mode probabilities switch
in a random fashion between the modes (depending on the current
measurement noise values of all pseudoranges). This, however, does
not affect the total performance of the IMM filter, as can be seen from
Fig. 9, which shows the horizontal positioning error obtained using
the IMM. Clearly, this error is not different than the errors obtained
in preceding cases, for example, constant bias. The conclusion from
this analysis is that, indeed, no special elemental filter is needed for
the nominal (no bias) case.

F. Five Satellites
In all of the preceding tested scenarios, the number of satellites

acquired was six. This number was selected because it is the min-
imal number of satellites required for using RAIM algorithms. In-
deed, as earlier simulations show, the performance of RAIM algo-
rithms when the number of acquired satellites is six can be quite
poor compared to the performance of IMM-based detection and
identification.

a)

b)

Fig. 7 Horizontal positioning error under random spoofing a) with
IMM and b) RAIM algorithms.

Because the IMM-based algorithm presented in this paper works
quite differently than RAIM algorithms, it is conceivable that it
does not have to obey the six-satellite threshold; in fact, because
the IMM filter works by estimating the disturbance (unlike RAIM
algorithms), it is plausible that only five satellites will suffice for
its operation because, basically, the number of state variables it
estimates is five: three position components, clock bias, and the
external spoofing disturbance.

To verify that, indeed, the IMM algorithm can cope with a reduced
number of acquired satellites, the elevation mask was increased to
13 deg (from the 10-deg mask used in the earlier simulations). In
this case, the GPS receiver acquires just the SV-01, SV-11, SV-13,
SV-19, and SV-20 satellites. (SV-07 is under the elevation mask and,
hence, it is not acquired.) All other simulation parameters remain
as in the preceding cases.

To demonstrate the performance of the algorithm with five satel-
lites only, a combined spoofing signal was tested, which consists,
essentially, of a time concatenation of all earlier tested disturbance
signals (Fig. 10a). Thus, the spoofing signal is built of a piecewise-
constant switching signal with random amplitude (applied to satel-
lites SV-01, SV-11, SV-20, SV-19, and SV-13, in this order, between
0 and 500 s), a periodic signal applied to SV-11 (between 500 and
750 s), and a random switching signal with random amplitude (be-
tween 750 and 1000 s). Notice that the first 500 s also include
disturbance-free periods. Figure 10 demonstrates the performance
of the algorithm in this case. Observe that the algorithm performs ad-
equately, correctly identifies the disturbed satellite and estimates the
disturbance at all times, and, thus, correctly estimates the position.

When the performance of the algorithm is compared to the ear-
lier cases (where six satellites were acquired), it becomes clear
(as could be expected) that the estimation performance degrades
with the reduction in the number of acquired satellites. However,
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a)

b)

Fig. 8 Estimation performance of the IMM algorithm with random
spoofing starting at t = 500 s: a) spoofing signal: solid line, true and
dashed line, estimated and b) mode probabilities.

Fig. 9 Horizontal positioning error, IMM algorithm, with random
spoofing starting at t = 500 s.

the degradation observed when reducing the number of satellites
from 6 to 5 is minimal.

Note that the present IMM filter bank that was designed to handle
a single spoofing signal was also tested in the case of two active
spoofers (see Remark 4). In this test, constant, 100-m bias spoofing
signals were applied to all possible 15 two-satellite combinations
from the six acquired satellites. As could be expected, the filter could
not handle this situation, and (nondiverging) positioning errors of
hundreds of meters were observed in all cases.

a)

b)

Fig. 10 IMM estimation performance in presence of combined spoof-
ing, with only five satellites acquired: a) spoofing signal: solid line, true
and dashed line, estimated and b) horizontal positioning error.

VI. Conclusions
A new concept, leading to improved immunity against spoofing

disturbances in GPS applications, has been presented. The concept,
which may be considered as a viable complementary or alternative
method to the traditional snapshot RAIM algorithm, is based on
the use of an IMM adaptive estimator that detects the existence
of an external disturbance and implicitly identifies it by means of
computing the posterior mode probabilities of various error models.
The common case of signal jamming is not addressed in this work;
this type of disturbance is usually adequately dealt with by state-
of-the-art RAIM algorithms and by signal conditioning methods
employed by the receiver within its signal processing circuitry.

With the use of an extensive computer simulation study, it has
been demonstrated that the common RAIM algorithm of the snap-
shot type is sensitive to satellite constellation geometry, when work-
ing with a minimal number of satellites, and that there are geometries
where it might not correctly identify the faulty satellite. The RAIM
algorithm works by reaching a binary decision regarding the health
of each of the satellites involved in the navigation solution. Accord-
ing to this decision, each satellite is either retained in the solution
(if it is declared healthy) or removed from it (if it is declared faulty).
When a nominally functioning satellite is excluded from the navi-
gation solution due to an erroneous fault identification, this might
lead to large navigation errors because, in addition, the true faulty
satellite is retained.

Compared to the detect, identify, and exclude approach of snap-
shot RAIM algorithms, the adaptive filtering algorithm presented
works by estimating the disturbance signal while retaining all ac-
quired satellites in the navigation solution. Each satellite is assigned
a probabilistic measure of its health, and the solution is obtained
by probabilistically weighting all available data. Thus, the implied
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decision on the health status of each satellite is not a hard, binary one
and is not achieved by comparing a statistic against an externally
set threshold. Rather, in the new method the (implicit) decision is
soft and is achieved by comparing each satellite’s posterior proba-
bility against the probabilities assigned to the other satellites. This
yields an improved identification capability and enables an extended
operational envelope.

An extensive simulation study is presented that demonstrates the
accuracy and robustness of the new method with respect to a wide
spectrum of disturbance signals. In addition, the study shows that
the new method enables an expansion of the operational envelope of
conventional RAIM algorithms (which are constrained to working
with at least six acquired satellites) because it can properly function
with just five satellites, with a negligible performance degradation.
The proposed algorithm can be extended to handle spoofing in more
than one satellite, subject to obvious observability constraints. This
extension is a topic of current research.
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