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Attitude Estimation from Vector Observations Using
Genetic-Algorithm-Embedded Quaternion Particle Filter
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A novel algorithm is presented for the estimation of spacecraft attitude quaternion from vector observations in
gyro-equipped spacecraft. The new estimator is a particle filter that uses approximate numerical representation
techniques for performing the otherwise exact time propagation and measurement update of potentially non-
Gaussian probability density functions in inherently nonlinear systems. The new method can be applied using
various kinds of vector observations. In this paper, the case of a low-Earth-orbit spacecraft, acquiring noisy
geomagnetic field measurements via a three-axis magnetometer, is considered. A genetic algorithm is used to
estimate the gyro bias parameters, avoiding the need to augment the particle filter’s state and rendering the
estimator computationally efficient. Contrary to conventional filters, which address the quaternion’s unit norm
constraint via special (mostly ad hoc) techniques, the new filter maintains this constraint naturally. An extensive
simulation study is used to compare the new filter to three extended Kalman filters and to the unscented Kalman
filter in Gaussian and non-Gaussian scenarios. The new algorithm is shown to be robust with respect to initial
conditions and to possess a fast convergence rate. An evaluation of the Cramér–Rao estimation error lower bound
demonstrates the filter’s asymptotic statistical efficiency and optimality.

I. Introduction

T HE use of a sequence of vector measurements for attitude de-
termination has been intensively investigated over the last four

decades. First proposed in 1965 by Wahba,1 the problem is to esti-
mate the attitude of a spacecraft based on a sequence of noisy vector
observations, resolved in the body-fixed coordinate system and in a
reference system. Body-fixed vector observations are typically ob-
tained from onboard sensors, such as star trackers, sun sensors, or
magnetometers. Corresponding reference observations are obtained
by using an ephemeris routine (for a sun observation), or from orbit
data and a magnetic field routine (for a magnetic field observation),
or from a star catalog (for star observations).

Inertial reference systems typically utilize vector measurements
in combination with strap-down gyros to estimate both the space-
craft attitude and the gyro drift rate biases. Several approaches have
been proposed for the design of such systems, differing mainly in
their choice of attitude representation method. The quaternion, a
popular rotation specifier, was used in the framework of extended
Kalman filtering (EKF) in Ref. 2 (using the so-called multiplica-
tive approach) and in Ref. 3 (using the additive approach). The
incorporation of the QUEST measurement model within a Kalman
filter’s measurement update stage was presented in Ref. 4. In Ref. 5,
vector observations were used to estimate both the quaternion and
the angular velocity of the spacecraft, in a gyroless attitude de-
termination and control setting. The main advantage of using the
quaternion representation is that it is not singular for any rotation.
Moreover, its kinematic equation is linear, and the computation of
the associated attitude matrix involves only algebraic expressions.
However, the quaternion representation is not minimal because it
is four dimensional. This leads to a normalization constraint that
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has to be addressed in filtering algorithms. Thus, assuming that the
4×4 quaternion estimation error covariance matrix must be singular,
Ref. 2 surveys reduced-order algorithms that maintain this singu-
larity. On the other hand, Ref. 3 assumes no such singularity, but
incorporates a normalization stage within its EKF algorithm, that
renders the resulting estimator strictly nonoptimal and increases its
workload. In a recent paper,6 an unscented Kalman filter (UKF) has
been proposed for the estimation of the rotation quaternion. The
UKF does possess a reported advantage over the EKF with regards
to dealing with strongly nonlinear systems because it avoids the
linearization associated with the EKF. However, because using the
UKF directly with the quaternion attitude parameterization would
also yield a nonunit norm quaternion estimate (after all, the UKF
is still a Kalman filter), the authors of Ref. 6 chose to work with
a generalized three-dimensional attitude representation, still using
the quaternion for updates in order to maintain the normalization
constraint. Also, as a Kalman filter mechanization, the UKF is also
sensitive to the statistical distribution of the stochastic processes
driving the dynamic model: non-Gaussian distributions guarantee
nonoptimality of the estimates.

Consolidating and extending the results previously presented in
conference papers,7,8 this paper introduces a particle filter (PF) that
sequentially and directly estimates the rotation quaternion from vec-
tor observations. Also known as sequential Monte Carlo (SMC)
methods, particle filters refer to a set of algorithms implementing a
recursive Bayesian model using simulation-based methods.9 Avoid-
ing the underlying assumptions of the Kalman filter, namely, that the
state space is linear and Gaussian, these rather general and flexible
methods enable solving for the posterior probability distributions of
the unknown variables (on which all inference on these variables is
based) within a Bayesian framework, exploiting the dramatic recent
increase in computer power. PFs are not just smart implementations
of the Kalman filter or its nonlinear variants/extensions; rather, they
are entirely different algorithms that lead to entirely different so-
lutions to the nonlinear, non-Gaussian filtering problem. Contrary
to the Kalman filter extensions, the solutions obtained using PF al-
gorithms are approximations to the optimal (in the Bayesian sense)
solutions, which can be made arbitrarily close to the exact solutions
by increasing the number of particles involved in the computation,
thereby also increasing the computation workload.

In a related work,10 a PF has been recently proposed for at-
titude estimation using star camera measurements. The modified
Rodrigues parameters (MRP) are used for attitude representation,
and the singularity associated with this representation is avoided by
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switching to an alternative set of MRPs or by using quaternions for
time propagation. The authors do note that using the rotation quater-
nion is preferable because of its well-known attributes, but refrain
from using it because of the need to maintain its unit norm con-
straint, and because of the quaternion ambiguity problem. The state
of the suggested particle filter is six-dimensional, which accounts
for the MRP and the three-axis gyro bias. Acquiring simultaneously
up to five vector observations from the star camera once in every
2 s and using 2000 particles, this filter does yield better results than
the UKF for large initial attitude errors. Nevertheless, the suggested
filter’s performance is unsatisfactory, and the authors propose that
it be used as an initialization stage for some conventional Kalman
filter variant.

In contradistinction to the algorithm of Ref. 10, this paper presents
a computationally efficient particle filtering estimator that works di-
rectly with the quaternion, that is, its particles are all attitude quater-
nions. The quaternion ambiguity problem is eliminated via a special
computation of the regularization intensity. Unlike KF variants, the
quaternion PF (QPF) does not propagate and update the covari-
ance, completely avoiding the question of singularity (although the
covariance can be computed at any moment if needed for output
monitoring purposes). Although a variety of vector observations
can be utilized by the new filter to determine the spacecraft atti-
tude, the problem considered here is that of estimating the attitude
quaternion from three-axis magnetometer (TAM) measurements in
gyro-equipped spacecraft. This attitude estimation problem is con-
siderably more difficult than that of estimating the attitude from star
camera readings. Because of the poor observability associated with
TAM measurements, using an augmented, high-dimensional state
vector (as used, e.g., in Ref. 10) would require a prohibitively large
number of particles. This might, in turn, result in an impractical
computational burden, which would limit the use of the estimator
to offline applications. The estimator proposed herein alleviates the
workload problem via decoupling the computation of the quater-
nion and gyro bias estimates. This allows for the implementation
of the algorithm with a remarkably small number of particles (only
150), which renders the estimator fast and real-time implementable.
To assess the statistical efficiency of the new filtering algorithm,
the Cramér–Rao lower bound (CRLB) is computed for the problem
addressed. A simulation study is then used to demonstrate the new
algorithm’s accuracy, rate of convergence, statistical efficiency, and
robustness with respect to unknown initial conditions.

The remainder of this paper is organized as follows. The next
section presents a brief introduction to SMC methods. Next, the
mathematical model of the quaternion estimation problem is out-
lined. Section IV provides a detailed development of the quaternion
particle filter for the ideal case where gyro biases are not present. In
the next section this filter is augmented with a maximum likelihood
estimator of the gyro biases, which is implemented via the use of
a genetic algorithm. A derivation of the posterior CRLB for this
problem is outlined in Sec. VI. Section VII presents the results of an
extensive numerical simulation study that was carried out to assess
the performance of the new algorithm and to compare it to exist-
ing, state-of-the-art quaternion estimators. Concluding remarks are
offered in the last section.

II. Sequential Monte Carlo Methods
The optimal solution of the nonlinear estimation problem involves

an accurate propagation of the optimal probability density function
(PDF), namely, the conditional PDF of the state given the observa-
tion history. Because of the complex nature of nonlinear estimation
problems, many estimation algorithms rely on various assumptions
to ensure mathematical tractability. It is well known that the famous
Kalman filter is the optimal estimator for linear Gaussian state-space
models, but its performance is limited when the aforementioned
assumptions do not hold. The optimal PDF admits a Bayesian re-
cursion, which means that it is propagated in accordance with some
prior distribution of the state and a likelihood function that relates the
states to the incoming observations. In the case of linear Gaussian
models, where the PDF can be characterized by its first two mo-
ments, the Bayesian approach yields the Kalman filter. In general,

for nonlinear, non-Gaussian models, there is no explicit, closed-form
solution. Several approximate methods have been proposed. These
include the EKF, the Gaussian sum filter, and numerical integration
over a state-space grid. Particle filters, or SMC methods,9 refer to
a set of algorithms implementing a recursive Bayesian model by
simulation-based methods. This involves representing the required
posterior PDF by a set of random samples with associated weights
and deriving the estimates based on these samples. Unlike the other
methods, SMC methods are very flexible, easy to implement and
applicable in very general settings.

A. Bayesian Inference
It is assumed that the unobserved signal (i.e., the process)

{xk, k ∈ N} is an Rn-valued Markov process with a given initial
PDF px0

, which evolves according to a transition kernel pxk |xk − 1
. Let

the observations {yk, k ∈ N} be an Rp-valued stochastic process as-
sumed to be conditionally independent given xk , possessing the con-

ditional PDF pyk |xk . Let X k � {x0, . . . , xk} and Yk
1 � {y1, . . . , yk}

denote the process and observations time histories up to time k, re-

spectively, and let Xk � {X0, . . . , Xk} and Y k
1 � {Y1, . . . , Yk} be the

realizations of X k and Yk
1 , respectively. In most nonlinear filtering

problems the goal is to estimate the marginal PDF pxk |Yk
1

(filter-
ing distribution) recursively in time. By applying the Chapman–
Kolmogorov equation and Bayes formula, the following recursion
is obtained for the filtering PDF:

p
xk |Y k − 1

1

(
Xk

∣∣Y k − 1
1

) =
∫ +∞

−∞
pxk |xk − 1

(Xk |Xk − 1)

× p
xk − 1|Y k − 1

1

(
Xk − 1

∣∣Y k − 1
1

)
dXk − 1 (1a)

pxk |Yk
1

(
Xk

∣∣Y k
1

)
= pyk |xk (Yk |Xk)∫ +∞

−∞ pyk |xk (Yk |Xk)p
xk |Y k − 1

1

(
Xk

∣∣Y k − 1
1

)
dXk

× p
xk |Y k − 1

1

(
Xk

∣∣Y k − 1
1

)
(1b)

In most cases one cannot obtain the normalizing density p
yk |Y k − 1

1and the marginals of the posterior pX k |Yk
1
. Thus, these expressions

can rarely be used in a straightforward implementation. Instead, ap-
proximations should be utilized, using alternative methods. The key
idea behind the PF method is to obtain a discrete support approxi-
mation for the distributions in Eq. (1) by means of simulation-based
techniques.

B. Particle Approximation
Assume that it is possible to sample N independent and equally

weighted random samples (called “particles”) {Xk(i)}N
i = 1 from the

posterior distribution. Then, it follows directly from the strong law
of large numbers that, for any function f which is integrable with
respect to pX k |Yk

1
(Ref. 11),

1

N

N∑
i = 1

f (Xk(i)) → E
[

f (X k)
∣∣Y k

1

]
(2)

where (here and in the sequel) the symbol → stands for almost sure
convergence in N . Equation (2) means that the continuous posterior
PDF pX k |Yk

1
can be effectively approximated by its particles. Unfor-

tunately, one cannot usually sample efficiently from the posterior.
This problem can be alleviated by adopting a sampling technique
called importance sampling. This technique consists of introduc-
ing an arbitrary so-called importance density, denoted by πX k |Yk

1
.

If one can sample efficiently from πX k |Yk
1
, an approximation to the

expectation in Eq. (2) is obtained as

1

N

N∑
i = 1

wk(i) f (Xk(i))
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where

wk(i) �
pX k |Yk

1

(
Xk(i)

∣∣Y k
1

)
πX k |Yk

1

(
Xk(i)

∣∣Y k
1

) (3)

is the importance weight of the i th particle. The selection of the
importance function can consist of minimizing the variance of the
estimate in Eq. (2). It can be shown that

Var

{
1

N

N∑
i = 1

wk(i) f (Xk(i))

}

is minimized by choosing π(·) such that wk(i) is nearly constant for
all i = 1, . . . , N .

Let

w̃k(i) � wk(i)∑N
j = 1

wk( j)
(4)

be the normalized importance weight of the i th particle, then it can
be easily verified that

N∑
i = 1

w̃k(i) f (Xk(i)) → E
[

f (X k)
∣∣Y k

1

]
(5)

The implementation of particle approximations using a finite
number of samples raises some practical difficulties.9 The so-called
particle degeneracy problem refers to a phenomenon always en-
countered when using the importance sampling method, when after
a few iterations of Eq. (1) all but usually one particle have zero
weights. Over time, the distribution of the importance weights be-
comes more and more skewed, which consequently means that much
computational effort is devoted to updating state trajectories whose
contributions to the final estimate are close to zero. To alleviate
the problem of degeneracy, a so-called selection/resampling step is
introduced into the PF algorithm.

wk(i) ∝
pyk |xk (Yk |Xk(i))pxk |xk − 1

(Xk(i)|Xk − 1(i))pX k − 1|Y k − 1
1

(
Xk − 1(i)

∣∣Y k − 1
1

)
pxk |xk − 1

(Xk(i)|Xk − 1(i))pX k − 1(Xk − 1(i))
= pyk |xk (Yk |Xk(i))wk − 1(i) (8)

Remark 1: The existence of a degeneracy situation can be easily
detected. Hence, it is easy to provide a solution to this problem in a
relatively straightforward manner.

C. Selection/Resampling
Selection/resampling consists of discarding state trajectories

whose contributions to the final estimate are small and multiply-
ing trajectories whose contributions are expected to be significant.
This means regeneration of particles with large importance weights
and eliminating those with small importance weights. The resam-
pling procedure decreases the particle degeneracy algorithmically,
but introduces some practical problems. During the resampling pro-
cedure, more likely particles are multiplied, so that the particle cloud
is concentrated in regions of interest of the state space. This pro-
duces a new particle system in which several particles have the same
location. Moreover, if the dynamical noise is small, the particle sys-
tem ultimately concentrates in a single point in state space. This
loss of diversity will eventually prevent the filter from correctly
representing the posterior. One way of maintaining the particles’
diversity is by injecting artificial process noise into the system. This
technique is known as regularization, or roughening (see Ref. 12,
p. 247).

D. Practical Implementation
From a practitioner’s point of view, the PF method consists of

simply passing a finite set of samples, drawn from the prior distri-
bution, through the process equation, and updating their likelihood
weights based upon incoming observations. Thus, a single PF cycle
is outlined in the following for the general state-space model.

Consider the following nonlinear discrete-time process and ob-
servation equations

xk = fk(xk − 1, uk − 1, vk) (6a)

yk = gk(xk, nk) (6b)

where xk ∈ Rn , uk ∈ Rm , and yk ∈ Rp denote the state, the determin-
istic control, and the observation processes, respectively. In Eqs. (6),
vk ∈ Rl and nk ∈ Rp are the mutually independent process and mea-
surement white noises with known (not necessarily Gaussian) den-
sities pvk and pnk , respectively. The initial state is independent of
both noises and has a known PDF, denoted by px0 .

Let {Xk − 1(i)}N
i = 1 be a particle approximation of the filtering dis-

tribution at time k − 1, and let {wk − 1(i)}N
i = 1 be the weights associ-

ated with this approximation. Then, applying Eqs. (1) to {Xk(i)}N
i = 1

results in a new set of particles representing the filtering distribution
at time k. First, the particle approximation of pxk |Y k − 1

1
is obtained

via Eq. (1a). In practice, Eq. (1a) is solved by passing the particles
of time k − 1 through the process equation along with the injection
of artificially simulated process noise. (In most cases, though, the
deliberate injection of artificial process noise during this stage is
not necessary because of the ensuing regularization process, which
amounts to naturally adding process noise.) Relaxing the require-
ment to evaluate the transition PDF, this method is applicable to
irregular models (e.g., hybrid state-space models and models in-
volving singular transition densities), as long as the transition dis-
tribution is specified in any of its forms.

Now, adopting the prior as the importance density in Eq. (3),

πX k |Y k − 1
1

� pX k (7)

gives

which constitutes the measurement update stage.

III. Mathematical Model
In this section the problem of quaternion estimation from vector

observations is mathematically defined.

A. Observation Model
Let rk and bk be a pair of corresponding vector measurements

acquired at time k in the two Cartesian coordinate systems R and
B, respectively. Let Ak be the rotation matrix (also known as the
attitude matrix or the direction cosine matrix) that brings the axes
of R onto the axes of B at time k. In general, the reference vector
rk is known exactly, whereas the body vector bk is measured. This
results in the following attitude measurement model:

bk = Akrk + δbk (9)

where δbk is the measurement noise process, with known PDF, de-
noted as δbk ∼ pδbk .

B. Quaternion Process Model
The discrete-time quaternion stochastic process satisfies the re-

currence equation

qk + 1 = �o
kqk (10)
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where {qk}∞
k = 1 denotes the quaternion of rotation from a given ref-

erence frameR onto the body frameB at times k = 1, 2, . . .∞, with
some initial PDF q0 ∼ pq0

. The quaternion process takes its values

on the unit three-sphere S3 and is constructed from vector and scalar
parts:

qk = [
�T

k q4k

]T
(11)

The orthogonal transition matrix �o
k is expressed using

ωo
k = [ωo

1k ωo
2k ωo

3k]T , the true angular velocity ofB with respect to
R, resolved in B. Assuming that ωo

k is constant during the sampling
time interval �t yields

�o
k ��

(
ωo

k

) = exp

(
1

2

[
−[

ωo
k × ]

ωo
k

−ωoT

k 0

]
�t

)
(12)

where [ωo
k×] denotes the cross-product matrix associated with the

vector ωo
k .

In practice, the true angular velocity vector ωo
k is not known;

rather, it is measured or estimated. Let {ωk}∞
k = 1 be the measured an-

gular velocity stochastic process. Usingωk instead ofωo
k in Eq. (12)

yields the following quaternion process equation:

qk + 1 = �(ωk)qk (13)

where the process noise is incorporated through the transition
matrix.

The relation between the process and observations is established
by expressing the attitude matrix as a quadratic function of q, that
is,

A = A(q) = [(q4)
2 − �T�]I3 × 3 + 2��T − 2q4[�×] (14)

C. Rate Sensor Measurement Model
When the angular rate is measured, the characterization of the

driving process noise depends upon the rate sensor. The most com-
mon angular rate sensor onboard spacecraft is the gyro triad. For
this sensor, a widely used model is given by2

ωk = ωo
k + ηk + εk (15)

whereωk denotes the measured angular velocity vector and εk ∼ pεk

and ηk ∼ pηk are the gyros’ measurement white noise and bias vec-
tors with their given PDFs, respectively. Usually the bias vector is
modeled as a random-walk process, that is,

ηk + 1 = ηk + ζk (16)

where {ζk}∞
k = 1 is a stationary zero-mean, white-noise process with

covariance Qζ . Typically Qζ is very small (e.g., with entries on the
order of 10−7 μrad2/s2.)

IV. Quaternion Particle Filter
This section presents the novel QPF. The algorithm estimates the

quaternion from pairs of vector observations. Within this particle
filter, each particle is a unit norm quaternion, so that the norm con-
straint is inherently preserved. In the first stage, presented in this
section, the QPF is derived assuming unbiased gyro measurements.
Then, in the next section, the algorithm is expanded to incorporate
gyro biases.

A. QPF Initialization
Large initial attitude errors require a large number of quaternion

particles, at least until the zones of high likelihood are populated. A
simple initialization procedure that demands a significantly smaller
number of particles is used in this work. The idea is based on the
fact that the first vector observation defines a quaternion of rotation
up to one degree of freedom. This degree of freedom is used to
generate the initial set of particles from the first observation only,
Y0 = [b0; r0]. The technique is detailed in Appendix B.

B. Measurement Update
Denote by Y k

1 = {[b1; r1], . . . , [bk; rk]} a set of measurements
constructed from pairs of vector observations up to time k. Given
a realization qk of the quaternion qk at time k, the measurement
Yk = [bk; rk] is statistically independent of past observations. The
likelihood of the measurement Yk associated with a given quaternion
is

pyk |qk

(
Yk

∣∣qk

) = pδbk (bk − A(qk)rk) (17)

When the measurement Yk becomes available, the filtering PDF at
time k satisfies

p
qk |Y k

1

(
qk

∣∣Y k
1

) ∝ pyk |qk (Yk |qk)p
qk |Y k − 1

1

(
qk

∣∣Y k − 1
1

)
(18)

Now let {qk − 1(i)}N
i = 1 and {w̃k − 1(i)}N

i = 1 denote N independent unit
quaternion samples from the filtering distribution at time k − 1 and
their associated weights, respectively. Setting the importance distri-
bution to be the prior PDF yields the importance weights as

wk(i) = pyk |qk (Yk |qk(i))w̃k − 1(i) (19)

Equation (19) is referred to as the update stage. Still, in accordance
with Eqs. (18) and (19), one has to incorporate an evolution stage,
as the samples need to represent the prior PDF.

C. Filtered Quaternion
At time k, N weighted unit quaternion samples are available.

The optimal quaternion estimate can be computed in several ways
depending on the objective. Two alternative methods, using the max-
imum a posteriori probability (MAP) approach and the minimum
mean square error (MMSE) approach, are presented next.

MAP Approach
The simplest approach for obtaining the filtered quaternion is the

MAP approach. In this method the filtered quaternion is obtained
by solving the following maximization problem:

q̂k = arg max
q ∈ {qk (i)}N

i = 1

p
qk |Y k

1

(
q
∣∣Y k

1

)
(20)

Given the weighted particle set {qk(i), w̃k(i)}N
i = 1, the solution to this

problem is easily obtained as the quaternion particle corresponding
to the largest importance weight, that is,

q̂k = qk

(
arg max

1 ≤ i ≤ N
w̃k(i)

)
(21)

Notice, that the MAP solution does not involve any manipulation of
the particle stock.

Although the MAP solution is very easy to implement, it usually
yields noisier estimates than the MMSE approach, to be presented
next. This is because of the effect of the resampling procedure.
Several smoothing methods to overcome this problem are suggested
in Ref. 12 (pp. 296–299). (Smoother MAP estimates can be obtained
by reducing the effective sample size threshold Nth, consequently
demanding less resampling procedures to take place, as explained
in Sec. IV.D.)

MMSE Approach
To obtain the filtered quaternion via the MMSE approach, the

following minimization problem is solved:

min
Âk

N∑
i = 1

w̃k(i)‖Ak(qk(i)) − Âk‖2

F subject to ÂT
k Âk = I3 × 3

(22)

where Âk denotes the orthogonal attitude matrix associated with
the filtered quaternion, and ‖·‖F is the Frobenius norm. Because

‖C‖2
F = tr(CT C) for any C ∈ Rm × m , it follows that if Âk is orthog-

onal then the constrained minimization problem (22) is equivalent
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to the unconstrained minimization problem

min
Âk

N∑
i = 1

w̃k(i)
((

tr
[

Ak(qk(i))
T Ak(qk(i))

]+ 3 − 2 tr
[

ÂT
k Ak(qk(i))

]))
(23)

which leads to the maximization problem

max
Âk

N∑
i = 1

w̃k(i) tr
[

ÂT
k Ak(qk(i))

]
= max

Âk

tr

[
ÂT

k

N∑
i = 1

w̃k(i)Ak(qk(i))

]
(24)

This maximization problem is equivalent to the orthogonal Pro-
crustes problem (see Ref. 13, p. 601). Letting

Bk �
N∑

i = 1

w̃k(i)Ak(qk(i)) (25)

and denoting the singular value decomposition of Bk by

Bk = Uk
k V T
k (26)

where Uk and Vk are the orthogonal singular vector matrices and

k is the singular value matrix of Bk , the solution of the Procrustes
problem is obtained as

Âk = Uk V T
k (27)

The filtered quaternion is then obtained from Âk .
An equivalent approach for minimizing the cost in Eq. (22) con-

sists of writing Eq. (24) in quadratic form as follows:

max
Âk

tr

[
ÂT

k

N∑
i = 1

w̃k(i)Ak(qk(i))

]
= max

q̂k

q̂T
k K q̂k (28)

with

K �
[

Bk + BT
k − I3 × 3 tr(Bk) z

z tr(Bk)

]
, z �

⎡⎣Bk32
− Bk23

Bk13
− Bk31

Bk21
− Bk12

⎤⎦
(29)

Now, similarly to Davenport’s well-known q method (see Ref. 14
and Sec. 12.2.3 of Ref. 15), the quaternion that solves the maxi-
mization problem of Eq. (28) is the normalized eigenvector corre-
sponding to the largest eigenvalue of K .

D. Particle Maintenance
To avoid particle degeneracy, a resampling procedure is imple-

mented. The measure of degeneracy adopted here is the effective
sample size. Introduced by Kong et al.,16 this criterion is defined
using the variance of the importance weights. The effective sample
size Neff is defined as

Neff � N/(1 + Var wk) = N/Eπ

[
w2

k

]
< N (30)

An empirical estimate of Neff is given by9

N̂eff = 1
/ N∑

i = 1

w̃k(i)
2 (31)

The resampling procedure is used whenever N̂eff becomes less than a
predetermined threshold Nth. The new set of samples is generated by
resampling each particle qk(i) with probability w̃k(i). This consists
of multiplying each sample according to its associated normalized

weight. The number of offspring for each sample is computed as

Nk(i) = int(N w̃k(i)) i = 1, . . . , N (32)

where int(x) denotes the integer nearest to x for any x ∈ R. To
compensate for the loss of particle diversity, an artificial perturbation
scheme based on regularization is introduced into the algorithm. The
adopted measure of regularization intensity is introduced next.

Regularization Intensity

The rotation quaternion is defined on the unit three-sphere. Thus,
to obtain the regularized set of quaternion particles, a measure for
regularization intensity needs to be defined that allows for produc-
ing particles with unit norm. In this work this measure is based
on computing the second moment of the quaternion multiplicative
error, defined as

δqk � qk ⊗ q̂−1
k (33)

where ⊗ denotes the usual quaternion product operator. The condi-
tional second moment of δqk is

Pqk = E
[(

qk ⊗ q̂−1
k

)(
qk ⊗ q̂−1

k

)T ∣∣Y k
1

]
(34)

An empirical estimate of the conditional second moment is obtained
using weighted unit quaternion samples, as

P̂qk =
N∑

i = 1

w̃k(i)
[
qk(i) ⊗ q̂−1

k

][
qk(i) ⊗ q̂−1

k

]T
(35)

Remark 2: The regularization intensity measure P̂qk is invariant
under change of the quaternion particles sign. Thus, +qk(i) and
−qk(i), which represent the same attitude, are treated equivalently.
This completely avoids the quaternion ambiguity problem, which
might arise when computing a covariance-based regularization in-
tensity measure.10

Regularization Scheme
Let {qk(i)}N

i = 1 with qk(i) = [ρT
k (i) q4k(i)]

T be the stock of N
unit quaternion samples at time k. Using Eq. (32), the number of
offspring for each particle Nk(i) is determined. The quaternion off-
spring are then computed in the following manner.

Sample a set of vectors from a three-dimensional zero-mean, unit
covariance Gaussian (or some other) kernel denoted by K, to get

δξ0( j) ∼ K(0, I3 × 3) j = 1, 2, . . . , Nk(i)/2 (36)

When Nk(i) is odd, one of the values δξ0( j) is taken to be 03 × 1,
thus ensuring a symmetric set around qk(i). The next step consists
of rescaling and rotating the three-dimensional space according to
the regularization intensity measure previously obtained. Thus, each
vector is rescaled and rotated according to

δθk( j) = ±
√

h P̂θk δξ0( j) (37)

where h is some predetermined bandwidth and
√

P̂θk is the matrix
square root of the 3 × 3 matrix obtained by eliminating the last row

and last column of P̂qk . In this work, the bandwidth h is set as
suggested in Ref. 12 (p. 253), that is,

h = {4/[N (n + 2)]}1/(n + 4) (38)

with n = 4, corresponding to the quaternion’s dimension. Notice that

Eq. (37) produces a symmetric set of Nk(i) vectors {δθk( j)}Nk (i)
j = 1 .

The quaternion offspring of the i th particle qk(i) are then computed
as

q̄k( j) = δqk( j) ⊗ qk(i) j = 1, . . . , Nk(i) (39a)
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where

δqk( j) =
[
δθk( j)T 1

]T∥∥[
δθk( j)T 1

]∥∥
2

(39b)

After obtaining the quaternion offspring, each one should be prop-
erly weighted. This second-stage weighting is crucial for the overall
performance of the filter. The resampling procedure is, in fact, an
external interference that injects random particles which have no
past trajectories. A proper weighting of the offspring will reduce
the effect of this contamination, whereas improper weighting of the
offspring will degrade the posterior representation and, in some ex-
treme cases, might cause divergence. Reweighting can be carried
out based upon regularization, so that the new particles are treated
as if they were sampled from a continuous PDF. Another idea, which
tends to give better results, is to reweight the offspring proportion-
ally to their likelihood. Thus, the second-stage importance weights
are computed as

w̄k( j) = (1/c)pyk |qk (Yk |q̄k( j)) j = 1, . . . , Nk(i) (40)

where the normalizing constant c is selected based on numerical
considerations. A particle stock with skewed importance weights
can be improved in the next time step by properly choosing c. In
this work the value c = pyk |qk (Yk |q̂k) is used, where q̂k denotes the
filtered quaternion at time k.

E. Particle Evolution
Passing the unit quaternion samples at time k − 1 through the

process equation results in a new set of samples. This is almost
equivalent to applying Eq. (1a) to the samples, that is,

p
qk |Y k − 1

1

(
qk

∣∣Y k − 1
1

)
=

∫ +∞

−∞
pqk |qk − 1

(qk |qk − 1)p
qk − 1|Y k − 1

1

(
qk − 1

∣∣Y k − 1
1

)
dqk − 1 (41)

The slight difference is caused by the process noise distribution,
which forms the transition kernel pqk |qk − 1

. In the case of a rela-
tively low-intensity process noise, such as the noise characteriz-
ing the quaternion evolution model, the new quaternion samples
thus obtained represent pqk |Yk − 1

1
quite adequately. In other cases,

the injection of an additional, artificial noise might be required.

V. Incorporating Gyro Biases
Properly accounting for biased gyro measurements via state aug-

mentation results in a higher dimensional model: a seven-state model
is required to account for the dynamics of both the quaternion and
the three-component bias process. Whereas state augmentation is
the common solution in Kalman filtering-based algorithms, straight-
forward implementation of a particle filtering algorithm for a high
dimensional state would require a prohibitively large number of
samples to properly represent the posterior PDF, as shown in Ref. 17
using the notion of particle survival rate.

To alleviate the potential computation load problem, the technique
proposed herein is based on interlacing the PF with a maximum-
likelihood (ML) estimator. In the proposed procedure, the particle
filter algorithm is used for the representation of pqk |ηk ,Yk

1
instead

of pqk ,ηk |Yk
1
, thus keeping the dimension of the state low, whereas ηk

is estimated via an external ML estimator assuming the knowledge
of q̂k . It can be easily shown that implementing the PF algorithm for
pqk |ηk ,Yk

1
does not require any modifications in the computation of the

importance weights as a result of the formulation of the observation
model in Eq. (9), which leads to the following equivalence of PDFs:

pyk |qk = pyk |qk ,ηk (42)

Let Yk2
k1

� {yk1
, . . . , yk2

} be a batch of measurements correspond-
ing to the time interval [k1, k2], with the corresponding realization

Y k2
k1

� {Yk1
, . . . , Yk2

}. Based on the previously stated fact that Qζ

is typically very small, the following proposition is central to the
development of the gyro bias ML estimator, as it facilitates the im-
plementation of a computationally efficient ML estimator based on

maximizing the likelihood function L(ηk1
|Y k2

k1
) � pYk2

k1
|ηηk1

(Y k2
k1

|ηk1
)

over a finite time interval [k1, k2].
Proposition V.1: The gyro bias process can be approximated by

a random process having piecewise-constant sample functions.
Proof: Let k be any point interior to a time interval [k1, k2]. Using

the dynamics of the bias process [Eq. (16)], and the fact that {ζk}∞
k = 1

is white, gives

E
∥∥ηk − ηk1

∥∥2

2
= E

∥∥∥∥ k∑
i = k1 + 1

ζ i

∥∥∥∥2

2

=
k∑

i = k1 + 1

E‖ζ i‖2
2 = (k − k1) tr(Qζ ) ≤ (k2 − k1) tr(Qζ ) (43)

Using the Markov inequality, it then follows from Eq. (43) that, for
any ε > 0,

Prob
(∥∥ηk − ηk1

∥∥2

2
≥ ε

)
≤

E
∥∥ηk − ηk1

∥∥2

2

ε
≤ (k2 − k1)

ε
tr(Qζ )

k ∈ [k1, k2] (44)

Because Qζ is typically very small, an interval limit k2(ε) > k1 can
be determined for any practically small ε, such that

ηk ≈ ηk1
∀k ∈ [k1, k2] (45)

�

A numerical demonstration of the validity of proposition V.1,
using realistic values, is given in Sec. VII.

In the remainder of this section, a technique is presented for max-
imizing the likelihood L(ηk1

|Y k2
k1

) by applying a genetic search
algorithm. The resulting interlaced filtering algorithm is termed
GA-QPF.

A. Approximation of the Likelihood
The approximation (45) allows writing the likelihood function as

L
(
ηk1

|Y k2
k1

) =
k2∏

j = k1

py j |Y j − 1

k1
,ηηk1

(
Y j

∣∣Y j−1
k1

,ηk1

)
(46)

where

p
yk1

|Yk1 − 1

k1
,ηηk1

(
Yk1

∣∣Y k1 − 1
k1

,ηk1

)
� pyk1

|ηηk1

(
Yk1

∣∣ηk1

)
(47)

Equation (46) yields

L
(
ηk1

∣∣Y k2
k1

)=
k2∏

j = k1

∫ +∞

−∞
py j |q j ,Y j − 1

k1
,ηηk1

(
Y j

∣∣q j , Y j − 1
k1

,ηk1

)
× pq j |Y j − 1

k1
,ηηk1

(
q j

∣∣Y j − 1
k1

,ηk1

)
dq j

=
k2∏

j = k1

∫ +∞

−∞
py j |q j

(
Y j

∣∣q j

)
× pq j |Y j − 1

k1
,ηηk1

(
q j

∣∣Y j − 1
k1

,ηk1

)
dq j

=
k2∏

j = k1

Eq j |Y j − 1

k1
,ηηk1

[
py j |q j (Y j |q j )|Y j−1

k1
,ηk1

]
(48)
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An empirical approximation of the likelihood in Eq. (48) can be
obtained as

L̂
(
ηk1

∣∣Y k2
k1

) =
k2∏

j = k1

N∑
i = 1

w̃ j (i)py j |q j (Y j |�
(
ω j − ηk1

)
q j − 1(i))

(49)
where �(ω j −ηk1

) is the quaternion process transition matrix, eval-
uated atηk1

. Equation (49) is very computationally intensive because
it has to be evaluated over the entire particle set for a given ηk1

. This
computational effort can be dramatically reduced by further assum-
ing that the quaternion particles are concentrated near the filtered
quaternion. In this case the likelihood can be approximated by

L̂
(
ηk1

∣∣Y k2
k1

) ≈
k2∏

j = k1

py j |q j

(
Y j |�

(
ω j − ηk1

)
q̂ j − 1

)

=
k2∏

j = k1

pδbk

(
b j − A

(
�

(
ω j − ηk1

)
q̂ j − 1

)
r j

)
(50)

Equation (50) requires the evaluation of the likelihood only once
per time interval for a given realization of ηk1

, thus enabling a real-
time bias estimator to be implemented. The ML estimate of ηk1

maximizes L̂(ηk1
|Y k2

k1
). Computing this estimate using a genetic

search algorithm is presented next.

B. Genetic Search Algorithms
Sophisticated but simple, genetic algorithms (GA) are search

methods based upon the mechanization of natural selection and nat-
ural genetics (see Ref. 18, Chap. 1). In much the same manner that
the particle filter maintains the posterior, namely, by eliminating
particles with zero weights and producing offspring by resampling,
GAs combine survival of the fittest among string structures (called
chromosomes) with randomized information exchange.

The common GA uses a coding of the parameter set, usually via a
string, as opposed to working with the parameters themselves. This
enables the algorithm to exchange information between string ele-
ments in the population. Given an initial population of chromosomes
and applying a single GA iteration results in an improved generation
of chromosomes by means of likelihood. A simple GA consists of
the following stages: 1) reproduction, 2) crossover, and 3) mutation.
Reproduction is the process by which individual chromosomes are
being reproduced according to their fitness function (or likelihood
function). Thus, more likely chromosomes will have higher proba-
bility of contributing offspring in the next generation. Crossover is
the process of exchanging genetic information between two repro-
duced chromosomes. A simple crossover is carried out by selecting
two chromosomes randomly and swapping all of their characters
from a randomly selected position to the total string length. Even
though reproduction and crossover improve the population, they can
become overzealous and lose potentially important genetic informa-
tion. Mutation protects against such an irrecoverable loss by simply
altering a character with small probability every once in a while.

C. Implementation of the GA Algorithm
The QPF is modified to process gyro biases by introducing a

simple GA into the algorithm. The proposed GA maximizes the
likelihood in Eq. (50) sequentially in time and includes some mod-
ifications in order to cope with the varying nature of the biases.

Coding Scheme
The coding scheme used by the GA is the following. Denote a

bias realization by Υ= [ϒ1 ϒ2 ϒ3]T , where ϒ j is the j th com-
ponent of the vector Υ. The corresponding chromosome of length
l + 1 of the j th component, denoted by B(ϒ j ), is a string of length
l + 1 containing the binary coding of |Cϒ j | and a sign bit. The pre-
determined constant C is used for fitting the largest value of ϒ j into
the maximal length of the string. Having the initial set of Nη bias
parameters {Υ(i)}Nη

i = 1 drawn from pη0
, the constant C is determined

by

C = 2l − 1 − 1

max 1 ≤ i ≤ Nη

j = 1,2,3

|ϒ j (i)| (51)

The chromosome of B(Υ) is, therefore, a concatenated string of
B(ϒ j ) for j = 1, 2, 3, that is,

B(Υ) = {B(ϒ1),B(ϒ2),B(ϒ3)} (52a)

with

B(ϒ j ) = {sgn(ϒ j ), bin|Cϒ j |} (52b)

where bin|Cϒ j | represents the binary coding of |Cϒ j |.
Remark 3: The variables l and Nη are predetermined parameters

of the GA step. They are tuned to agree with the required accuracy
and convergence rate of the GA step, as well as with the available
computing power.

Sequential Likelihood Buildup
The purpose of the GA step is to produce an improved population

of bias parameters by means of maximizing the likelihood. This
requirement identifies the GA fitness function to be the likelihood
approximation in Eq. (50). Therefore,

arg max
1 ≤ i ≤ Nη

ϕk(Υk(i)) = arg max
1 ≤ i ≤ Nη

L̂
(
Υk(i)|Y k

1

)
(53)

where ϕk(Υk(i)) denotes the fitness value of the parameter Υk(i)
at time k. Furthermore, recalling that every GA iteration pro-
duces a new population of parameters, clearly, for the likeli-
hood of some Υk(i) to be computed sequentially, it is essential
to specify time intervals where the population does not change
through generations. (In those time intervals there are no reproduc-
tion/crossover/mutation operations.) Maintaining Υk(i) =Υk − 1(i)
for any k ∈ [k1, k2] consequently yields the following recursion for
the fitness function of any parameter in the set {Υk(i)}Nη

i = 1:

ϕk(Υk(i)) = pδbk (bk − A(�(ωk − Υk(i))q̂k − 1)rk)ϕk − 1(Υk − 1(i))

k ∈ [k1, k2] (54)

Reproduction

At time k − 1 the set {Υk − 1(i), ϕk − 1(Υk − 1(i))}Nη

i = 1, consisting
of the parameters and their corresponding fitness values, is available.
When a new measurement is acquired, the fitness value of each
parameter is updated using Eq. (54). The fitness function is then
normalized according to

ϕ̃k(Υk(i)) = ϕk(Υk(i))∑Nη

j = 1
ϕk(Υk( j))

i = 1, . . . , Nη (55)

so that the number of offspring of each parameter is simply its fitness
function multiplied by the total number of parameters {which means
that Υk(i) is reproduced with probability ϕ̃k(Υk(i))}. Each param-
eter Υk(i) is then reproduced Nk(i) times, where the corresponding
number of offspring is obtained by

Nk(i) = int(ϕ̃k(Υk(i))Nη) i = 1, . . . , Nη (56)

The reproduced offspring for the parameter Υk(i) are

Ῡk( j)i = Υk(i) j = 1, . . . , Nk(i) (57)

with the fitness

ϕ̃k(Ῡk( j)i ) = ϕ̃k(Υk(i)) (58)

Usually the reproduced population has slightly less than Nη param-
eters because Nη × ϕ̃k(Υk(i)) is not an integer. In that case one can
reproduce the most likely parameter several more times.
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Crossover
Coding the reproduced set yields a population of corresponding

Nη chromosomes. Moving some chromosomes to a so-called mating
pool, the process proceeds by choosing in random two chromosomes
from this mating pool and by choosing another uniformly distributed
random number between 2 and l + 1, denoted by n. The crossover is
carried out by swapping each and every bit between two correspond-
ing bias components of the mated chromosomes, from the nth place
to the l + 1. This process is applied to each bias string component.
Implementing a so-called sign rule into this inbreeding refines each
generation and, consequently, improves the convergence of the GA.
Thus, half of the mated chromosomes preserve their sign character,
whereas the other half adopt the sign character of the fittest of the
two mated chromosomes. Finally, any pair of mated chromosomes
is taken out of the mating pool.

Mutation
After the crossover the mutation process walks through the string

space (i.e., all of the strings within the population) and changes a bit
(from 1 to 0 and from 0 to 1) every Nmut positions. Recommended
values for Nmut are rather large; thus, this process plays only a sec-
ondary role in the GA. In this work Nmut was set equal to Nη as
recommended in Chapter 3 of Ref. 18.

Finally, decoding the reproduced chromosomes yields a new gen-
eration of parameters. The fitness weights of the new parameters are
then set to

ϕ̃k(Υk(i)) = 1/Nη i = 1, . . . , Nη (59)

because some of the reproduced parameters have no past likelihood
weights.

D. GA–QPF Algorithm
Incorporating the GA into the QPF is carried out by first setting

the times during which sequential buildup of the likelihood takes
place. Recalling that the resampling stage degrades the posterior
representation, thus typically yielding worse estimates, it is reason-
able to implement this stage whenever resampling is not needed.
This leads to executing the GA iteration every resampling.

A single GA–QPF cycle is illustrated in Fig. 1.

VI. Cramér–Rao Lower Bound
To assess the statistical efficiency of the QPF, the posterior CRLB

is computed. Because of the complex computations that follow, the
ensuing development is constrained to the case of unbiased gyro
measurements.

Fig. 1 GA–QPF scheme.

Denoting by q̂k any unbiased estimator of qk , it is well known from
estimation theory that the estimation error covariance is bounded
from below by

E
[
(q̂k − qk)(q̂k − qk)

T
] ≥ J −1

k (60)

where Jk is the Fisher information matrix for k measurements, de-
fined as

Jk � E
[−�qk

qk
log pqk ,Yk

1

(
qk,Yk

1

)]
(61)

where �
y
x �∇y∇T

x is the Laplacian operator. It has been recently
shown19 that the posterior information matrix can be computed re-
cursively as

Jk + 1 = D22
k − D12T

k

(
Jk + D11

k

)−1
D12

k (62)

where

D11
k = E

[−�qk
qk + 1

log pqk + 1|qk (qk + 1|qk)
]

(63a)

D12
k = E

[−�
qk + 1
qk log pqk + 1|qk (qk + 1|qk)

]
(63b)

D22
k = E

[−�
qk + 1
qk + 1

log pqk + 1|qk (qk + 1|qk)
]

+E
[−�

qk + 1
qk + 1

log pyk + 1|qk + 1
(yk + 1|qk + 1)

]
(63c)

Notice that, whereas the computation of the CRLB using Eq. (61)
implies the knowledge of the joint PDF of the state and entire mea-
surement history, Eqs. (63) use only the transition and the likeli-
hood PDFs, which are easily computed from the system’s governing
equations.

A. CRLB for the Quaternion Estimation Problem
From Eqs. (63) it is clear that the CRLB recursion depends mostly

upon the transition density pqk + 1|qk . However, because of the quater-
nion norm constraint, this transition density is singular. Thus, the
CRLB is computed for the quaternion’s vector part only. The tran-
sition density p��k + 1|��k

and the likelihood pyk |��k
are evaluated as

follows.
Equation (13) can be used to express the quaternion vector part at

time k+1,�k + 1, in terms of�k and εk , the gyro white-noise process.
Assuming that �k is known, this expression takes the general form

�k + 1 = fk(εk) (64)

where fk has �k as its parameter. Assuming that the process noise
PDF pεεk is known, the required transition density can be computed
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as

p��k + 1|��k
(ρk + 1|ρk) = pεεk

(
f−1
k (ρk + 1)

)
det

(∇ρρk + 1
f−T
k (ρk + 1)

)T

(65)

where (∇�k + 1
f−T
k (ρk + 1))

T is the Jacobian matrix of f−1
k with respect

to �k + 1, and the function f−1
k is the inverse function of fk such that

εk = f−1
k (�k + 1). From Eq. (15), the random variable εk is related to

the measured angular rate by

εk = ωk − ωo
k (66)

Observing Eq. (66), f−1
k can be found by extracting the random

variable ωk from Eq. (13). An easy way to accomplish this is by
using an alternative form for the quaternion transition matrix in
Eq. (12) (Ref. 6)

�k =
[

cos
(

1
2
‖ωk‖�t

)
I3 × 3 − [ψk×] ψk

−ψT
k cos

(
1
2
‖ωk‖�t

)] (67)

whereψk = sin( 1
2
‖ωk‖�t)(ωk/‖ωk‖). Taking the quaternion prod-

uct of both sides of Eq. (13) with the inverse of qk and using Eq. (67)
yields

qk + 1 ⊗ q−1
k = (�kqk) ⊗ q−1

k =
[

ψk

cos
(

1
2
‖ωk‖�t

)] (68)

Let δqk � qk + 1 ⊗ q−1
k , and let δ�k denote the vector part of δqk .

Using Eq. (68), the angular rate is easily obtained in terms of δ�k .
Finally, using the resulting expression for ωk in Eq. (66) yields

εk = f−1
k (�k + 1) = 2 arccos

(√
1 − ‖δ�k‖2

) δ�k

‖δ�k‖�t
− ωo

k (69)

Now using Eq. (65) and assuming a zero-mean, white Gaussian
process noise εk ∼N (03 × 1, Rε) yields

log p��k + 1|��k
(ρk + 1|ρk) = log C0 − 1

2
f−1
k (ρk + 1)

T R−1
εε f−1

k (ρk + 1)

+ log det(∇ρρk + 1
f−T
k (ρk + 1))

T

≈ log C0 − 1
2
f−1
k (ρk + 1)

T R−1
εε f−1

k (ρk + 1)

− 3 log
(

1
2
�t

) − 1
2

log
(
1 − ‖ρk‖2

)
(70)

where C0 is the normalization constant of the PDF of εk , and the
approximate form in Eq. (70) is based on using the first-order ex-
pansion of the transition matrix �k .

For a Gaussian white observation noise δbk ∼N (0, Rb), it can be
shown that the log-likelihood function and its gradient with respect
to �k + 1 are

log pyk + 1|��k + 1
(Yk + 1|ρk + 1) = log C1 − 1

2

[
bk + 1 − A(ρk + 1)rk + 1

]T

× R−1
b

[
bk + 1 − A(ρk + 1)rk + 1

]
(71a)

∇��k + 1
log pyk + 1|��k + 1

(Yk + 1|ρk + 1) = −∇��k + 1

[
A(ρk + 1)rk + 1

]T

× R−1
b

[
bk + 1 − A(ρk + 1)rk + 1

]
(71b)

where C1 is a normalization constant and A(ρk + 1) denotes the atti-
tude matrix corresponding to the quaternion with ρk + 1 as its vector
part. The final step in the computation of the CRLB consists of
computing the Hessians in Eqs. (63). The highly complicated ana-
lytic expressions for these matrices were obtained using the Maple‡

symbolic algebra package. These expressions are omitted here for
conciseness.

‡Data available online at http://www.maplesoft.com.

VII. Simulation Study
A simulation study has been performed to evaluate the perfor-

mance of the new algorithm and to compare it to standard EKFs
and to the recently proposed USQUE filter of Ref. 6. Two cases
were investigated. In the first case, the filters were run in a synthetic
noise example, taken from Ref. 6. In the second case, real measure-
ments from the Technion’s TechSAT satellite were used to examine
the performance of the algorithms in a non-Gaussian measurement
noise case.

A. Synthetic Noise Case
The GA–QPF was applied to a realistic spacecraft model and

compared to the additive quaternion extended Kalman filter (AEKF)
of Ref. 3, to the multiplicative quaternion extended Kalman fil-
ter (MEKF) of Ref. 2, and to the unscented quaternion estimator
(USQUE) recently presented in Ref. 6. (The actual USQUE code of
Ref. 6 was used with the kind permission of its authors.) In addition
to these algorithms, an iterated version of the AEKF has also been
examined. The iterated EKF algorithm was proposed for improving
the EKF performance in strongly nonlinear systems.20 In all simula-
tions, the iterated AEKF used eight iterations at each measurement
update.

The simulation scenario, as well as all USQUE settings, are
taken from Ref. 6. The spacecraft is in an Earth-pointing, near-
circular 90-min orbit with an inclination of 35 deg. The spacecraft
is equipped with a TAM and gyroscopic rate sensors. The TAM’s
noise is modeled as a zero-mean Gaussian white process with a
standard deviation of 50 nT. The rate-integrating gyros’ output is
contaminated with a measurement noise having two components: a
white, zero-mean Gaussian process with intensity 0.1 (μrad)2/s and
a drift bias modeled as an integrated Gaussian white noise with in-
tensity 1 × 10−7 (μrad)2/s3. The RIGs’ initial bias is set to 0.1 deg/h
on each axis. Using these values in Eq. (44) gives

Prob(‖ηk −ηk1
‖2 ≥ 0.1 deg/h) ≤ 6 × 10−3 k ∈ [k1, k1 + Tη]

(72)

for a time interval of length Tη = 30 s starting at any time k1 (see
Sec. V). The Earth magnetic field is modeled using the eighth-order
international geomagnetic reference field.

Constant Initial Attitude
In this example, the initial attitude errors are set to −50, 50, and

160 deg on all three axes, amounting to a norm attitude error of
120 deg. The initial attitude covariance of the USQUE is set to
50 deg2 I3 × 3 (which seemed to be the most successful choice based
on tuning runs made by the authors of Ref. 6). The GA–QPF is
initialized with N = 1500 particles and Nη = 200 bias parameters,
using the initialization scheme of Appendix B. The initial bias pa-
rameters are simulated using a zero-mean Gaussian kernel with the
same covariance as in the Kalman filter variants, and the chromo-
some length was set to l = 30 bit. The crossover procedure of the GA
is applied to only 40% of the chromosomes. After the first two mea-
surement updates, the filter’s particle set is reduced to the N = 150
unit quaternion particles corresponding to the largest importance
weights. Each particle is weighted using the likelihood

pyk |qk (Yk |qk) = {1/[(2π)
3
2 (det Rb)

1
2 ]}

× exp
{− 1

2
[bk − A(qk)rk]T R−1

b [bk − A(qk)rk]
}

(73)

with the covariance Rb = 502 I3 × 3 (nT)2. The resampling thresh-
old is set to Nth = 2

3
N based on tuning runs. (Decreasing Nth can

reduce the resampling frequency, consequently introducing less
Monte Carlo variations into the estimates; however, this might also
increase the algorithm’s sensitivity to heavy-tailed measurement
noise PDFs.) The sampling rate of the TAM is 1 per 10 s, whereas
the gyros are sampled at 1 Hz. The attitude estimation error (in
degrees) is computed as

δα = 2 arccos(δq4) (74)

where δq4 is the scalar component of the error quaternion δq.
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Fig. 2 Mean quaternion estimation error for the GA–QPF
(thick ————), USQUE (thin ——), MEKF (–·–·–), IAEKF (- - - -), and
AEKF (· · ·), filters: 100 Monte Carlo runs, synthetic noise case.

Fig. 3 Innovations process of the GA–QPF filter (left panel) and the
USQUE filter (right panel).

Figure 2 presents the results of a 100-run Monte Carlo study in
this case. As can be seen from Fig. 2, the GA–QPF reaches its
steady-state attitude estimation error of less than 0.1 deg in about
15 min, whereas it takes the USQUE filter about 10 h to reach the
same accuracy level. All three Kalman filter variants perform worse.

The innovations processes of both the GA–QPF filter and the
USQUE filter are shown in Fig. 3. Recalling that the innovations
process of an optimal filter is a white process, this figure clearly
shows that the GA–QPF filter better processes the information em-
bedded in the measurements.

Uncertain Initial Attitude
In this example the initial attitude quaternion is randomly gen-

erated according to a uniform distribution on the unit three-sphere.
Two filters are examined: GA–QPF and USQUE. In the USQUE
filter the initial estimate is set to q̂0 = [0, 0, 0, 1]T . The GA–QPF
algorithm is initialized as described earlier. In all runs, the USQUE’s
initial covariance is set to

P0 = 1.2 × diag
{
ξ2

1, ξ
2
2, ξ

2
3

}
(75)

where ξi , i = 1, 2, 3 are the modified Rodrigues parameter compo-
nents corresponding to the initial attitude quaternion q0. The simu-
lation consists of 1300 Monte Carlo runs.

The statistical distribution of the quaternion estimation errors of
the GA–QPF and the USQUE algorithms are presented in Fig. 4
(notice the logarithmic scale). The lines in Fig. 4, top to bottom,

a) GA–QPF

b) USQUE

Fig. 4 Statistical distribution of quaternion estimation errors of the
GA–QPF and USQUE filters, based on 1300 Monte Carlo runs, syn-
thetic noise case. Lines, top to bottom: 95th, 85th, 50th, 15th, and 5th
percentiles.

correspond to the 95th, 85th, 50th, 15th, and 5th percentiles of the
Monte Carlo runs, respectively.

Figure 4a shows that after 10 hours, 70% of the GA–QPF quater-
nion estimation errors reach values between 0.0060 and 0.020 deg.
Moreover, 95% of the GA–QPF’s estimation errors are smaller than
0.050 deg after about two hours. In comparison, Fig. 4b shows
the statistical performance of the USQUE for this scenario. As can
be seen from Fig. 4b, after 10 hours, 70% of the USQUE quater-
nion estimation errors are between 0.010 and 30 deg. The 95th
percentile line exhibits oscillations near 100 deg, which indicates
that in about 5% of the runs the USQUE filter did not converge.
This example clearly demonstrates the superior global convergence
of the GA–QPF.

The statistical distribution of the normed gyro bias estimation er-
rors of both the GA–QPF and the USQUE is shown in Fig. 5, which
demonstrates the benefit of decoupling the quaternion and the bias
estimation procedures (notice the logarithmic scale). Starting from
the same initial bias errors, the USQUE estimation error increases
dramatically at the beginning of the estimation process, before suffi-
cient data are collected for the filter to start estimating the bias. This
erroneous bias estimate is then used in the time propagation of the
quaternion, which, consequently, leads to unsatisfactory quaternion
estimates. On the other hand, the GA–QPF bias estimation suffers
from no such phenomenon, and its bias estimation error decreases
monotonically throughout the process.

B. TechSAT Real Noise Data
The performance of the GA–QPF was also examined using a

realistic TAM noise model, taken from the Technion’s TechSAT
microsatellite. The TechSAT orbit is inclined at 98 deg, and its period
is 101 min. As in the previous case, the satellite performs an Earth-
pointing mission. The TechSAT’s TAM measurement noise joint
PDF was estimated using 75 hours of raw TAM data (acquired at a
rate of once per 10 s) by computing the three-dimensional histogram
of the measurement residuals (TAM measurements minus predicted
observations as computed by the geomagnetic field model). This
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PDF is shown in Fig. 6. Clearly, Fig. 6 shows that the TechSAT
TAM’s joint PDF is non-Gaussian. The double-peaked distribution
is caused by a parasitic magnetic dipole moment along the Y body-
frame axis, which was encountered during the momentum wheel
slowdown.21

The results for this case were obtained by simulating the TAM
noise via sampling from the PDF estimated from the real noise data.
In all runs, the initial attitude errors and bias were set as in the pre-
ceding example. The likelihood function pyk |qk was approximated

a) GA–QPF

b) USQUE

Fig. 5 Statistical distribution of bias estimation errors of the GA–QPF
and USQUE filters, based on 1300 Monte Carlo runs, synthetic noise
case. Lines, top to bottom: 95th, 85th, 50th, 15th, and 5th percentiles.

Fig. 6 TAM noise PDF for Z = 0 μT, TechSAT real data.

by the Gaussian mixture

pyk |qk (Yk |qk) = κ
((

exp
{− 1

2
[bk − A(qk)rk − n̄]T

× R−1[bk − A(qk)rk − n̄]
} + exp

{− 1
2
[bk − A(qk)rk + n̄]T

× R−1[bk − A(qk)rk + n̄]
}))

(76)

where κ is a normalization constant, n̄ = [0 −0.6 0]T , and
R = diag{σ 2

x , σ 2
y /5.7, σ 2

z }, where σx , σy, σz denote the TAM noise
data sample standard deviation along the X , Y , and Z axes, respec-
tively.

The GA–QPF is initialized as described before. The measurement
noise covariance matrices of the USQUE and the EKF variants are
set to the sample variance of the TAM noise data.

Figure 7 shows the results of a 100-run Monte Carlo study in
this case. It can be seen that the GA–QPF’s mean estimation error
reaches values under 0.1 deg in about 20 min. In comparison, the
USQUE reaches twice the same values only after about six orbits

Fig. 7 Mean attitude estimation error of the GA–QPF (thick ————),
USQUE (thin ——), IAEKF (- - - -), and MEKF (–·–·–) filters: 100 Monte
Carlo runs, TechSAT real noise data.
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(about 10 hours). The mean estimation errors of all EKF variants
are higher than 0.5 deg after six orbits. (The AEKF’s error is out of
scale and, hence, it is not shown in Fig. 7.)

C. Monte Carlo Approximation of the CRLB
To enable a numerical assessment of the algorithm’s statistical

efficiency, the observed estimation error covariance (not an integral
part of the PF algorithm) is compared to the CRLB. To that end, the
mathematical expectations in Eqs. (63) are estimated by a Monte
Carlo simulation, that is, every expectation is computed using the
ensemble mean, computed over all Monte-Carlo runs.

The expectations associated with the computation of the matri-
ces D11

k and D12
k involve the random variables �k + 1 and �k only.

To properly approximate these specific expectations, the joint PDF
p��k + 1,��k

is recast in a convenient form, as follows.
Recalling that {εk}∞

k = 1 is a white sequence and that �k is inde-
pendent of εk yields

p��k + 1,��k
(ρk + 1,ρk)

=
∫ +∞

−∞
p��k + 1|��k ,εεk (ρk + 1|ρk, εk)p��k |εεk (ρk |εk)pεεk (εk) dεk

= p��k
(ρk)

∫ +∞

−∞
p��k + 1|��k ,εk (ρk + 1|ρk, εk)pεk (εk) dεk

= p��k
(ρk)

∫ +∞

−∞
δ
(
εk − f−1

k (ρk + 1)
)

pεεk (εk) dεk

= p��k
(ρk)pεεk

(
f−1
k (ρk + 1)

)
(77)

where δ( ) denotes the Dirac delta distribution. Using Eq. (77), the
expectation of any p��k ,��k + 1

integrable function g( ) over the joint
probability space of �k + 1,�k can be evaluated by

E[g(�k + 1,�k)]

=
∫ +∞

−∞

∫ +∞

−∞
g(ρk + 1,ρk)p��k ,��k + 1

(ρk,ρk + 1) dρk dρk + 1

=
∫ +∞

−∞

∫ +∞

−∞
g(�k + 1,�k)p��k

(ρk)pεεk

(
f−1
k (ρk + 1)

)
dρk dρk + 1

(78)

Using Eq. (78), the following simulation scheme is adopted for
D11

k and D12
k . First, an independent, identically distributed set of

samples is drawn from pεk to get {εk( j)}Nε

j = 1. Next, for any sample
of the given particle set {qk(i)}N

i = 1, the quaternion sample qk(i)
along with εk( j) are passed through the process equation to yield
{{qk + 1(i) j }N

i = 1}Nε

j = 1. An empirical estimate of the corresponding
expectation is then computed as

E[g(�k + 1,�k)] ≈ 1

N Nε

Nε∑
j = 1

N∑
i = 1

g(ρk + 1(i) j ,ρk(i)) (79)

The only term in Eqs. (63) that depends on the measurement is
the likelihood pyk + 1|qk + 1

, which appears in D22
k . To properly ap-

proximate the expectation in that case, the joint density pyk + 1,��k + 1

is written as

pyk + 1,��k + 1
(Yk + 1,ρk + 1) =

∫ +∞

−∞
pyk + 1|��k ,��k + 1

(Yk + 1|ρk,ρk + 1)

× p��k ,��k + 1
(ρk,ρk + 1) dρk

=
∫ +∞

−∞
pyk + 1|��k + 1

(Yk + 1|ρk + 1)

× p��k ,��k + 1
(ρk,ρk + 1) dρk (80)

Fig. 8 RMS estimation errors of the QPF (thin ——) and USQUE
(- - - -) and the CRLB (thick ————) for the attitude estimation problem.

where the equivalence pyk + 1|��k ,��k + 1
= pyk + 1|�k + 1

follows from the
Markovian nature of the observation model [see Eq. (9)]. Now, using
Eqs. (80) and (77), the expectation of any pyk + 1,��k + 1

integrable func-
tion g( ) over the joint probability space of yk + 1,�k + 1 is evaluated
as

E[g(yk + 1,�k + 1)]

=
∫ +∞

−∞

∫ +∞

−∞
g(Yk + 1,ρk + 1)pyk + 1,��k + 1

(Yk + 1,ρk + 1) dρk + 1 dYk + 1

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g(Yk + 1,ρk + 1)pyk + 1|��k + 1

(Yk + 1|ρk + 1)

× p��k ,��k + 1
(ρk,ρk + 1) dρk dρk + 1 dYk + 1

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g(Yk + 1,ρk + 1)pyk + 1|��k + 1

(Yk + 1|ρk + 1)

× p��k
(ρk)pεεk

(
f−1
k (ρk + 1)

)
dρk dρk + 1 dYk + 1 (81)

Thus, the corresponding empirical estimate of the expectation in
Eq. (81) has to be computed over all observations in the simulated

i.i.d. set {Yk + 1(l)}Nm
l = 1 as well, that is,

E[g(yk + 1,�k + 1)] ≈ 1

N Nε Nm

Nm∑
l = 1

Nε∑
j = 1

N∑
i = 1

g(ρk + 1(i) j , Yk + 1(l))

(82)
Using the same parameters and conditions as used in the syn-

thetic noise case, the rms estimation error of 100 Monte Carlo
runs of both the QPF and USQUE algorithms is compared to√

[tr(J −1
k )] in Fig. 8. The Monte Carlo simulation of the CRLB

is performed using N = 100 state particles, in a random scenario
involving Nε = 30 process noise samples and Nm = 100 measure-
ment trajectories, amounting to 3000 Monte Carlo runs. Figure 8
shows that the rms estimation error achieved by the QPF practically
attains the lower bound after about 200 min. It can be concluded,
therefore, that this estimator is asymptotically efficient and optimal.

VIII. Conclusions
A new algorithm is presented for estimating the rotation quater-

nion from vector observations. The new attitude estimator is a parti-
cle filter that belongs to the class of sequential Monte Carlo methods.
As such, this filter copes naturally with non-Gaussian driving pro-
cesses and with the inherent nonlinearity of the attitude estimation
problem. Moreover, because the attitude is represented in this filter
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via quaternion particles the norm constraint is naturally maintained,
avoiding the need for ad hoc and external procedures. A genetic algo-
rithm is used to generate a maximum likelihood estimate of the gyro
biases, thus alleviating the potential computational burden problem
associated with the number of required particles. In fact, running
with as few as 150 quaternion particles and a 200-element population
for the genetic-algorithm bias estimation scheme, the algorithm is
shown in simulations to be amenable to real-time implementations.

The resulting combined algorithm is shown via an extensive sim-
ulation study to be superior to both the (regular and iterated) additive
and the multiplicative versions of the extended Kalman quaternion
estimators and to the recently proposed unscented Kalman quater-
nion estimator. In particular, this superiority is manifested in the new
filter’s faster convergence rate and enhanced robustness to initial
conditions uncertainty. The simulations include a case where a real
measurement noise model, derived from the Technion’s TechSAT
satellite data, is used. Characterized by a non-Gaussian measure-
ment noise, this case is used to demonstrate the ability of the new
algorithm to cope with conditions where all Kalman filter variants
(including the unscented filter) fail. A comparison of the estimation
error covariance of the quaternion particle filter to the Cramér–Rao
lower bound shows that the new estimator is asymptotically efficient
in the statistical sense, thus corroborating its optimality.

Appendix A: GA–QPF Algorithm
A single cycle of the GA–QPF algorithm is summarized in the

following informal pseudocode:
1) Obtain the bias estimate Υ̂k − 1 from the previous time step.
2) Perform particle evolution to obtain a new particle set

qk(i) = �(ωk − Υ̂k − 1)qk − 1(i) i = 1, . . . , N (A1)

3) IF {new measurement Yk is available}
a) Update the importance weights using Eq. (19), and normalize

for all i = 1, . . . , N .
b) Compute the filtered quaternion as described in Sec. IV.C.
c) Update ϕk((Υk − 1(i)) using Eq. (54), and normalize using

Eq. (55), for all i = 1, . . . , Nη.
d) Derive the bias estimate by computing the weighted average

of all parameters in the population

Υ̂k =
Nη∑

i = 1

ϕ̃k(Υk(i))Υk(i) (A2)

e) IF {Neff < Nth}
i) Compute the regularization intensity using Eq. (35).
ii) Compute the number of offspring Nk(i) for each particle

qk(i), i = 1, . . . , N .
iii) Generate regularized weighted offspring as described in

Sec IV.D.
iv) GA Iteration: Apply reproduction, crossover, and muta-

tion to obtain a new bias parameter set {Υk(i)}Nη

i = 1.
v) Set the fitness of the new bias parameter set as

ϕ̃k(Υk(i)) = 1/Nη for all i = 1, . . . , Nη.
f) END IF

4) ELSE {Time propagation only: Compute the filtered quaternion
as described in Sec. IV.C}

5) END IF

Appendix B: QPF Initialization Scheme
The QPF initialization algorithm is described in the following

pseudocode:
1) Set z, an integer number, such that N/z is also integer.
2) Set �β = 2π/(N/z), β = 0, i = 1. Go through the following

double recursion:
a) FOR m = 1, . . . , N/z

i) FOR j = 1, . . . , z
ii) Draw ζ1 ∼ N (03 × 1, Cov(δb0)), ζ2 ∼ N (0, �β2)

iii) b̄ = b0 + ζ1, β0 = 1
2

arccos(b̄T r0/(‖b̄‖‖r0‖))
iv) e = [(b̄ × r0)

T /‖b̄ × r0‖ sin β0 cos β0]T

v) δe = [b̄T /‖b̄‖ sin 1
2
(ζ2 + β) cos 1

2
(ζ2 + β)]T

vi) q0(i) = δe ⊗ e
vii) i = i + 1
viii) END FOR

b) β = β + �β
c) END FOR

Acknowledgments
This research was supported by the Israel Science Foundation

(Grant 1032/04) and by the Technion’s Asher Space Research Fund.
The kind permission by John L. Crassidis and F. Landis Markley
to use their original USQUE computer code is deeply appreciated.
The authors express their gratitude to M. Guelman and A. Shiryaev
of the Technion’s Asher Space Research Institute for providing the
TechSAT data.

References
1Wahba, G., “A Least-Squares Estimate of Satellite Attitude. Problem

65-1,” SIAM Review, Vol. 7, No. 3, 1965, p. 409.
2Lefferts, E. J., Markley, F. L., and Shuster, M. D., “Kalman Filtering for

Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynam-
ics, Vol. 5, No. 5, 1982, pp. 417–429.

3Bar-Itzhack, I. Y., and Oshman, Y., “Attitude Determination from Vector
Observations: Quaternion Estimation,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-21, No. 1, 1985, pp. 128–136.

4Shuster, M., “Kalman Filtering of Spacecraft Attitude and the Quest
Model,” The Journal of the Astronautical Sciences, Vol. 38, No. 3, 1990,
pp. 377–393.

5Gai, E., Daly, K., Harrison, J., and Lemos, L., “Star-Sensor-Based Satel-
lite Attitude/Attitude Rate Estimator,” Journal of Guidance, Control, and
Dynamics, Vol. 8, No. 5, 1985, pp. 560–565.

6Crassidis, J. L., and Markley, F. L., “Unscented Filtering for Spacecraft
Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 26,
No. 4, 2003, pp. 536–542.

7Oshman, Y., and Carmi, A., “Spacecraft Attitude Estimation from Vector
Observations Using a Fast Particle Filter,” Proceedings of 14th AAS/AIAA
Space Flight Mechanics Conference, Vol. 119, Univelt, Inc., San Diego, CA,
2005, pp. 593–608; also AAS Paper AAS 04-141, 2004.

8Oshman, Y., and Carmi, A., “Estimating Attitude from Vector Obser-
vations Using a Genetic Algorithm-Embedded Quaternion Particle Filter,”
AIAA Paper 2004-5340, 2004.

9Doucet, A., Godsill, S., and Andrieu, C., “On Sequential Monte Carlo
Sampling Methods for Bayesian Filtering,” Statistics and Computing,
Vol. 10, No. 3, 2000, pp. 197–208.

10Cheng, Y., and Crassidis, J., “Particle Filtering for Sequential Spacecraft
Attitude Estimation,” AIAA Paper 2004-5337, 2004.

11Geweke, J., “Bayesian Inference in Econometric Models Using Monte
Carlo Integration,” Econometrica, Vol. 57, No. 6, 1989, pp. 1317–1339.

12Doucet, A., de Freitas, N., and Gordon, N. (eds.), Sequential Monte
Carlo Methods in Practice, Statistics for Engineering and Information Sci-
ence, Springer-Verlag, New York, 2001.

13Golub, G. H., and Van Loan, C. F., Matrix Computations, 3rd ed., The
Johns Hopkins University Press, Baltimore, MD, 1996.

14Davenport, P. D., “A Vector Approach to the Algebra of Rotations with
Applications,” NASA TN D-4696, Aug. 1968.

15Wertz, J. R. (ed.), Spacecraft Attitude Determination and Control,
D. Reidel, Dordrecht, The Netherlands, 1984.

16Kong, A., Liu, J., and Wong, W. H., “Sequential Imputations and
Bayesian Missing Data Problems,” Journal of the American Statistical As-
sociation, Vol. 89, No. 425, 1994, pp. 278–288.

17MacCormick, J., and Isard, M., “Partitioned Sampling, Articulated Ob-
jects, and Interface-Quality Hand Tracking,” Proceedings of 6th European
Conference on Computer Vision, Vol. 2, edited by D. Vernon, Lecture Notes
in Computer Science, Vol. 1843, Springer-Verlag, London, 2000, pp. 3–19.

18Goldberg, D. E., Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison Wesley Longman, Reading, MA, 1989.
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