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Fig. 2 Section of the time history during tracking of a continuously
moving target: a) total head motion Ut\ b) estimated voluntary head
motion Uf, c) low-pass filter of Uf.

ing error. The use of the LPF-only configuration resulted in an
increase of 33-56% in the dwelling time and in a decrease of
38-54% in the tracking error. Using the AF + LPF configura-
tion increased the dwelling time by 30-60% and decreased the
tracking error by 35-55%. Figure 2a shows the unfiltered sig-
nal, and Figs. 2b and 2c show the filtered signals. It can be seen
that the AF filters the high-frequency periodic motion (Fig. 2b)
and that the addition of the LPF attenuates the nonadditive
biodynamic component (Fig. 2c).

From Table 2 one learns that the larger the random compo-
nent in the vibration, the smaller is the contribution of the AF.
The nonadditive component is the dominant biodynamic inter-
ference but cannot be handled by the adaptive filter since it is
not correlated with the cabin vibration. In this regard, a dis-
tinction must be made between viewing tasks7 and tracking
tasks. In the viewing task the interference is additive and can
be handled by noise cancellation methods. In the tracking task,
however, the remnant noise increases with the intensity of the
vibration and often becomes dominant. The remnant noise is
not additive and cannot be directly reduced by the noise can-
cellation method.7 Therefore, additional filtering schemes are
needed to reduce the effects of biodynamic interference. For
this reason, the subjects' performance with the LPF-only con-
figuration was similar to their performance with the AF + LPF

configuration. The experiments indicate that, at least with the
time constants of 0.5 s, the subjects learned to compensate for
the additional phase lag introduced by the LPF. As a rule, all
of the subjects reached similar levels of performance, and
eventually, after sufficient training, and with the adaptive and
low-pass filtering configuration or with the low-pass-only con-
figuration, it closely approached the tracking performance
level without vibration.
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Linear Quadratic Stochastic Control
Using the Singular

Value Decomposition
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Introduction

T HE conventional solution to the standard, discrete-time,
linear quadratic Gaussian (LQG) stochastic control prob-

lem can be expressed in terms of the solution to two separate,
dual problems: the linear quadratic optimal regulator problem
and the linear optimal filtering problem. The inherent numer-
ical instability of the discrete Riccati equation, which is solved
in the Kalman filter via two covariance recursions (the time
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update and the measurement update), is now widely recog-
nize^. Since the dual optimal regulator problem involves the
solution of a matrix Riccati equation that is identical in form
to the filtering covariance recursion, the conventional method
of computing the optimal control law suffers also from nu-
merical instability as does the Kalman algorithm. This insta-
bility may cause severe problems, especially in ill-conditioned
cases, e.g., where the model is poorly controllable.

Since square root algorithms have been useful in the past
in overcoming the Kalman filter numerical instability,1'2 this
technique has also been applied to the dual control problem.
Square root control algorithms that are based on UDUT fac-
toriz^tjon3 and Householder transformation4 are available.

This Note presents a control law formulation that is based
on the singular value decomposition (SVD). The new formula-
tion is based on the observation that the Riccati recursion,
which is the heart of the classical LQG solution, serves only as
a means of computing the optimal gain matrix, and its solu-
tion is not needed in any other way. Thus, the optimal gain
matrix is computed by the new algorithm without resorting to
the solution of the Riccati equation. The new method comple-
ments the K-lambda square root filter,2 which is also mainly
based oq the SVD, to form a complete, numerically robust
and accurate LQG computational scheme.

The following linear, discrete-time, stochastic system is con-
siderecj:

+i =Akxk + Bkuk

= Ckxk + vk
(1)

for k =0, 1, . . . ,7V- 1, where xkt (Rn,ukt (Rp,yk£ (Rm and
{wk }, (vk } are the process and measurement zero mean Gaus-
sian white sequences, respectively, and the initial state JCG is a
Gau^slan random vector with mean m0. The LQG stochastic
control problem is to find the optimal control sequence
{u* }%~Q which, based on the measurement history (yk }%'$,
minimizes the cost functional

J = E +i + utRkuk) (2)

Here E( -) denotes the expectation operator and Qk > 0, and
Rk>0 are symmetric weighting matrices. As is well known,
the optimal control strategy that minimizes the cost in Eq. (2)
is a feedback control law that operates on an optimal estimate
of the state, as follows:

= -Mkxk/k (3)

where jck/k is the optimal state estimate (computed by the
Kalman filter) and the gain matrix Mk is conventionally com-
puted using the solution of the associated control Riccati
recursion.

The new, SVD-based control law formulation is presented
next.

New Control Law Formulation
Theorem: Given the dynamic system Eq. (1) and the cost
functional Eq. (2), an SVD-based algorithm for the computa-
tion pf the control gain in Eq. (3) is given by the following
backward recursion for k = N - 1, TV - 2, . . . , 0:

Define the matrix Tk € (R2n'n as

T*: = (4)

where ( • )1/2 denotes a lower triangular square root factor (e.g.,
a Cholesky factor) of ( - ) and ( - )T/2 = [(- )1/2]r. Perform a
triangularization of I\, i.e., find an orthogonal transforma-
tion Bk such that

(5)

where 11* € (&"'" is upper triangular. Define the arrays Sk €

(6)

and perform an SVD of Tk to obtain

Tk = U*[LQ\ yk (7)

Partition UkSk in accordance with the partition of Sk in Eq. (6):

-ra
Then, the optimal control gain matrix at time k is given by

Moreover, defining /*, the optimal cost-to-go, as
N- 1

/J: = min £ (\\xj+l\\2
Qj + ll«,ll2.) (10)

(where the symbol Ik \\2
A' - zTAz is used), it is computed by

J* = A:=0, 1,. . . ,7V- 1 (11)

Proof: The required control law is also the optimal control
law for the related deterministic system, where the random
variables are replaced by their expected values, i.e., the fol-
lowing certainty equivalent system:

+ i = Akxk + Bkuk

= Ckxk
(12)

Hence, the following certainty equivalent cost functional will
be minimized:

(13)

Applying Bellman's dynamic programming principle of opti-
mality, the theorem will be proved by induction.

Consider first the last stage of the process, assuming that
the optimal control actions ( w j , w * , . . . , «^_ 2 ) have already
been determined, so that u^_ l is the only control action yet to
be found. By the optimality principle, the cost function to be
minimized by u£_ l at the last stage is

Using the certainty equivalent dynamic system Eq. (12) in
Eq. (14) yields

,JN-I=

Noting that IIN_ i = Qj/_\ and using the definitions in Eq. (6),
Eq. (15) becomes

Now perform a singular value decomposition of TN_\\

Using Eqs. (8) and (17) in Eq. (16) yields

(16)

(17)

(18)
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Clearly, the minimum of JN- i with respect to uN- \ is reached
for

and the minimization residual is

J*_ ! = min JN. ! = ll
"N- l

(19)

(20)

Next, going backward to stage k of the process (where
0 < A: <7V - 1), it is assumed that all control actions prior to
uk have been determined, so that {uky . . . , UN_ i ) are the only
control actions yet to be exerted. By the principle of optimal-
ity, the optimal control action at stage k is determined by
minimizing the following cost function (the cost-to-go) with
respect to uk, subject to the constraint in Eq. (12):

Jk = \\xk+l\\Qk + \\uk\\Rk + Jk+l(xk+l)

Noting that, by the induction assumption,

(21)

(22)

and employing the definition in Eq. (4) of I\, Eq. (21) can be
rewritten as

(23)

Now find an orthogonal matrix 0^ such that 0^1^ is upper
triangular, i.e.,

- H~ L o J - upper triangular (24)

(0£ need not be computed explicitly). Employing Eq. (24) and
using the system Eq. (12) to express xk+\ as a function of xk
and uk in Eq. (23) yields

H[n'o' »
which, using the definition in Eq. (6) of Sk, Tk, can be
expressed as

Jk = \\Skxk + Tkuk\\2 (26)

The last equation has the same form as that of Eq. (16).
Replacing the index N - 1 by k and following along the lines
of derivation in the first part of the proof finally yields

(27)
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Fig. 1 Closed-loop response of the first state component (new al-
gorithm in single precision, conventional algorithm in double preci-
sion).

The minimization residual (the optimal cost-to-go) is

Jk = min Jk =
uk, . . . , UN _ i

which completes the proof.

(28)

Numerical Example
The following certainty equivalent dynamic system is con-

sidered:

8.25 0.0 0.1
0.1 1.495 0.5
0.0 0.0 8.75

0.0 1.0
1.0 0.0
0.0 1.0

JC0=[10.0 10.0 10.0]r

uk (29)

The cost functional is
199

.5, 0.1, 0. 10.0,

The plant, Eq. (29), is unstable, but controllable. An Intel
80386/387 CPU/FPU-based Olivetti M380/C computer was
used for the simulation. All programs were written in Micro-
soft Fortran 4.1, using UNPACK5 mathematical routines.
The conventional LQG algorithm was run in both single preci-
sion (SP) and double precision (DP). However, only the DP
run was successful, while the SP solution diverged before
completing the backward recursion. When the new algorithm
was used in SP, no such difficulties were observed. The opti-
mal gain sequence computed was identical to that obtained via
the DP conventional method. In Fig. 1, the time history of the
closed-loop system's first state component is shown. As can be
observed, the system's response during the initial time steps is
violent, which might explain the divergence of the SP version
of the Riccati recursion. It is emphasized, however, that no
such problems were encountered when the new, SVD-based
algorithm was used.

Concluding Remarks
Inheriting the excellent numerical characteristics of the

SVD, the new algorithm is guaranteed to be numerically stable
and highly accurate. Moreover, cases of singular weighting
matrices (i.e., unconstrained control action or unweighted
states) can be handled without any modification. Combining
the new control algorithm with the K-lambda square root
filter, which also relies mainly on the SVD procedure, renders
the resulting LQG scheme numerically robust and simple to
implement in practice.
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