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The problem of bearings-only target localization is to estimate
the location of a fixed target from a sequence of noisy bearing
measurements. Although, in theory, this process is observable
even without an observer maneuver, estimation performance (i.e.,
accuracy, stability and convergence rate) can be greatly enhanced
by properly exploiting observer motion to increase observability.
This work addresses the optimization of observer trajectories for
bearings-only fixed-target localization. The approach presented
herein is based on maxmuzmg the deterxmnant of the Fisher
information matrix (FIM), sub_]ect to. state constramts imposed
on the observer trajectory (e.g., by the target defense system)
Direct optimal control numerical-schemes, mcludmg the recently
introduced. dlfferentlal inclusion (DI) method are used to solve
the multmg optimal control problem. Computer simulations, .
utilizing the familiar Stansfield and maximum likelihood (ML) -
estimators, demonstrate the enhancement to target position
estimability using the optimal observer trajectories.
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I. INTRODUCTION

Passive target localization using bearings-only
measurements is a classical estimation problem, which
has continued to be of great theoretical and practical
interest since the pioneering work of Stansfield [1].
Basically, the problem is to estimate a fixed target
position, based on a sequence of noisy bearing
measurements, acquired by a (typically electro-optical)
sensor which is mounted onboard a moving observer.
The bearings are corrupted by a measurement noise,
which is usually assumed to be Gaussian distributed.
Bearings-only localization is especially important
in situations where active measurements are either
infeasible or prohibitive, such as military applications.

A vast amount of work has been performed in
the area of bearings-only localization over the last
five decades. In addition to Stansfield’s estimator,
one of the more popular approaches to the solution
of this problem is the maximum likelihood (ML)
approach [2]. Recursive algorithms, based on
Kalman filtering techniques [3] or ML estimators [2],
were applied for tracking moving targets using
bearings-only measurements.

Although, in theory, target position can be
estimated even without an observer maneuver, clearly
such a maneuver can greatly enhance the estimator
perfonnance (i.e. » accuracy, stability, and convergence ;

" rate). The 1nherent nonlinearity which characterizes

the estimation problem makes the effect of the -
observer manéuver even more profound, rendering
the observer' maneuver an important factor which
significantly affects the localization problem solution.
Several works have 'addressed the problem of
determmmg optimal observer trajectories. In [4],
the Cramer—Rao lower bound (CRLB) was, used
to ‘examine the effect of course maneuvers on
bearings-only target ranging. This study investigated
the effects of course changes on estimation accuracy,
but did not determine optimal observer trajectories.
However; it did illustrate the importance of the
observer maneuvers in this nonlinear estimation

* problem. Hammel et al. [5] investigated the optimal

observer trajectones problem in the context of
contlnuous -time measurements (namely, assuming that
the bearing meastirements are acquired at an infinite
rate) The performance index they used was based

on the determinant of thé Fisher information matrix
(FIM). However, since that formulation rendered the
resulting optimal control ‘problem not suitable for
standard solution methods (based on the minimum
principle), Hammel, et al. proposed- an approximate
numerical solution, based on direct maximization

of the determinant of the FIM for a finite number

of course changes. In addition, they suggested an -

' alternatlve performance index, based on a lower o
" bound on detFIM. As shown later in’this work, the

“ suboptimal trajectories obtained via the approach
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suggested in' [5] are inferior to the optimal trajectories
generated by the methods presented herein; from the
viewpoint of estimation performance.

This work addresses the problem of optumzmg
observer trajectories in the context of discrete-time
measurements. Motivated by [5], the approach
taken in this work is based on directly maximizing
the determinant of the FIM, which is used as a
performance measure for the estimation process. -
However, unlike previous works, this work extends
the problem formulation to address the issue of
constraints on the observer trajectory. Such constraints
might indeed arise in practice, e.g., due to threats
to the observer, generated by the defense system
which might be used by the target against the »
observer. Mathematical models are suggested, that
account for both soft and hard constraints. Due to the
complexity of the resulting performance index, the
resulting optimal control problem is not amenable
to classical control theory methods. Therefore,
direct optimal control methods are used, which are = .
based on parameterizing the control history using.a
fixed set of constant parameters, thus converting the
infinite-dimensional optimal control problem into
-a finite-dimensional, static, parameter optimization
one. Two direct, gradient-based numerical procedures
are suggested herein. In addition, to facilitate the
incorporation of hard state constraints, another
procedure is used, based on the recently introduced
differential inclusion (DI) approach [6]. The
superiority of the optimal trajectories over arbltranly 4
generated trajectories and over suboptimal trajectories
generated by Hammel’s lower bound method [5] is
demonstrated via a Monte Carlo analysis, using the
Stansfield [1] and the ML [2] estimators. _

In Section II, the problem of bearings-only
optimal observer trajectories is mathematically
formulated. Both unconstrained and constrained
problem formulations are addressed. In Section III
the numerical procedures utilized to solve the
optimal control problem are presented. A simulation
study, presented in Section IV, was carried out
to demonstrate the enhancement to estimation
performance using the optimal trajectories. This
study used the Stansfield and ML estimators, which
are presented in the Appendices for completeness
Concluding remarks are offered in Section V.

It PROBLEM DEFINITION

The geometry of the bearmgs only target
localization. problem is shown in Fig. 1 for the time *
instant #,.

The observer position at this time is given by
Xg = (xsk, ysk) . Usmg an onboard (commonly ‘
electro-optical) sensor, the observer measures the
angle 0, of its line of sight to'the fixed target, which -
is located at Xy = (x,y7)7. The objective of the

. Target
¥r -
Observer trajectory

O

Ysx — Observer
/n[ Azy

T T
Zsk rT

Fig. 1. Geometry of bearings-only localization problem.
observer is to estimate the target coordinates, based on
a sequence of N measurements © = (91,02, ON)T,
taken over the time interval [0,T].

Assuming that the observer is moving at a constant
speed V, its kinematic equations of motion are

(1a)
(1b)

xg(t) = V cosu(r), x5(0) = xg,

¥5(0) = yg,

where u(?) is the instantaneous observer course at time
t, measured with respect to the x axis, and the raised
dot indicates the temporal derivative.

The measurement equation is

ys(t) = Vsinu(t),

6, = arctan <_y7 ys*) + | )

X7 — Xg,

where {v,}}_, is a zero-mean, Gaussian white noise
sequence with constant variance o2.

The problem now is to determine an.optimal
observer trajectory, such that a maximal measure of
information is extracted from the data set ©, subject to
various coristraints.

A suitable measure for the information contained
in © can be derived using the FIM [7]. As is well
known, the relation between the FIM and the
estimation error covariance matrix is established by
means of the Cramer—Rao lower bound (CRLB).
According to the CRLB Theorem, for a nonrandom
parameter X, and an unbiased estimator of this
parameter X(©), where © represents the set of
measurements, the estimation error covariance matrix
is bounded by the lower bound

P = E{(X(6) — %))(X(©) - X,)"} > M (3
where M is the FIM given by '

2 .
M= -E{ g loepox®@ |0 | @
X=Xo

and pgx(© | X) is the conditional probability density
funcnon Notice that equality in (3) corresponds to an
efficient estimator.

Since the estimation error covariance matrix is
positive semidefinite, its associated quadratic form
defines a hyperellipsoid depicting the distribution of
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errors. The sizes of the semiaxes of this hyperellipsoid
are defined by the eigenvalues of P, and the
orientations of these semiaxes are defined by the
eigenvectors of P. The one-sigma area of the ellipse
corresponding to the two-dimensional case can be

expressed as
= mVdetP.

Thus, generating the most observable trajectory

is based on the minimization of the area given by
(5), computed using the estimation error covariance
matrix. As indicated by (3), for an efficient estimator,
the error covariance matrix and the FIM are inversely
related. Hence, for an efficient estimator, the

area of the one-sigma uncertainty region for the
two-dimensional case can also be expressed as

Ay (5)

a

us

A =
197 /detFIM

Based on the foregoing discussion, the approach
‘taken in this work is based on maximizing the
determinant of the FIM, which is used as a
performance measure for the estimation process.
Maximizing the determinant of the FIM can be
achieved through observer maneuvers since it is
a function of vehicle motion. The specific role of
the observer in the overall estimation process is to
create a favorable target/observer geometry, so as to
maximize system observability, thereby minimizing
the region of uncertainty to enhance estimation
accuracy.
In the present problem, the FIM can be expressed

(6)

as
N (Ayk)2 ZN Axk A}’k
k=1"_7 4
FIM = %"k agré
EN Axk Ayk N (Axk)
) ot k=t ‘713":?
D
where
A .
. A . ‘ . v -
Aye=yr—ys, -~ (8b)
A ‘ ’
i 2(Ax) + (A’ (8¢)

In passing, it is noted that although, as shown
previously, the determinant of FIM is directly related
to the area of the uncertainty ellipse, other scalar
measures, e.g., the trace of the FIM, or the maximal
eigenvalue of this matrix, could also be utilized |
(since minimizing these measures would lead to an
effective minimization of the determinant).: Although
such alternative measures were not-employed in _this
study, it is believed that the differences between the
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alternative measures would -be mainly in the numerical
behavior of the resulting optimization algorithms.

The following three problem formulations are
considered.

A. Unconstrained Localization

In the case that no active constraint on the .
observer trajectory -exists, the problem of observer
trajectory optimization is formulated as follows:

Maximize the performance index:

J = detFIM &)

subject to the equations of motion (1) and the
observation equation (2).

B. Soft State Constramts -

In reality, the target nught be defended against -
hostile observers. In this work, the following |
mathematical model is used to model the target
defense system. The total threat “cost” over the time -
interval [0,T] is assumed to-be represented by

T
JThreat =/0 G[xs(t)] dr

where G[x] is a known spatial “threat intensity
function.” For example, let the target be defended by
M point defense subsystems (e.g., anti-aircraft guns,
alr-to-ground missiles, etc.) whose locations, denoted
by {xd} 1, (Where X, = (x,,y,)") are assumed to -

be known. Furthermore, assume that the “threat
intensities” associated with these defense systems
are quantified by {p;}},. Assuming that the threat
to the observer, generated by each defense subsystem,
is inversely proportional to the distance between the
observer and the defense subsystem we have

(10)

M

; Pi
Glxs1 =3 =
TS s x)? 050 - 3 ?

1n

It is noted that the particular numerical methods used
in this work can handle other threat models as well.

Using the above threat model, the problem can
now be formulated as follows.

Maximize the performance index:

J = adetFIM + x(a — 1)/ Glxg(m)ldr 12)
. 0
subject to the equations of motion (1) and the
observation equation (2).

In (12), s is a normalization constant wh1ch is.
chosen to balance the difference in order of the two
parts in (12), and a € (0,1] is a weighting constant,-
determined so as to properly weigh accurate target _ .-
localization versus observer survivability.
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C. Hard State Constraints

Another way to take into consideration the defense
system which might be used by the target against the
observer is to incorporate hard state constraints into
the optimization problem. The optimization problem
in this case can be formulated as follows.

Maximize the performance index:

J =detFIM (13)

subject to the equations of motion (1), the observation
equation (2), and the state inequality constraints

g,y <0 p=1,....M te[0,T]

(14)
where M is the number of constraints; - -

In passing, we note that the particular performance
measures chosen in this section preclude using
classical solution methods based on the minimum
principle. Therefore, in the néxt section we present
numerical optimization procedures, which are used to
solve the optimal control problem. :

1ll.  NUMERICAL SOLUTION

In th1s section we present three dlrect numencal
methods, that were used to generate solutions for the
previously formulated optimal control problem.

A. Dlrect Gradlent-Based Method

The ﬁrst method presented is a direct gradient-
based method. For the sake of presentation, consider
the following general optimal control problem.

Let the system equations .of motion be glven by

X(r) = f(X(t),“(t),t)

x(0) = X,

where x € R* and we (C'{0,T])", where (C[0,T])™
denotes the set of all smooth functions that map the
interval [0,7] into R™. The optimization objective is to
find the optimal control function u(t), t € [O T] whlch
minimizes a given cost functional

J=J(x,u).

(15)

(16)

subject to the system equatlons of motion (15)
Notice that the problem is not assumed to be a Bolza
problem [8-10].

The following approach is adopted in order to
solve the optimization problem. Instead of searching
for the optimal control history u(f), ¢ € [0,T], the
continuous control history is replaced by a discretized
version, whose nodal values are given at a set of time .
points {f,}2-!, and an mterpolatlon Let U denote
the vector of discretized control history over the time
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Fig. 2. Direct optimization procedure.

interval [0,T], i.e.,:
UE[u"(t),u7t,),....u" (ty_)IT € RV,
an

Here U € U, where U is the set of admissible controls.
Note that this parameterization of the control vector
essentially transforms the dynamic optimal control
problem into a sfatic parameter optimization problem,
where the parameters are all the entries of the
discretized control history vector U.

The solution procedure is outlined in Fig. 2. In
this figure, the control history correctlon vector 68U is,
computed by the algorithm developed next. Cons1der
the first variation of the cost functional, which can be
written as

8] = (VgJ)T 6U (18)

where VJ is-the gradient of the cost functional .
with respect to the control history vector, and 6U is
the variation of the control history vector. The cost
functional gradient can be computed numerically,
using some numerical scheme (e.g., first-order
forward difference). ‘

Let the first variation of the cost functional 6J
be arbitrarily chosen such that 6J < 0. Then, the
implied required control variation can be obtained,
in principle, by solvmg the following set of hnear
equations

A8U = (19)

where
AV (20)
895



However, since (20) constitutes an underdetermined
system of equations, it possesses an infinite number of
solutions. Therefore, the unique minimum-norm least
squares solution is chosen, which is defined by
| 6Uy < arg min (16U, @D
where

“XE{UcuU|||A6U-6J|, » min}.  (22)
To compute 6U, g, the Moore—Penrose generalized

inverse of A is used:
8U.s = AT6J. X))

REMARK 1 A numerically stable algorithm for
computing AT is based on the singular value
decomposition (SVD) of A [11].

REMARK 2 Like in every gradient-based method,
the initial guess might affect the convergence of
the solution process; if the cost function is neither
convex nor concave. Hence, physical insight should
be utilized in properly choosing the initial guess.

REMARK 3 The computation of the cost functional
J(U;) involves a'complete solution of the differential
equations of motion for the interpolated control
history vector. Therefore, the computational burden -
associated with the resulting numerlcal scheme is
relatively high. ‘

B. , Orthogonal Function Parameterization

The obvious problem of the direct method
presented in the’ prev1ous ‘subsection is the large
number of optimization parameters, which are the
elements of the control history vector U. To alleviate
this problem, we take the following approach. °

Instead of directIy discretizing the control history,
we can parameterize ‘the control vector usmg the’
followmg series: : ' o

4

u(@) = Zai¢i(t) 24)

i=1
where the functions {¢;(t)}’_ ‘are taken from a
complete set of orthogonal basis functions. In this
work; two such sets were utilized: the Chebychev
and Laguerre polynomial series [12]. Chebychev
" polynomials-are generated using the followmg

recurrence: :

L@ =1, Tl(x)=x‘,_ |
n+1(-x) = 2xT, (x) n__l(x),

Laguerre polynomlals are generated usmg the‘
recurrence

o es
"n="1,2,.. ( )

L()=1-x
(26)
n=12,....

L,(®)=Qn+1- x)Ln(;v).— n’L, ,(x),
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Fig. 3. Optimal control function using a) direct control-.
discretization, 100 sampling points (solid), and b) orthogonal
(Chebyc'hev) polynomial series approximation, 8 terms (dashed).

Using now (24)' in the equations of motion (15) yields
a new parameterization of the optimization problem .
in terms of the parameter vector a S col(ay, ay,..-,4a,),
namely

minJ (x(¢),2) @7

subject to the following system equations of motlon
j’ x(t) Fx@,a,0

where x € R” and a € R?. To solve this problem, the
method presented previously can be utilized.

To demonstrate the performance of this method,
we compared it with the direct discretization method
using a typical example. In this example, the target
is located in the origin, the observer trajectory starts
at Xg = (5000,0)7.m, the bearing measurement noise
standard deviation is 3 mrad and the observer velocity
is 40 m/s. 100 measurements are acquired uniformly
over an observation interval of 75 s. Fig. 3 depicts
the control functions as computed using: a) the direct
control discretization method of the previous section,
using 100 sampling points of the control function u(z),
and b) the orthogonal polynomial parameterization
method,.(24), using 8 Chebycheyv polynomials (i.e.,

p = 8). In both cases, the optimization procedure - - .

(28)

- started from an initial control function obtained using'

Hammel’s lower bound method (see Section IV). As
can be seen from Fig. 3, the difference between the
two control functlons is relatively small. In fact, the
resultlng difference in the value of the performance
index is 0. 1% However the saving in computation
time is very substantial, since, using the orthogonal
polynomial method, the 6ptimization was carried out
over an 8-dimensional parameter space as opposed

to a 100—d1mens1ona1 parameter space. in the direct
discretization method. In’ passing, it is noted that
similar résults were obtalned using the Laguerre series
with'the same number of terms. ‘
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C. Differential Inclusion Solution

. A common problem with direct methods is that
there is no clear and simple way to incorporate state
and control constraints into the solution. The recently
introduced differential inclusion (DI) method [6]
handles these constraints easily, by employing a
description of the dynamical system in terms of its
states and their sets of attainability, in favor of using
differential equations, thus completely eliminating the
controls from the system mathematical model. In this
section we use this technique to introduce a method
for generating finite-dimensional approximations to
the solution of the constrained optimal localization
problem.

For conciseness, the fundamental theory of the DI
method itself is not discussed here. The interested
reader is referred to [6] for an excellent presentation
of the method. Rather, in this section we concentrate
on the application of the DI method to our problem.

Notice that in the problem under consideration.
the control can be ehrmnated using the equatlons of
motion (1), as follows

(x5)* + (y's)2 = Vz- 29
Equation (29) represents the hodograph of the system,
which is defined as the set of all possible state rates
that can be achieved by varying the controls within
their allowed bounds. Hence, the formulation of our
optimization problem in terms of the DI approach
proceeds as follows.
~ Let n'be a chosen mteger -and deﬁne n+1
equidistant nodes 3

R
1= =T,
n

1

i=0,1,...,n (30)
The values of the states (xs', ys,)" at-the nodes {t:} " o
are obtained from solving the followmg nonlinear
programmmg problem

max detFIM , 31
{xs;95, Y
subject to the initi‘al‘ conditions
x5, =550, ¥, =¥©@ (3D
and
EP+GF)P¢=V> i=0,1,..,n—-1 (33)
where A
' . X — X . -
X é Six1 Si = é Y T Vs (34)

‘ ar i At
and detFIM is computed via (7) in terms of the
optimization variables.

Additional state inequality constraints can be' :
- directly imposed for specific problem formulations,
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as

81({xsi}?;()la{YS; 720 <0, (35)

For example, if the constraint is a circle of radius R,
centered at the origin, the state inequality constraint
is incorporated by solving the nonlinear programming
problem subject to the additional constraints

() + 05> = R, i=0,1,....n

I=1,....q9.

(36)

_In passing, it should be noted that although in our

case the control functions are assumed to be smooth,
the DI approach is not limited to smooth control
functions and can handle piecewise continuous control
functions as well [6].

IV. SIMULATION STUDY

An extensive numerical simulation study was
performed, in order to assess and demonstrate the
characteristics of the new approach. Several target
localization scenarios were considered, both with
and without the presence of threat to the observer.

In all examples in the sequel, the observer trajectory
starts at X, = (5000, 0)" m, the bearing measurement
noise is assumed zero-mean, Gaussian distributed with
o = 3 mrad, and the observer velocity is V = 40 m/s.
The target is located at the origin, i.e., X; = (0,0)7 m.
Except where otherwise noted, 100 measurements
were uniformly acquired over the observation
trajectory.

A. Comparison With Lower-Bound Method

The purpose of this example is to compare the
performance of the new approach with Hammel’s
detFIM lower bound method [5]. No threat to the
observer was considered in this example.

Let K be the nondimensional parameter

(37

where R, is the observer’s initial range to the target.
Obviously, 0 < K < 1. Notice that K represents the
observer’s ability (for given initial range, observation
time and speed) to approach the target (thus, if the
observer trajectory consists of a straight line, then
K =1 represents the trivial case where the observer
can hit the target at the end of its trajectory).

Fig. 4 shows several optimal trajectories,
corresponding to varying values of K. As can
be expected, as K becomes larger, the observer
trajectories end nearer to the target. Notice also the
interesting trade-off, exhibited by the trajectories,
between the need to approach the target (see (7))
and the need to increase the bearing-rate (this
trade-off was observed also in [5]). For scenarios with
small effective baseline-to-range ratios, maximizing
bearing-rate is of primary importance. For sc¢enarios
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Fig. 4. Optimal trajectories for various values of parameter K.

with large ratios, on the other hand, the optimal
trajectories primarily aim at reducing the range to the
target. Notice that the importance of maximizing the
bearing-rate for obtaining maximal observability in
the bearings-only localization problem is discussed in
great detail in [4]. ;
" As previously mentioned, Hammel et al. [5]
proposed to replace the detFIM performance index
by a lower bound on detFIM which may be computed
as [5] :
. _ 1 6 ‘ , :
J el Zdr _ (38)
where 8 is the (measured) bearing-angle and r is the
observer’s range to the target. A
Fig. 5 shows 'six observet ‘trajectories, computed
for K = 0.6 and « = 1. Trajectory 1 in this figure is
the result of optimization with respect to Hammel’s
lower bound performance index, (38). Trajectory 5
is optimal with. respect to the detFIM performance
index, (12). This trajectory resulted from using the
iterative optimization process shown in Fig. 2, starting
from trajectory 1 as an initial guess. Trajectories 2—4
are nonoptimal trajectories, obtained as intermediate
results durmg the iterative optimization process, and
trajectory 6 is the optimal straight line trajectory,
i.e., the best (m ‘terms of detFIM) of all stralght line
trajectories.
Table 1 compares the value of detFIM as a
function of K, for three types of trajectorles
1) trajectories generated via directly maxmuzmg
detFIM, 2) trajectories generated via maximizing -
Hammel’s lower bound, and 3) optlmal straight .
line trajectories. As can be observed from the table,
trajectories resulting from directly maximizing detFIM
are clearly superior to other trzijectories.

‘B. Differential IncIusion Example .

To demonstrate the performance of the DI method
the trajectory optimization problem was solved under

: ; PR ; i
2000 2500 3000 3500 4000 4500 5000
: o X[m] o

Fig. 5. Observer trajectories.

, ‘TABLE 1 .
Det FIM for Various Optimal Trajectories

Performance Index K=01 "K=02 K=04K=06

1.7202E-04 7.6456E-04 0.0044 0.0190
1.6470E-04 7.3924E-04 0.0041 '0.0113
1.6891E-04 7.3105E-04 0.0041 0.0174

detFIM
Lower Bound
Constrained det FIM*

Note: *Optimal straight line. -

the additional hard state constraint.. ;

" Ixe® — xT||>R v t (39)

where R= 4000 m. In this example 20 measurements
were acquired, the value of K was set to 0.6 and

no threat to the observer was considered. For the
numerical solution of the nonlinear programming :
problem, the gradient-based CONSTR routine of the
MATLAB optlmrzatwn toolbox [13] was utilized.

This routine is based on sequentially solving quadratic

‘programming sub-problems.

Fig. 6 shows the optimal trajectories obtained with
and without the constraint. As can be expected from
the shape of ‘the unconstrained optimal trajectory,
when the constraint is active, the trajectory ends on
the constraint (a circle centered at the origin with a
radius of 4000 m).

C. - Effect of Threat

In this example, a threat intensity function was
assumed according to

5

P L 1

Zn: \/(?cs(o —x, )2+ 050 =3,

G[x(1)] = max
_ | (40)
The parameters of G[Xg(#)] are listed in Table II. A
three-dimensional plot of the function G[X¢(#)] in the.
first quadrant of the X-Y plane is shown in Fig. 7.

The performance index used was as in (12) with
x = 0.01, and the value of K was set to.0.8. o
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Fig. 6. DI example. Dotted line represents constraint.
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Fig. 7. Threat function in’ first quadrant of X-Y plane. Target is
located at origin.

TABLE II
Parameters of G[x]

i Pi *a; Ya;
1 300 3000 ) 0
2 200 2000 3000
3 200 2000 —-3000
4 200 4949 4949
5 200 4949 —4949

Fig. 8 shows different-observer trajectories,
superimposed on-lines-of constant threat intensity. The
observer trajectories were generated for varying threat
weighting factors, listed in Table III (note that o = 1
corresponds- to a “no-threat” scenario).

As can be observed from the figure, as the
threat weighting factor increases, the observer
trajectory deviates to increase observer’s survivability.-
This, however, decreases the attainable estimation
performance, as can be observed from Table III,
which shows values of detFIM computed for the six
trajectories. :

3600 4000 5000
X [m]

. L
0 1000 2000

Fig. 8. Optimal trajectories in presence of threat.

TABLE III
Det FIM Versus Threat Intensity
Trajectory o detFim
1 i 0.1160
2 0.8 0.1068
3 0.7 0.0967
4 0.6 0.0730
5 0.5 0.0483
6 0.4 0.0081

D. Actual Localization Performance

To verify the actual performance of common
estimators along optimal trajectories generated by both
the new method and Hammel’s lower bound method,
the Stansfield and ML estimators were utilized in a
Monte-Carlo simulation study (for completeness, these
estimators are reviewed in the Appendices).

The Monte-Carlo study consisted of M = 1000
computer runs. No threat to the observer was
considered, and a value of K = 0.6 was used in all
runs. The six trajectories shown in Fig. 5 were tested.
The estimation error in each run was computed
as Xy = (¥7,¥r). The average estimation errors
Xr £ 1/M E?ﬁ,iﬂ and 2 /MY yr; as well as
the estimation error standard deviations o, and oy,
were computed. The Monte Carlo study results are
presented in Table IV. As can be observed from the
table, the optimal trajectory computed using (12),
which exhibits the largest detFIM value, is associated
with the best estimation performance, for both
estimators. Notice also that, as could be expected, the
ML.estimator, which is asymptotically unbiased, is
clearly superior to the Stansfield estimator.

V. CONCLUSIONS

This paper has presented methods to compute
optimal observer trajectories for bearings-only
localization of a stationary target. The role of these
trajectories.is to create a target/observer geometry that
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TABLE IV
Actual Performance of ML and Stansfield Estimators -

. ML Estimator Stansfield Estimator
Trajectory detFIM X Vr T Ty Xr yr e Tyy
14 0.0113 -0.102  -0.024 8.888 1.864 ~2396 -0330 11918 1.842
20 0.0136 —0.004 —-0.034  7.828 1.875 —1.485 -0293 . 10257 1.835
3¢ 0.0165 -0478  -0.118 6.712 1.828 —1.785 -0373 " 8.650 1.775
4b 0.0183 -0.161 —-0.041 6.219 1.839 -1.089  -0.185 7.601 1.777
5¢ 0.0190 -0.001 -0.004 6.203 1.819 -0.867  -0.175 7.503 1.728
6! 0.0174 0.035 0.008 6.477 2.173 -1.049  -0.243 8.047 2.104

Note: “Optimal in sense of Hammel’s lower bound (eq. (38)). ?Nonoptimal. Optimal in sense of det FIM (eq. (12)). 4Qptimal

straight line.

maximizes system observability, thereby enhancing
estimation accuracy. The approach presented in this
work is based on directly maximizing the determinant
of the FIM, while taking into account (soft and hard)
constraints imposed on the observer trajectory by the
target defense system.

Since the resulting performance index ' is not
amenable to classical control theory methods based
on the minimum principlé, direct methods were
used. These include two gradient-based numerical
procedures and a method based on the recently
introduced DI technique. Using these methods,
the dynamic optimal control problem is effectively
transformed into a static parameter optimization
one, which can then be solved using any nonlinear
programming procedure.; - . - ‘

To verify the actual performance of bearings-only
estimators along optimal trajectories, the widely-used
Stansfield and ML estimators were utilized in an
extensive Monte Carlo simulation study. The:study
demonstrated the enhancement to target position .
estimability using the optimal observer trajectories.

Finally; although' this. paper was concerned
with the static, 2-dimensional target localization
problem, the approach presented here can be readily
extended to the 3-dimensional case. The. treatment of
maneuvering targets (i.e., bearings-only tracking), as
well as the inclusion of prior information on the target
position via probabilistic models, should provide
interesting topics for further research.

APPENDIX A.  STANSFIELD- ESTIMATOR

For the sake of completeness, we review herein
the Stansfield estimator (also called pseudo-linear
estimator) [1], which'is used in our numerical study.
Whereas Stansfield considered the particular case
where the bearing measurements are corrupted
by random zero mean noise, and the observer
trajectory is assumed to be perfectly known,

Ancker [14] extended the Stansfield solution to
include the case of observer navigation errors, which
introduce uncertainties in the passive sensor:location.
Blachman [15] presented a new, simpler derivation
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for the Stansfield estimator, making an underlying
assumption that the observation points are regularly
spaced along a simple curve or straight line.

The Stansfield estimator is defined by

A A c
XrsT =argn;gnFST(xT’@) (41)
where . .
s 1« sin® A8
Fr(7,0) = 5% ———+ (42)
k=1 k .

Carrying out the minimization of the cost functional in
(42) yields

%757 = (ATR'WA)'ATR"'WD

43)
where we have defined

[sinf, —cosf,
A% (44)

Lsindy —cosbN

[ x5, 8in6; — y5 cosb,
b= (45)
-Lxg, sinfy — ys, cosOy

REdiag{r2,...,r3} (46)
W 2diag{0?,02,...,0%} (47)

~ and r? is defined in (8c).

Note that in (43) the matrix'R is assumed known.
In practice, this is not true since R depends on the
relative position of the observer with respect to the
target, however, this matrix can be approximated since
the cost function (42) depends only weakly on R.

APPENDIX B, MAXIMUM LIKELIHOOD ESTIMATOR

To develop the ML estimator [2], rewrite the

measurement equation as _
k=1,... (48)

0’( =g(xT9xSk)+vk7 YN
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where the nonlinear observation function is

LA Yr —Js,
g(Xr,Xg ) =arctan (-———-————)
775 » Xp —Xg,

(49)

Let X denote the set of observer positions at which

measurements were acquired, i.e.,
- A T
Re=lxg, X5, oo Xg, I (50)

Defining the vector of nonlinear observation functions
as

A A
g(xr,Xs) =[8(X7,Xg)  8(X7,Xs,) g(xp, x5 )"
GH
and the observation noise vector as
v=[v, v, It (52)
yields
O = g(Xp,Xg) +V (53)

where Vv is a zero-mean measurement noise vector,
with covariance matrix W. In terms of the above
model, the joint conditional probability density
function of the measurements given the target location
Xr is

p©|x;) = W}W
. xexp{—1[© - g(x,,f:s)]Tw—1 [0 — g(x.. X1}
' (54)
The ML estimator maximizes the log—likelihood :
function. Equivalently, 'it can be 'defined as
Kpyy, = argmin Fyy (%7, 0) - (55)
wheré the ‘negative log—likélihood function is
Fyi(x7,0) = 1(A0)'W(AB). (56)
In (56), A©.is defined as | |
~A® ég(xr’f"s) -0 = (Ad,,..., A0 (57)
where
Ab(xr) = g(Xr, X5, ) — 0. (58)
Using the above definitions, the negative
log-likelihood function can be written as
. N )
fML(xT,e) - % > (A:g) ,’ (59)
Equation (59) calls for a nonlinear minimization
procedure, e.g., the Newton—Gauss method, i.e.,
x"T+l=x"T+Ax§,_' i=0,...,1 (60)
where o
A%y = {[V,, g7 G W1V, g7 (i)} !
X [VngT(x‘T)]TW‘IAe(xiT) 61)

and V, g’ (x}) is the gradient matrix of g" with
respect to X, evaluated at xi.. The Newton—Gauss
iteration starts with a user-supplied initial condition
x2, which is required to be close enough to the
minimum, for rapid convergence.

The statistical efficiency of the method can be
assessed by the covariance matrix of the estimation
erTor Xy, Which is computed by

cov@Eryp) = [V, & G W'V, 87 G-
(62)

Comparing the two estimators, it is clear that the
Stansfield estimator requires less computations

and, hence, is superior for real-time applications.
However, as shown in [16], the Stansfield method
leads to a biased estimator, even for a large number
of measurements, while the ML estimator is
asymptotically unbiased.
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