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Two square-root filtering algorithms are developed for large space structures that are modeled by second-
order, continuous-time, finite, dynamic imodels. The first filter, which assumes a continnous-time measurement
system, is a single-stage continnous algorithm that is based on the V-Lambda square-root method for the
solution of a genéralized Riccati equation. The second measurement system considered is of a discrete-time type,
for which the resulting estimator is a hybrid continuous/discrete one. Both estimators are based on the spectral
decomposition of the estimation error covariance matrix. Thus, they continuously provide the user with the
covariance spectral factors. This distinct feature of the V-Lambda algorithms is valuable in ill-conditioned cases,
in which an insight into the estimation process is needed to reveal singularities and to identify state subsets that
become nearly dependent. Moreover, using the orthogonality property of the covariance eigenvectors, an
orthogonalization step is added to the algorithms to enhance their accuracy in cases where simple, unsophisti-
cated software is to be used. Two different methods for performing the orthogonalization are suggested. A
typical filten'hg example is used to demonstrate the square-root nature of the new filters.

I. Introduction

HE application of modern multivariable control theory to

the design of advanced large space structures (LSS) has
received a great deal of attention in the last decade.!-* In most
cases, the system equations have a linear, vector, second-order
form, which usually results from some finite approximation to
the distributed parameter description by partial differential
equations. Modern linear system theory, however, requires
that the mathematical model of the system be formulated in a
vector first-order form. A direct application of modern con-
trol theory results to LSS problems, therefore, makes it neces-
sary to transform the original second-order formulation to an
equivalent vector first-order form. Several ways of performing
this transformation exist; however, they all share the common
disadvantage in that they prohibit the exploitation of any
special properties that the system matrices [M, D, or K in Eq.
(1a)] may have (i.e., symmetry, definiteness, and/or sparsity).
To make the last point clearer, consider the following contin-
uous-time, stochastic equation, which mathematically models
LSS:

M3 + Di + Kx = Bu + Gw (1a)
where x(¢) ¢ R” is the system’s generalized position vector;
u(t) e Ris the control input; w(t) e R? is a zero-mean, white,
Gaussian noise process with covariance E{w (£)w(s)"] = Q(¢)
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6(t — s); M is the symmetric, positive definite mass matrix; K
is the symmetric, positive semidefinite stiffness matrix; and D
is the symmetric damping matrix. _
It is assumed that only a linear combination of some subsets
of the system’s position and velocity components is measured:
y=Hx +Hyx+v (1b)
where y € R™ is the meéasurement vector; and v ¢ R™ is a
zero-mean, white, Gaussian measurement noise process with
intensity R (¢), which is uncorrelated with w(¢) (the extension
to the correlated case being straightforward).*
It is also assumed that the initial generalized position and
velocity of the structure are
x(0) = xo and *(0) = xq (1¢)
where x, and x, are jointly Gaussian with known means and
second moments and have no correlation with the noise pro-
cesses w(f) and v(?). .
Now, by augmeriting the state vector, the ‘‘classical’’ equiv-
alent first-order realization of Egs. (la-1c¢) is

)= (Lie b))+ (e
(00

(24)

y=I1H H) (i) +v (2b)
x(M) _ (%

<x(0)> - <xo> @)

However, by examining the realization (2), it is clear that any
symmetry, definiteness, and/or sparsity of the system matrices
is destroyed and cannot be used éffectively in the algorithm
implementation. In this respect it should be noted that it is
very common that the system matrices (all or some) are sparse,
in addition to their being symmeétric, because of their compu-
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tation by efficient, finite-element programs that arrange the
node ordering in the structural model to achieve this sparsity.
Sparse matrix technology has been developed very rapidly in
recent years, and highly efficient algorithms exist for the
solution of various problems in which sparse matrices are
involved.>® The transformation of the second-order model
[Eq. (1)] to the first-order realization [Eq. (2)] prohibits the
use of these sparse-matrix algorithms and thus may increase
the computational burden considerably.

For this reason, as well as others, several works that have
appeared recently address the analysis of second-order models
directly, without first transforming them to the standard first-
order form.”!! Of special interest is the recent work of
Hashemipour and Laub,!! which motivated the research pre-
sented in this paper. They addressed the problem of state

_estimation in second-order systems by developing Kalman

filtering (KF) equations for continuous-time, second-order
systems (continuous dynamics and continuous measurement)
and for discrete-time, second-order systems (discrete dynamics
and discrete measurement) that are obtained from the original
continuous systems by some type of approximation. Their
equations retain the original structure possessed by the system
parameters, thus enabling the exploitation of any special
structure of these parameters in the implementation of the
filter. As in the conventional Kalman filter algorithm, in
which a matrix differential equation has to be solved for the
estimation error covariance matrix (the Riccati equation) in
the continuous case, or a matrix recursive equation in the
discrete case, the results presented in Ref. 11 are based on the
propagation of covariance matrices.

It is now widely recognized that the filtering algorithms
presented by Kalman'? and Kalman and Bucy'® may suffer
from numerical instability. Soon after the introduction of
these algorithms, it was shown that their implementation in
practice, especially on short-word-length computers, may lead
to the computation of negative-definite covariance matri-
ces,!*16 which, in turn, may cause filter divergence. Square-
root (SR) filtering algorithms were developed to overcome
these difficulties. These algorithms use a decomposition of the
error covariance matrix into its SR factors, which replace the
covariance matrix in each stage of the computation. In this
way the covariance matrix itself is never explicitly computed.
This ensures that the (implicit) covariance matrix is always
symmetric non-negative definite, stabilizes the filtering al-
gorithm, and greatly enhances its accuracy in ill-conditioned
cases.!” Since the decomposition of a nonnegative matrix into
its SR factors is not unique, several SR methods have been
developed that are based on different SR decompositions.
Among these are those based on Q-R factorizations;!® Bier-
man’s U-D method,?2° which uses a UDUT decomposition of
the covariance where U is a unit upper triangular matrix and
D is diagonal; and the recently introduced V-lambda al-
gorithms, 62! which use the spectral decomposition of the
covariance into a VAV7T form where V is the matrix whose
columns are the eigenvectors of the covariance and A is the
diagonal eigenvalue matrix.

As pointed out in Ref. 11, actual implementation of the
second-order (covariance) estimation algorithms should be
performed in factorized or SR form because of reasons similar
to those for using SR algorithms in the first-order (conven-
tional KF) case. The purpose of this paper is to apply the
notion of SR filtering to LSS problems by presenting SR
solutions to the problem of state estimation in linear vector
second-order systems. Two algorithms are presented here: one
for the continuous-time, second-order model (continuous dy-
namics and continuous measurement) and a hybrid algorithm
for the (more practical) case of continuous dynamical model
augmented by a discrete-time measurement. Both algorithms
are based on the aforementioned spectral decomposition of
the covariance matrix and as such belong to the V-lambda
class of SR filters, thus inheriting their excellent numerical
characteristics.!62!-2 Moreover, the fact that the algorithms
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are formulated in terms of the eigenvectors and eigenvalues
(eigenfactors) of the covariance matrix renders them especially
important in cases where continuous monitoring of the eigen-
factors is needed to reveal singularities as they occur and to
identify those state subsets that are nearly dependent.!”:18:2
In the following section, the continuous-time algorithm is
developed. This algorithm is modified in Sec. III to incorpo-
rate a discrete-time measurement, thus forming a hybrid con-
tinuous/discrete V-Lambda filter. In Sec. IV the orthogonal-
ity property of the covariance eigenvectors is exploited, using
two different approaches (Baruch and Bar-Itzhack’s iterative
orthogonalization? and a method based on the singular value
decomposition2) to enhance the filter accuracy by reducing
the numerical integration error. A filtering example is pre-
sented in Sec. V, which serves to demonstrate the numerical
robustness of the new filters. The paper is concluded in Sec. VI.

II. Continuous-Time Square Root Algorithm

In this section we develop a SR filtering algorithm for
systems modeled by second-order, continuous-time models.
To simplify the ensuing development, we shall assume, with-
out loss of generality, that the only input to the system is the
stochastic process noise, the inclusion of the deterministic
control input effects being straightforward. The flexible struc-
ture we shall deal with is mathematically modeled by Eqgs. (1),
which, following Ref. 7, will be written in an implicit form as

(600 20 o

y=IH H] © +v (3b)

This can be written more compactly as
Eg=Fgq + Gw (4a)
y=Hg+v (4b)

with obvious definitions of the augmented state vector ¢ and
the system matrices E, F, G, and H. Also, we define the
estimation error covariance matrix by

P =Ef{lg —4llg - 41"} &)

where 4 is the estimated augmented state, and £ {*} stands for
the expectation operator.

The KF Riccati equation for the estimation error covariance
P(¢) is given by the generalized Riccati equation:2”-2

EPET = FPET + EPFT + GQGT — EPH'R ~'HPET  (6)

As is well known, this equation forms the core of the continu-
ous-time KF algorithm for state estimation in systems describ-
able by models such as Eq. (1). To develop the algebraically
equivalent (but numerically superior) SR algorithm, we need a
result from an earlier paper (Ref. 16), which relates the rate of
change of the eigenfactors of a self-adjoint matrix to the rate
of change of the matrix and is restated here for convenience.

Theorem 1. Rate of change of the eigenfactors of a self-ad-
Joint matrix that depends on a real parameter. Let P(t) be an
n xXn complex matrix function, that depends on the real
parameter £, and let P(¢) satisfy the following two conditions
for every t€R:

1) P(t)is self-adjoint, i.e., P(¢)=P(t)*, where the asterisk
denotes the conjugate transpose matrix.

2) P(t) is an analytic function of the real variable ¢. Then,
there exist scalar functions {N\;(#)}?-, and a matrix-valued
function V(t), which are analytic for t€R and possess the
following properties for every #€R:

a) P(t) = V() diag{\(£),M(8),-- M (O} V()™Y b) V(t)*
V(¢) = I, where I is the identity matrix. Furthermore, defining
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the diagonal matrix A to be
A= diag{)\l’)\b"-’)\n }

and the ith column of V(¢) to be v;(¢), we have

d):i(t) =v;(t)*———— ( )v,(t), i=1.2,..,n (7a)
and
RGN0
vi(t) = qz=:1 qu(t), i=12,....,n (7b)
N#EA,

Since P(?), the solution matrix of the Riccati equation,
satisfies the conditions of the theorem, the results stated in the
theorem can be applied in our case. Identifying the functions
{\:(2)}7-, with the eigenvalues of P(¢) and the columns v;(¢)
of V(¢t) with its corresponding eigenvectors, we note that the
main theorem relates, by way of Eq. (7), the rate of change of
the eigenfactors of P(¢) to the rate of change of P(?) itself. To
obtain the required SR algorithm, however, we need to de-
velop differential equations for the eigenfactors, in which no
explicit computation of the covariance will appear; that is, we
need to develop expressions of the following form:

N@) = LN -1 @)=, i=12,..

v (1) = & l[{N@OY] =1, (vi(O)}F 1], i=12,.,n (8b)

,n (8a)

where f;, g; are functions of the covariance eigenfactors and,
possibly, the system parameter matrices. Noting Eq. (7) of
Theorem 1, we see that to cast these equations in the required
form [Eq. (8)] we have to express the numerators in the right
side of Eq. (7b) as functions of the eigenfactors. This will be
done next.

We start by rewriting Eq. (6) as

P=E-'FP + PFTE-T + E-'\GQG"E-T~ PH'R~'HP (9)

We note here that, at least in theory, we may do so, since the
mass matrix M (and hence also the matrix E) is assumed to be

-\ )\qu '—IHI

invertible; however, because the potentially problematic na-
ture of the mass matrix inversion in practice is recognized, this
inversion will be circumvented at a later stage of the deriva-
tion. Casting Eq. (6) in the form of Eq. (9) may therefore be
considered a purely didactic step. Premultiplying Eq. (9) by vq
and postmultiplying it by v;, we have

v]Pv; = v]E ~'FPv; + vJPFTE Ty,

+vJE-'GQG"E ~Tv; — v;PH'R ~'HPv; 10)

Using the relations that must be satisfied by the eigenvalue-

" eigenvector pairs

Py; = \y;
and
vIP =Ny
Equation (10) takes the form
vIPv; = \vJE~'Fv; + N\ FTE~Tv; + vJE-'\GQG"E~ T,

— NAYITHTR v, an

- [ M — MK)T = NNHTR “HMT
5= NM = NK ~ NAMHIR-'H, —~(\DMT + \MDT) + GQGT — N\\,MHJR ~ H,MT

J. GUIDANCE

in which no explicit usage of the covariance matrix is made.
However, as noted before, the last expression does contain an
inverse of the matrix E, which implies an inversion of the mass
matrix. To avoid the numerical difficulties that may be associ-
ated with this inversion being ill-conditioned or in near-singu-
lar cases, we use the following transformation, by which the
set of eigenvectors of P is transformed into another set of
‘‘weighted eigenvectors’”:

zii=E-" Ty, (12)

from which we clearly have

vIE-l=2zT a3)
= ETz; (14)

and
vl =z/E @as)

Substituting Egs. (12-15) into Eq. (11) yields
vIPv; = \aJFE"z; + N2JEFTz; + 2] GQGz;
—~ NNz EHTR'HETz;
=zJ {NFET + N,JEFT + GQGT

— NNEHTR 'HET)z; (16)

Now define the set of scalar functions {v;q}7,-1 by
=z  {NFET + NEFT + GQGT — \\\,EH'R ~'HET}z,
Lg=12,..,n amn

Substituting the matrices E, F, G, and H of Eq. (4) into Eq.
(17), vi4 can be rewritten as

Yig = qu Tz (18)

where T}, is a matrix-valued function defined by

(19)

Employing the definition of v;, in Eq. (16) yields
VqT P"i = Yig (20)

Returning now to the equations for the rate of change of the
eigenvectors [Eq. (7b)] and using Eq. (20), we have

Ya_, i=1,2,..,n @1)

Ai#ENg
Premultiplying Eq. (21) by E~7 and noting the definition in
Eq. (12), we obtain

. Yig

3= E Y &
q=1 A= N “
)\i;‘)\q

i=12,..,n 22)

Also, from Egs. (7a) and (20) we have
).\i = Yiis i= 1!25"-’n (23)

Equations (22) and (23) together form the required set of
coupled differential equations for the variables {\;,z;}7=1. To
cast these equations in matrix form, we introduce the follow-
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ing definitions. Let Z be the matrix whose columns are the
weighted eigenvectors {z; }]- |, and let Q be the skew-symmet-
ric matrix whose element in the gth row and ith column is

_(via/N =N for N #E N,
Also let T' be the diagonal matrix defined by
I': = diag{y11,7225+++,Ynn } (25)

With these definitions, Eqs. (22) and (23) are rewritten in
matrix form as

Z=29 (26a)
A=T (26b)
The initial conditions for the integration are
Z(t) =2, (27a)
A(to) = Ao (27b)

where Z, is computed at the beginning of the integration
process by

Zo=E-TV, (28)

and Ag and ¥V, are obtained by a spectral decomposition of the
initial error covariance

Py = VoAoV{ (29)

Remarks.

1) Note that the inverted mass matrix is not required in the
numerical integration process itself. This matrix is required
only once, when the initial conditions are computed [Eq. (28)].
Thus, in cases when the mass matrix inversion is troublesome,
it can be carried out using high-precision software, without
affecting the complexity of the whole filtering scheme.

2) The estimation error covariance matrix is not needed and
is therefore not computed at any stage of the process. How-
ever, if so desired, it can be readily reconstructed by

P=ETZAZ'E (30)

3) Examination of Eq. (24) reveals that, if some of the
eigenvalues become very closely spaced, the computation
might run into difficulties because the magnitudes of the
derivatives of the corresponding eigenvectors may become too
large. A possible solution to this problem is the use of a special
routine that can handle stiff differential equations. However,
the use of such special programs may sometimes be inefficient
or even impossible. In these cases, another solution to the
stiffness problem is needed, and such a solution is given in
Ref. 16. By thoroughly treating the case of clustering eigenval-
ues, it was shown there that the potential numerical problem
that may arise in such cases can be easily circumvented with-
out suffering any practical reduction in accuracy by imple-
menting the following modified version of Eq. (24):

~ R
Yig £ Yig
N = or = " < nax
Q= 0 for \; =\, @31
. Yig Yig
Qnax Sign [)\i — )\q} for ————)\i " = Qax
A -/
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where Qy,.x is determined before computation, in accordance
with the capability of the software used and the accuracy
sought.

Having developed the propagation equations for the covari-
ance spectral factors, the equations for the state estimate are
addressed next. The KF equation for the system (4a) with
measurement (4b) is

E§ =Fq + Ggp (32
where the innovations process y is defined as
y:=y-Hj
and G is the Kalman gain matrix, which can be computed by
Gx = VAVTH'R ! (33)

The presentation of the SR filter for the continuous-time
model is thus complete. In the next section we address the case
of a system that is modeled by a continuous-time dynamics
equation and a discrete-time measurement (the continuous/
discrete case).

1. Continuous/Discrete Square Root Filter

The continuous-time filter introduced in the preceding sec-
tion is based on the assumption that the measurements are
acquired in a continuous fashion. Although there are cases in
which the measurements are taken at a very high rate (thus
approximating continuous-time measurements for practical
purposes), it must still be admitted that this assumption is not
a very realistic one. This is so because in most real-life applica-
tions continuous measurements are either unnecessary or can-
not be processed in real time for reasons of limited computa-
tional power (especially when on-board computers are used
that are not fully dedicated to the estimation task.) Thus,
although the continuous-time filter has its theoretical value,
there is a need to develop an estimation algorithm that will
accommodate discrete-time measurements. This algorithm
will also be more in tune with digital computers, which are
heavily used in today’s applications. This section is concerned
with the development of such a filtering algorithm.

Although it will be assumed that the measurements are
acquired at discrete-time epochs, a continuous-time dynamics
model will still be used. This is in agreement with many
applications (e.g., large flexible structures) in which the “‘ex-
act’’ mathematical model of the system is formulated natu-
rally in continuous-time domain; in these applications a pas-
sage to discrete-time models would necessitate further
approximations (in addition to those already used in the
derivation of the ‘‘exact,”” continuous model). Thus, the
mathematical model chosen here consists of the dynamics Eq.
(1a), rewritten here for completeness (again, it is assumed that
there is no deterministic input):

Mi + Dx + Kx = Gw (34a)

augmented with the following discrete-time measurement
equation:

Vi = Hixp + Gy + vy (34b)

in which y; ¢ R™ is the measurement (vector) value at time #;;
X = x(#) (the generalized position at time #;); &;: = X, (¢;)
(the generalized velocity vector at time #;); and v, ¢ R™ is a
zero-mean, white, Gaussian noise sequence with covariance
Ry, which is uncorrelated with the process noise w(¢). The
same assumptions regarding the initial conditions are made
here as in Sec. I [Eq. (1c)].

Compared with the continuous-time filter, which was pre-
sented in the preceding section, the continuous/discrete filter
is composed of two separate computational stages,? namely,
the time-update (propagation) stage and the measurement-up-



Downloaded by TECHNION - ISRAEL INST OF TECH on April 14, 2016 | http://arc.aiaa.org | DOI: 10.2514/3.20464

702 OSHMAN, INMAN, AND LAUB

date stage. The time-update stage consists of propagating the
estimation variables (estimated state and error covariance ma-
trix) between two consecutive measurement epochs, whereas
in the measurement-update stage these variables are updated
(instantly) using the new information acquired in the most
recent measurement. To describe the resulting algorithm, we
break the following development into two parts, correspond-
ing to the two stages of the filter. We start with the time-up-
date stage, which, as will be shown in the sequel, can be
derived directly using the results of the preceding section.

A. Time-Update Stage

Using the definitions of the matrices E, F, and G, the
propagation equation for the estimation error covariance ma-
trix is?":28:

EPET = FPET + EPFT + GQGT @35)

The problem of the V-lambda time update is stated below.

Let P = VAVT be the spectral decomposition of the estima-
tion error covariance, where V is the matrix whose columns
are eigenvectors of P, and A is the diagonal matrix of eigenval-
ues. Let V; and Ay be the a posteriori spectral factors of
Py, the covariance at time 7 given measurements up to and
including time #;. Given V;, and Ay, the problem is to
directly compute the a priori spectral factors Vi, 1 and Ay 1/
k at time f,, , (given measurements up to and including time
t;) without resorting to an explicit computation of the covari-
ance.

Recognizing the fact that the solution of the (linear) Lya-
punov-type equation (35) is a special case of the solution of the
(nonlinear) Riccati-type equation (6), the results of the preced-
ing section can be readily applied to the current problem. The
resulting time update algorithm, which is an adaptation of the
continuous SR filter, will be presented.

The a priori Z;, 14 and Ay, i/ factors (where Z is the
weighted eigenvector matrix) at time #,,; are obtained by
integration of the following differential equations:

Z=27%9 (36a)
A=T ' (36b)
from time #;, with the following initial conditions
Z(ty) = Zyn (37a)
A@te) = A (37b)

where the a posteriori weighted eigenvector matrix Z; is
computed by

Zie =E"TVip (38)

In Eq. (36) the matrices I and Q are defined in a way similar
to the definitions (24) and (25), with the following obvious
modification of the matrix-valued function T}, (used to calcu-
late the scalar functions v;,):

T.-—< 0 OuM = AT > 39)
= \\M = NK — (\DMT + \,MDT) + GQG?.

To obtain the time-update algorithm for the state estimate,
the standard continuous-time KF algorithm is applied to the
system equation (34) to get

Mi+Di+Kik=0 (40)

which is integrated from #; to #;. ,. The initial condition %(#;)
is the a posteriori state estimate at #;:

() = X C3Y)

J. GUIDANCE

At time #; ., the integration results in X(#; . ;), which is the
required a priori state estimate:

Xer 1k =Rt v 1) 42)

Next we augment the time-update algorithm with a dis-
crete-time measurement-update algorithm, thus completing
the new SR estimator.

B. Measurement-Update Stage
Defining the augmented measurement matrix H; as

Hi: = [Hy | G “43)
the measurement equation (34b) can be rewritten as

Vi = Hegy + vi 44)

where the augmented state g is defined in Eq. (4). The mea-
surement-update problem is as follows.

Given the a priori factors Ay, 1/, and Z; , 14 (resulting from
the time-update integration described in part A of this sec-
tion), where A .,/ is the diagonal matrix of eigenvalues at
time #;,; given measurements up to and including #, and
Zy . 1,1 is the corresponding weighted eigenvector matrix, com-
pute the a posteriori SR factors of the covariance (namely:
A i1k 1 and Vi, 114 1) without computing explicitly the co-
variance Py, 1x (so that the SR numerical characteristics of
the method will not be lost).

The algorithmic solution to the measurement-update prob-
lem is summarized in the theorem stated and proved below.

Theorem 2. Measurement update of the spectral factors.
Given the time-propagated factors Ay, and Z;, 4 the
augmented measurement matrix H , ;, and the nonsingular
measurement noise covariance R ., define the augmented
matrix By, as follows:

Bisr: = ETZ¢ o e Aic Lo | HE 2 REYS 45)
and perform a singular value decomposition (SVD) of it:
Biv1= Y i[Zes1 1 0QUL (46)

Then the measurement updated spectral factors ¥, /1 and
Ay ;1/k+1 are obtained readily as

Vicves1= Yes (47a)

Alcver1=Eit (47b)

In the SVD [Eq. (46)], Y. is the orthogonal matrix whose
columns are the eigenvectors of By, 1B{, ;, Lx ., is the diago-
nal singular value matrix, and Uy, ; is the orthogonal matrix
whose columns are the eigenvectors of BY, 1By .

Proof. Write the measurement update equation in the “‘in-
formation form’’:

Ptk =Ptk + HE R H (48)
Using the spectral factors of the covariance and the relation
between the eigenvector matrix ¥ and the weighted eigenvec-
tor matrix Z [Eq. (14)], Eq. (38) can be written as
Vies vier ATt 1ies \(VE s vke1 = ETZk o\ Nic b i iiE
+ Hf . \Ri ! Hy oty 49
Using the definition of By, ; from Eq. (45) in Eq. (49) yields

_1 T _ T
Vit vk Ai i vis 1View vir1 = Bra 1B (50)
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Now replace By, in Eq. (50) by its SVD factors [Eq. (46)] to
obtain

—1 T _ 2 T
Vk+1/k+1Ak+1/k+le+l/k+1— Yk+1):k+1Yk+l (51)

from which the theorem follows,

Note that the update algorithm is based only on the SVD
technique, for which extremely reliable and efficient al-
gorithms exist today.303! ,

To complete the measurement update algorithm, we need to
specify how the state estimate is updated. This is performed
via the ordinary KF algorithm, i.e.,

Gk 1= Qe ke + Kio 10k 1 — Heew 18k 16) (52)

where K, ; is the Kalman gain, which is computed (using the
SR factors) according to the following algorithm:

-1
Ki 1= Sts vir M+ vk + 1R+ (53)
where Sy 1/k4+1 and My, 1,1+ 1 are defined as
(Vs
Skr1k+1= Vs v+ 1A ve+1 (54
o7 £1T
M1 =Sis e+ Hiev s (55)

Having obtained the measurement update algorithm, a
complete state estimator is formed by combining the time-up-
date algorithm of part A with the measurement-update al-
gorithm of this part. Before doing that, however, we note that
up to this point the special orthogonality property of the
eigenvector matrix was not exploited in our algorithm in any
way. By using this property it may be possible in some cases to
enhance the numerical characteristics of the estimator, and
this is the subject of the next section.

Iv. Orthogonalizatidn of the Eigenvector Matrix

The time-update algorithm, described in the preceding sec-
tion, consists of thé numerical integration of nonlinear differ-
ential equations for the eigenvalue matrix A and for the
weighted eigenvector matrix Z [Eqgs. (36)]. Integrating Eqs.
(36) with the initial conditions [Eqgs. (37)] provides the a priori
factors Ax, 1z and Z; , 1. In certain cases, where it is pro-
hibitive to use high-precision software for performing the task
of the numerical integration, the need may arise to incorporate
some measures to bound the numerical integration error intro-
duced during the time-update process (note, in this regard,
that the measurement-update algorithm may be considered
“‘error-free’’ relative to the time-update algorithm because of
its reliance on the SVD). Using similar arguments, it may be
concluded that the continuous-time filtering algorithm, intro-
duced in Sec. II, also may be sensitive to integration error
(when low-accuracy integration methods are used). Thus,
there too, a relatively simple means of bounding the integra-
tion error may be of great value.

In this section we show how the orthogonality of the eigen-
vectors of the covariancé matrix may be used to reduce the
integration error, thus exploiting the choice of the spectral
factors to be the SR factors of the filter. Although, in the
following discussion we will specifically address the time-up-
date algorithm, it should be clear that the results of the present
derivation apply also to the continuous-time filter, from which
the time-update algorithm was derived.

The problem at hand can be described mathematically as
follows: Suppose that at time #, ;, after the numerical inte-
gration involved in the time update stage is performed, the a
priori weighited eigenvector matrix obtained is Z , ;. Now,
because of the orthogonality of the covariance eigenvectors
and the relation (14), the ‘‘true’’ matrix (i.e., the matrix that
would have been computed using an infinite word length)
Z;. . 1 should satisfy

ZU A nEBETZ e =1 (56)
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where I is the identity matrix. Thus, Z, .,/ is said to be
orthogonal with respect to the matrix EET. However, because
of computation errors

ZL A WEE"Zy i =1

The problem is to find a matrix Z;., ,, that satisfies the
weighted orthogonality condition (56) and is ‘‘closest’ to
Z, , 1+ in the sense that it minimizes the weighted least-squares
criterion

J= ||ET(Zk+1/k“Z)|| (6]

where ||®|| denotes (here and in the sequel) the Frobenius (or
Euclidean) matrix norm.

This problem has been addressed by several researchers in a
variety of applications. Of all currently available solutions, we
have chosen to use two algorithmically different methods,
although, obviously, other algorithms may be more suitable
for the particular implementation.

A. Orthogonalization Using the Singular Value Décomposition
Employing Eq. (14), Eq. (57) can be rewritten in the form

J=|E"Zg 1 = V|
which has to be minimized subject to
VTiy =1

In this form, the problem is recognized to be a special case of
the orthogonal Procrustes problem, which is stated below for
AeR™P, Be R™P, and Q ¢ RP?;

minimize |4 — BQO||
subject to QTQ =1

The solution of the orthogonal Procrustes problem,2® which
uses the SVD, therefore can be readily applied to our orthog-
onalization problem, yielding the following algorithm.

Algorithm 3. Weighted orthogonalization using the S VD.
Using the time-updated weighted eigenvector matrix Zj . 14
compute the eigenvector matrix

Vivie =EZg, i (58)

and perform a singular value decomposition of this product to
obtain

Vir e =Xes 1Bx 1 Y4 (59
Thén the optimal ¢igenvector matrix is computed according to
Vier1ie=Xex1Yix1 (60)

and, if needed, the optimal weighted eigenvector matrix is

Zy i =E" V11 (61)

Remark. The orthogonalization algorithm 3 should be con-
sidered as a corrective step that is to be used optionally,
immiediately after the time-update stage (and before the mea-
surement update). Note, however, that in the measurement-
update stage the matrix V. should be used rather than
Zj,  1/x [see the definition of the augmented matrix By , ;; Eq.
(45)] Hence, the orthogonalized ¥, ,/ (rather than Z, . ;)
is used in the measurement-update stage that immediately
follows the optional orthogonalization step, which means that
the mass matrix inversion in Eq. (61) is not performed in most
practical situations.
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Since the orthogonalization method just presented is based
on the SVD as the computational tool, it is reasonable to
expect excellent results when the method is used. However,
because the SVD may be computationally expensive, another
method is presented, which, though expected to be inferior to
the SVD regarding accuracy, demands less computational re-
sources from the computer (and thus may be used more fre-
quently to compensate for the lower accuracy).

B. Orthogonalization Using an Iterative Approach

The orthogonalization problem of this section was also
addressed, in a different context, by Baruch and Bar-
Itzhack.? In their work, the problem was to find a weighted
orthogonal modal matrix that is closest, in the least-squares
sense of Eq. (57), to a measured modal matrix (which, because
of measurement errors, does not satisfy the orthogonality
condition). Adopting the solution presented in Ref. 25, we
obtain that in our case the optimal orthogonal matrix is

Zi vk =Zi s \ k@ AEE Zy 4 1) (62)

However, in Eq. (62) we have to compute an inverse of a
Square Root of a matrix, which may present a numerical
problem by itself. To circumvent this problem, it was shown in
Ref. 25 that an alternative way to compute the optimal Z . ;/«
is to perform it iteratively using the following recursion.
Algorithm 4. Iterative weighted orthogonalization.

ZGt D =Z@ 1 kBT —Z P\ TEETZ D, 11t
ZQ k=Zc i (63)

where Z {, 14 is the value of Zj, ,/ at the ith iteration, and
the process is stopped when a predetermined desired level of
orthogonality, u, is achieved:

NZP ik "TEETZ Q1 — I =p (64)

We note here that usually Z, .., is very close to Zy , 1/x, the
““true’’ matrix. This observation can be justified by recogniz-
ing that the only source of discrepancy between Z 1% and
Zy 1/ is, by definition, the integration error corresponding
solely to the most recent time update (all previous time up-
dates being taken care of by preceding orthogonalization
steps). Now, in our case, since Z , 1/ is assumed to be close
enough to Z; , 1,4, it is reasonable to anticipate that, in many
cases, one step of the recursive process [Eq. (63)] will result in
amatrix Z, , i, which will satisfy the orthogonality condition
[Eq. (64)].

Noting again that, in the measurement-update stage, which

_immediately follows the corrective orthogonalization, ¥y 1/

is used (rather than Z; +1/k), we may rewrite Eq. (63) in terms
of the eigenvector matrix:

Vit D= V0 k31— V0, 1 TV, 1) (65a)

VO k= Vis (65b)

(Note that, if Vi+ 1 is orthogonal, then Eq. (652) yields
Viik = Vis 1, asit should.) In practlce this corrective step
was shown to yield excellent results in all numerical tests
performed (though a rigorous analysis of its effect on the
whole estimation scheme is still needed).

The complete continuous/discrete estlmatlon algorithm, in-
cluding the two alternatlves for the welghted orthogonaliza-
tion step, is summarized for the reader’s convenience in Table 1.

V. Numerical Example
In this section we present the results of a numerical simula-
tion of the continuous-time second-order filter, both in the
conventional Kalman formulation and in the V-Lambda SR
formulation. This simulation serves to demonstrate the supe-
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rior numerical characteristics of the SR algorithm in a typical
estimation problem. The system examined has the following

parameter matrices:
_ (100 50
“\ 50 200

u=(5 1) 2= %)
o=(o 1)

The measurement matrices are
Hi=[1 0] H,=11 0]
and the noise intensities are
Q = diag{10~9, 107}, R =60

The initial estimation error covariance matrix for the aug-
mented state vector was chosen as

1 0 1t O
2 0 1
PO -
3 0
SYM 4

In the KF algorithm three coupled Riccati-type matrix differ-
ential equations must be solved for the estimation error co-
variance matrix.!! Defining the partition

r S
P=(ST U) (66)

L=8S+ST—(HE+ HSTR-\HE + H,ST) (67a)

these equations are

SMT=UMT - (KL + DSTYT

—(H\Z + H2ST)TR -I(HIS + HzU)MT (67]3)

MUMT = —(KS + DUYMT — M(KS + DU)T
—~ M(H.S + HyU)"R ~YH\S + HbU)MT + GOGT (67¢)

where the initial condition matrices Ly, Sy, and U, are obtained
from a partition of P, corresponding to Eq. (66). The solution
obtained from these equations was compared to the SR solu-
tion obtained from Egs. (26), using two different ordinary
differential equation solvers:

1) IVPAG routine of IMSL Math/Library Version 1.0 (this
routine uses an implicit Adams-Moulton method of order 12).

2) A fixed-step fourth-order Runge-Kutta routine (user-
supplied). This routine was used to investigate the effect of the
different orthogonalization schemes on the V-Lambda estima-
tion algorithm when implemented employing nonsophisticated
software.

All runs were performed in VMS FORTRAN on a DEC
VAX 8650 machine at the computing center of State Univer-
sity of New York at Buffalo, The results obtained will be
described in the sequel according to the integration method
used.

A. Adams-Moulton Integration (High Accuracy, ISML Routine)
Using IMSL routine IVPAG, the integration accuracy is
controlled via an error parameter TOL, which is specified by
the user. The routine attempts to bound the integration error
such that the global error will be proportional to TOL. The
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integration error is defined as
e=[Z()N”

where ¢; is the absolute value of an estimate of the error in Y;, the ith integration variable. Noting this definition, it is clear that
using a smaller error parameter (TOL) with this routine is equivalent to requiring a more accurate solution. Several runs were
performed, in which the conventional KF algorithm {Eq. (67)] was run in single-precision (SP) and in double-precision (DP), and
the V-Lambda algorithm was run in SP. All simulations were carried from ¢ = 0 to ¢ = 50 s, when the results were compared.
Although the error covariance matrix is not used explicitly in the V-Lambda algorithm, it was computed at # = 50 s to provide a
basis for comparison with the conventional algorithm (note that this means that the covariance computed this way is Jess accurate
than the eigenfactors from which it is computed). When the KF equations were solved using single-precision and TOL = 1075, the
solution diverged shortly after the integration was started. The computed covariance started exhibiting negative diagonal entries
(a theoretical impossibility) at ¢ = 10 s, and the solution ¢completely lost numerical significance thereafter. Trying to obtain higher
accuracy using a smaller error bound (TOL) resuited in even worse behavior of the solution. Using the V-Lambda filter (in SP),
no such problems were observed. Solution could be obtained for any error parameter, and for TOL = 10~7 the error covariance
matrix [computed using Eq. (30)] at # = 50 s was

6.66877E — 09 —3.32410E -~ 09 —3.02009F — 12 —9.23360F — 12

6.66876E —09 —8.68409E — 12 —2.71750E — 12
Py_n/sp= (68)
SYM 5.00584E — 07 1.0304QE - 09

5.00582E — 07

This solution was next compared to a DP integration of the conventional KF algorithm. At TOL = 10-7, the DP version of the KF
algorithm behaved much like the SP version, yielding negative variances after # = 13 s. Only by decreasing the value of TOL to
10! could a satisfactory solution be obtained, yielding at ¢ = 50 s the following covariance matrix:

6.66650D — 09 —3.33350E —09 4.75571D — 12  4.75578D — 12

6.66650D — 09 4.75564D — 12 4.75571D — 12
Pxripp = (69)
SYM 5.00021D — 07 2.06378D — 11

5.00021D — 07

Comparing the V-Lambda (SP, low-accuracy) solution [Eq. (68)] with the KF (DP, high-accuracy) solution [Eq. (69)] demon-
strates, in this particular example, the numerical robustness and enhanced accuracy of the new estimation algorithm. Next, the
effect of the orthogonalization algorithms detailed in Sec. IV was investigated. The results of this investigation are described in the
sequel.

B. Fourth-Order Runge-Kutta Integration (Low-Accuracy, User-Supplied Routine)

To study the effect of the different orthogonalization schemes on the numerical integration process, a simple, fixed-step,
Runge-Kutta routine was written to simulate the implementation of the algorithm in a computing environment that cannot support
state-of-the-art mathematical software. Using this kind of routine, the integration accuracy is controlled via the step size, 62, which
is specified by the user at the beginning of the process. Again, the KF equations [Eq. (67)] were solved using SP and DP arithmetic,
whereas the V-Lambda equations were integrated using SP. wordlength, with and without corrective orthogonalization.

When the conventional KF algorithm was used in 'SP with 8¢ = 2.5 E — 5, the results obtained were very similar to those obtained
using the KF/SP method with the IVPAG routine of IMSL: negative variances appeared at ¢ = 17 s, and the solution lost numerical
significance thereafter. Using the same KF algorithm with DP, however, produced excellent results even with a much larger step
size of 6t = 1073, At t = 50 s, the following error covariance was thus obtained:

6.66667D — 09 —3.33333D — 09 3.71658D — 19 1.16567D — 17
6.66667D — 09 —1.20254D — 17  9.34849D — 20
Pyr/pp = . (70)
SYM 5.00000D — 07 —2.13036D — 16
5.00000D - 07

When the V-Lambda algorithm was computed with the same step size used for the KF/SP-solution, the following covariance
matrix was computed at ¢ = 50:

6.66159EF — 09 —3.31950E — 09 8.31620E — 12 —1.01053E — 11
6.66190F — 09 —1.82303F —11 4.38421F — 12

Py_pisp= an
SYM 5.00304E — 07 1.12627E — 09

5.00295E — 07
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Table 1 Continuous/discrete state estimator for large space structures
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System model M5 + Di + Kx = Gw E{w}=0 E{w@w(s)T} = Q) —s)
Measurement model Vi = Hixr + Cii + v E{vg} =0 E{vvf) = Ridjr '
‘ T.T,
0 { x0\®0%0)
Initial conditions E{ "‘f( )> = ".CO E{(’“’) =Py
x(0) Xo, xo,

State estimate time update MX(t) + Di(t) + KX(2) =0 telte tesil

N .. X Xrsk
Integration initial conditions: <A) = < )
@ty

x ~ \F
. X ¢\
Integration results at fx 4+ 1: <.k+ l/k) = ({)
v Xk + 17k X/ @ty 41
A-Z time 'update A®) =T@®), Z(t) = Z(OH); telte tksl
Yig . Yig
for | ——| <@
N = or . max
Qgi = 0 for No=MNg
. Yig Yig
S: —_— fi — =0
Qmaxsign {)\‘_ — )\qz or N - max
T': = diagly11,¥22,...,ynn)
Yig* =24 Tigti Z=[nlnl...17]
, 0 M = NK)T
Tig: =
AM — MK — ADMT + A MDT) + GQGT

Initial conditions: A(tx) = Aew;  Z(tx) = E~ Vi
where E = diag{l, M}
integration results:  Ag 1k = Atk +1); Ziv vk =Z@kr1)
Orthogonalization A. SVD B. Iterative
VO 1k = EZ 1k

VL D = B PRs BT = VO 1k TV 1k

Vi vk =ETZk v 1k
f’kH/k =Xk 1% +1YF 41
Vier vk = Xk 1 Y841

stop when

PRk TV i — 1| <p

|
1
(
]
[
3
[}
i
[}
I
|
|
|
1
|
[}
|
1
1
|
|
3

Measurement update of the spectral factors Bi+ 12 = [ETZk + 1x Ak Lk \HE 4 1REA]
Bi+18VD Yy 4 1[Ek+ 110074y

> - 1, —
Read: Visik+1=Yes1;  Alik+1=LFh

State estimate measurement update Gk +1/k+1= Gk + 1k + K+ 10k + 1 — Hie s 16k + 1/k)
where: ¢: = (&7, )T
Kalman gain: Ki+1=St+ /k+ M+ i+ 1REE

Sk+1/k+1= View v+ 1Mk + 17k + 13 My vk+1=88 vk HE 41
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which compares favorably with the KF/DP solution [Eq. (70)]. Because of the stiffness inherent in the problem, no solution could
be obtained using the V-Lambda algorithm with a larger step size. However, when a corrective orthogonalization step was used,
a good solution was obtained easily with a step size of 6z = 10~3. Both orthogonalization methods were used with the same strategy:
every second (simulation time) an orthogonality criterion was computed according to

w=I|1ZW)EE'Z(t) - 1|

Whenever p was larger than a prespecified value of 1073, orthogonalization was carried out. Using the iterative orthogonalization,

the following covariance was computed at ¢ = 50 s:

6.66670E — 09 —3.33336E —09 —4.33892F — 14

6.66670E — 09
Py_pisp =

8.66677F — 14

4.88366E — 14 —6.20096E — 14

(72)

SYM 5.00002E — 07 —5.96856E — 13

Almost identical results were obtained using the orthogonal-
ization method based on the SVD. These results demonstrate,
for the example presented here, how the orthogonalization can
be used to enhance the numerical characteristics of the V-
Lambda algorithm.

VI. Conclusions

Two new SR filtering algorithms, a continuous one and a
hybrid continuous/discrete one, were presented for systems
modeled by second-order models, such as LSS. The two al-
gorithms retain the structure (symmetry, sparsity) of the orig-
inal system parameters (mass, damping, and stiffness ma-
trices), thus enabling the exploitation of this structure in the
algorithm implementation.

Being based on the spectral decomposition of the covariance
matrix, the new algorithms provide their user with an insight
into the estimation process. This special choice of SR factors
also makes it possible to use the orthogonality property of the
eigenvectors to enhance the filter accuracy.

The numerical robustness of the continuous-time algorithm
was demonstrated via a simple numerical example. The or-
thogonalization methods developed were shown to greatly
enhance the V-Lambda algorithm by reducing the integration
error, thus enabling the use of simple, non-state-of-the-art
integration routines for the production of excellent results.

Further investigation is needed to determine the precise
nature of how the orthogonalization process affects the nu-
merical integration. Also, other implicit state-space formula-
tions exist that can be used instead of the particular formula-
tion used in Eq. (3) (e.g., the symmetric state-space form used
in Ref. 32, or other implicit forms in Ref. 7). The unique
structure of each formulation can conceivably be exploited to
increase the efficiency of the V-Lambda algorithms. Another
area for future research is the application of SR algorithms for
the estimation of modal-space state variables, which may be
important in the control of LSS. These subjects are currently
under investigation.

Acknowledgments

The first two authors acknowledge the support of National
Science Foundation Grant MEA8112826 and Air Force Office
of Scientific Research Grant AFOSR 820242. The third author
acknowledges the support of the National Science Foundation
(and the Air Force Office of Scientific Research) under Grant
ECS84-06152. The first author gratefully acknowledges the
interest of Drs. John L. Junkins and Jer-Nan Juang, who
offered helpful suggestions.

References
ILikins, P. W., “The Application of Multivariable Control Theory
to Spacecraft Attitude,”’ Proceedings of the IFAC 4th International
Symposium on Multivariable Technological Systems, New Brunswick,
Canada, 1977, pp. 11-20.
2Kosut, R. L., Salzwedel, H., and Emami-Naeini, A., ‘“Robust

5.00002E — 07

Control of Flexible Spacecraft,”” Journal of Guidance, Control, and
Dynamics, Vol. 6, March-April 1983, pp. 104-111.

3Juang, J.-N., Horta, L. G., and Robertshaw, H. H., A Slewing
Control Experiment for Flexible Structures,”” Journal of Guidance,
Control, and Dynamics, Vol. 9, Sept.-Oct. 1986, pp. 599-607.

4Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems,
Wiley-Interscience, New York, 1972.

Spissanetzky, S., Sparse Matrix Technology, Academic, New York,
1984.

6Bunch, J. R. and Rose, D. J. (ed.), Sparse Matrix Computations,
Academic, New York, 1976.

TLaub, A. J. and Arnold, W. F., “Controllability and Observabil-
ity Criteria for Multivariable Linear Second-Order Models,”” IEEE
Transactions on Automatic Control, Vol. AC-29, Feb. 1984, pp.
163-165.

8Hughes, P. C. and Skelton, R. E., “Controllability and Observ-
ability of Linear Matrix Second-Order Systems,”’ Journal of Applied
Mechanics, Vol. 47, June 1980, pp. 415-420.

SHughes, P. C. and Skelton, R. E., “Controllability and Observ-
ability for Flexible Spacecraft,”” Journal of Guidance and Control,
Vol. 3, Sept.-Oct. 1980, pp. 452-459.

0Bender, D. J. and Laub, A. J., “‘Controllability and Observabil-
ity at Infinity of Multivariable Linear Second-Order Models,”” IEEE
Transactions on Automatic Control, Vol. AC-30, Dec. 1985, pp.
1234-1237.

Hashemipour, H. R. and Laub, A. J., “Kalman Filtering for
Second-Order Models,”’ Journal of Guidance, Control, and Dynam-
ics, Vol. 11, March-April 1988, pp. 181-186.

2Kalman, R. E., ‘A New Approach to Linear Filtering and Predic-
tion Problems,”” Transactions of ASME, Journal of Basic Engineer-
ing, Vol. 82D, March 1960, pp. 34-45.

13Kalman, R. E. and Bucy, R. S., “New Results in Linear Filtering
and Prediction Theory,”” Transactions of ASME, Journal of Basic
Engineering, Vol. 83, 1961, pp. 95-108.

4Beliantoni, J. F. and Dodge, K. W., “A Square Root Formula-
tion of the Kalman-Schmidt Filter,”” AIAA Journal, July 1967, pp.
1309-1314.

I5potter, J. E. and Stern, R. G., ‘‘Statistical Filtering of Space
Navigation Measurements,’’> Proceedings of the AIAA Guidance and
Control Conference, AIAA, New York, 1963.

160shman, Y. and Bar-Itzhack, I. Y., ‘‘Eigenfactor Solution of the
Matrix Riccati Equation—A Continuous Square Root Algorithm,””
IEEE Transactions on Automatic Control, Vol. AC-30, Oct. 1985,
pp. 971-978.

Y"Bierman, G. J., Factorization Methods for Discrete Sequential
Estimation, Academic, New York, 1977.

18 awson, C. L. and Hanson, R. S., Solving Least Squares Prob-
lems, Prentice-Hall, Englewood Cliffs, NJ, 1974,

19Bjerman, G. J., “Measurement Updating Using the U-D Factor-
ization,”’ Automatica, Vol. 12, July 1976, pp. 375-382.

20Thornton, C. L. and Bierman, G. J., ‘“‘Gram-Schmidt Algorithms
for Covariance Propagation,” Proceedings of the IEEE Conference
on Decision and Control, Institute of Electrical and Electronics Engi-
neers, New York, 1975, pp. 489-498.

2l0shman, Y. and Bar-Itzhack, I. Y., “‘Square Root Filtering Via
Covariance and Information Eigenfactors,”” Automatica, Vol. 22,
No. 5, Sept. 1986, pp. 599-604.

220shman, Y. and Bar-Itzhack, I. Y., “Discrete Time Gain-Free
V-Lambda Filtering,’” Proceedings of the IEEE Conference on Deci-
sion and Control, Institute of Electrical and Electronics Engineers,
New York, 1986, pp. 1609-1611.



Downloaded by TECHNION - ISRAEL INST OF TECH on April 14, 2016 | http://arc.aiaa.org | DOI: 10.2514/3.20464

708 OSHMAN, INMAN, AND LAUB

230shman, Y. and Bar-Itzhack, 1. Y., “Square Root V-Lambda
Filtering Using Normalized State Estimate,”” Proceedings of the
SIAM Conference on Linear Algebra in Signals, Systems and Control,
Society of Industrial and Applied Mathematics, Philadelphia, 1988,
pp. 446-458.

%Ham, F. M. and Grover Brown, R., “Observability, Eigenvalues
and Kalman Filtering,”” IEEE Transactions on Aerospace and Elec-
tronic Systems, Vol. AES-19, No. 2, March 1983, pp. 269-273.

25Baruch, M. and Bar-Itzhack, I. Y., “Optimal Weighted Orthogo-
nalization of Measured Modes,”” AIAA Journal, Vol. 16, April 1978,
pp. 346-351.

26Golub, G. H. and Van Loan, C. F., Matrix Computations, Johns
Hopkins Univ. Press, Baltimore, MD, 1983, pp. 425-426.

2TArnold, W. F. and Laub, A. J., “Generalized Eigenproblem
Algorithms and Software for Algebraic Riccati Equations,’’ Proceed-
ings of the IEEE, Vol. 72, No. 12, Institute of Electrical and Electron-

J. GUIDANCE

ics Engineers, New York, 1984, pp. 1746-1754.

2L aub, A. J., “Schur Techniques in Invariant Imbedding Methods
for Solving Two-Point Boundary Value Problems,”” Proceedings of
the 21st IEEE Conference on Decision and Control, Institute of
Electrical and Electronics Engineers, New York, 1982, pp. 56-61.

PGelb, A. (ed.), Applied Optimal Estimation, MIT, Cambridge,
MA, 1974.

30Golub, G. H. and Reinsch, C., “‘Singular Value Decomposition
and Least Squares Solutions,”” Numerische Mathematik, Vol. 14,
1970, pp. 403-420.

3Brent, R. P. and Luk, F. T., “The Solution of Singular Value and
Symmetric Eigenvalue Problems on Mulitprocessor Arrays,”” SIAM
Journal on Scientific Statistical Computing, Vol. 6, 1985, pp. 69-84.

32Craig, R. R., Jr. and Zhenhua, N., “Component Mode Synthesis
for Model Order Reduction of Non-Classically-Damped Systems,’’
AIAA Paper 87-2386, Aug. 1987.

Space Stations and
Space Platforms—

\
\

Concepts, Design,
Infrastructure,
and Uses

Ivan Bekey and Daniel Herman, editors

This book outlines the history of the quest for a permanent habitat in space; describes present
thinking of the relationship between the Space Stations, space platforms, and the overall space
program; and treats a number of resultant possibilities about the future of the space program. It
covers design concepts as a means of stimulating innovative thinking about space stations and
their utilization on the part of scientists, engineers, and students.

To Order, Write, Phone, or FAX:

@ A!%%é Order Department

American Institute of Aeronautics and Astronautics
370 L’Enfant Promenade, S.W. m Washington, DC 20024-2518
Phone: (202) 646-7448 m FAX: (202) 646-7508

1986 392 pp., illus. Hardback
ISBN 0-930403-01-0 Nonmembers $69.95
Order Number: V-99  AIAA Members $39.95

Postage and handling fee $4.50. Sales tax: CA residents add
7%, DC residents add 6%. Orders under $50 must be prepaid.
Foreign orders must be prepaid. Please allow 4-6 weeks for de-
livery. Prices are subject to change without notice.




