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Eigenfactor Solution of the Matrix Riccati Equation—A
Continuous Square Root Algorithm
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Abstract—This paper introduces a new algorithm for solving the
matrix Riccati equation. Differential equations for the eigenvalues and
eigenvectors of the solution matrix are developed in which their
derivatives are expressed in terms of the eigenvalues and eigenvectors
themselves and not as functions of the solution matrix. The solution of
these equations yields, then, the time behavior of the eigenvalues and
eigenvectors of the solution matrix. A reconstruction of the matrix itself
at any desired time is immediately obtained through a trivial similarity
transformation.

This algorithm serves two purposes. First, being a square root solution,
it entails all the advantages of square root algorithms such as nonnegative
definiteness and accuracy. Secondly, it furnishes the eigenvalues and
eigenvectors of the solution matrix continuously without resorting to the
complicated route of solving the equation directly and then decomposing
the solution matrix into its eigenvalues and eigenvectors.

The algorithm which handles cases of distinct as well as multiple
eigenvalues is tested on several examples. Through these examples it is
seen that the algorithm is indeed more accurate than the ordinary one.
Moreover, it is seen that the algorithm works in cases where the ordinary
algorithm fails and even in cases where the closed-form solution cannot
be computed as a result of numerical difficulties.

1. INTRODUCTION
THE matrix Riccati equation

P(t)= F(nP() + POF(N) T+ Q) - POC()PQ)

P(t)=P,, 121, (1.1)
in which Q, C, and P, are n X n real symmetric matrices and Fis
an n X n real matrix, plays, as is well known, a central role in
optimal control and estimation [1]-[5]. Suppose that one is
interested in a continuous observation of the eigenvalues and
eigenvectors (eigencomponents) of the solution P(#). This can be
done by a frequent decomposition of P(f) into its eigencompo-
nents. However, due to computational limitations, this approach is
inefficient and may even be impossible. It is, therefore, desired to
find a set of differential equations whose solution yields the
eigencomponents of P(r) directly without a need to decompose
P(f) or use it in any other way.

Another interesting aspect to such a solution, if found, is
entailed in its being actually a square root solution [6]-[9] to the
Riccati equation. This can be seen as follows. Let V(¢) be a matrix
whose columns are the eigenvectors of P(f) and let A(f)!/2 be a
diagonal matrix whose elements are the positive square roots of
the eigenvalues of P(?) (they are of course real and nonnegative)
then a matrix W/(7) can be defined as follows:

WA(f) 2 V(DA 2 1.2)
where W(?) is a square root of P(?) since
P(y= WEROW(HT. (1.3)
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The fact that the eigenfactors of P(f) are solved directly implies
that V() and A(?)'/? are obtained directly without resorting to the
computation of P(?) itself.

We note here the analogy between this method for solving
indirectly the Riccati differential equation, and square root
methods that are well known and widely used in discrete filtering
problems. Square root methods are used to overcome the inherent
numerical instability which is involved in the direct implementa-
tion of the discrete measurement Kalman filter, and to increase the
accuracy which can be achieved with a given finite wordlength
[8], [9]. Of all these methods, in which the estimation error
covariance is replaced by its factors, one of the most popular is
Bierman’s U-D covariance factorization. This algorithm uses a
UDUT factorization of the covariance matrix, and in place of the
covariance matrix, its U-D factors are updated after each
measurement and are propagated in time. Bierman’s method
guarantees nonnegativity of the computed covariance, and is
numerically stable and far more accurate than the original
covariance filter. Cases that are strongly ill-conditioned may also
arise in the continuous version of the Kalman filter, as is shown
later. In these cases, square root methods for solving the Riccati
equation are of great value. However, in comparison with
discrete-time algorithms, continuous-time algorithms have at-
tracted less interest; this is probably so because in most
applications the discrete-time algorithms are more in tune with
digital implementations. Several algorithms were developed for
the continuous propagation in time of the error covariance square
root factors (i.e., for the solution of Lyapunov’s equation).
Andrews [10] and Tapley and Choe [11] proposed algorithms for
the triangular square roots of P(7). Tapley and Peters [12]
proposed an algorithm for the time propagation of the U-D factors
of P(f). All of these algorithms have to be combined with some
discrete square root measurement update algorithm, in order to
yield a complete continuous-discrete square root estimator. Morf,
Levy, and Kailath [13] addressed the continuous-time estimation
problem and presented a square root algorithm for the solution of
the nonlinear covariance (Riccati) equation. Their algorithm uses
a lower triangular square root factor of P(¢) and resembles the
algorithms of Andrews, and Tapley and Choe, from a computa-
tional standpoint.

In this paper we present a method by which, given the matrix
Riccati differential equation, one may solve directly for the
eigenvalues and eigenvectors of P{(7). We further show that this
method can be used as a continuous square root algorithm for the
solution of the matrix Riccati differential equation. Unlike the
discrete filtering case where two different algorithms are needed;
namely, one for time propagation and one for measurement
update, here, in the continuous case, only one algorithm is
needed. We note here that the main difference between the new
algorithm and the above-mentioned continuous-time algorithms is
the particular choice of the eigenfactors of P(¢#); namely, V — A
as the ‘‘square root’’ factors to be propagated. There are cases
where the differential equations for the propagation of the factors
of P(f) in triangular square root algorithms fail because of
improper integration implementation. That is, the integration
algorithms do not adapt to the singularities associated with ‘‘bad
geometry’’ and low measurement noise. The algorithm presented
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in the ensuing should not have this problem since, as will be
shown later, the algorithm contains logic to identify singularities
and eigenvalue cluster.

In the section that follows we derive the differential equations
for the eigenvalues and eigenvectors of P(#). We then show how
these equations are used as a square root solution of the Riccati
equation in the cases of distinct or equal eigenvalues.

Next, the case of close eigenvalues is dealt with, and it is shown
that a solution can still be obtained in this case at a price of some
added complexity. We demonstrate the analytical results by digital
simulations, and show the superior numerical stability of the
method. We conclude with a discussion of the results and of other
applications of the method.

I1. DIFFERENTIAL EQUATIONS FOR THE EIGENCOMPONENTS OF P(?)

A. Rate of Change of the Eigencomponents of Self-Adjoint
Matrices

The ensuing development is based on the following theorem.
Theorem 1: Let P(f) be an n X n complex matrix function
which depends on the real parameter 7, and let P(7) satisfy the
following two conditions for every t € R.
a) P(¢) is self adjoint, i.e., P(¢) = P(#)*, where the asterisk
denotes the conjugate transpose matrix.
b) P(¢) is an analytic function of the real variable ¢.
Then there exist scalar functions {\{#)} -, and a matrix-valued
function W(#), which are analytic for # € R and possess the
following properties for every ¢ € R:

) P(O=V(O)"" diag M, MO, -0 MOIVO);
ii) MWy =1.

For proof of this theorem, see [14].
Note that P(7), the solution of (1.1) satisfies the two conditions
of Theorem 1, thus P(?) can be decomposed as follows:

P(O)=V(OADOV(®)T 2.1
for all ¢+ € R and moreover, V(f) and A(f) are analytic.

Let us denote the number of different values that the eigen-
values of P(f) take by & and the multiplicity of the ith eigenvalue
by m;. We then denote each of the n eigenvalues of P(?) by /N,
where the superscript j is used to distinguish between the #;
eigen\;(alues which take the same value A;. Obviously, 1 < j < m;
and Z;_, m; = n. In order to simplify notations we will use the
superscript of the eigenvalues only when necessary. In the ensuing
we will make use of the following well-known characteristics of
the self-adjoint P matrix [15] (for convenience, from now on we
drop the argument ?).

a) For the ith eigenvalue A; of multiplicity #;, the dimension
of the null space of [P — \;I], denoted by M(P — NI), is m;.

b) There are m; linearly independent eigenvectors of P
corresponding to A; which span the subspace N(P — N;I). These
eigenvectors are orthogonal to all the eigenvectors belonging to A,
for which g#i. In analogy to the notation used for the
eigenvalues, we denote the eigenvectors belonging to the ith
eigenvalue by {/v;}2,.

¢) In all, there is a complete set of # linearly independent
eigenvectors which span R”. These vectors can be chosen to be
an orthonormal set, i.c.,

T
v;

U= 6,‘,1 (2-2)
where §;, is Kronecker’s delta function.

d) The n-dimensional Euclidean space R" is a direct sum of
the k eigenspaces corresponding to the & distinct eigenvalues of P;
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that is,
k
> e N(P-NI)=R". (2.3)
i=1
With all this on hand, we now proceed by writing that for each
eigenvalue, we have
[P=/NdVui=0  j=1, -, m i=1, -, k. 2.4
In the following development we will deal specifically with the ith
eigenvalue and its corresponding jth eigenvector /v;, but it is
obvious that the results are equally applicable to all eigenvalues _
and eigenvectors. By virtue of Theorem 1 we may now
differentiate (2.4) with respect to time to obtain
[P—INIVo;+ [P—I NI Vv =0. 2.5
Since fy; € R”, it can be expressed as a linear combination of
vectors in the null-spaces N(P — A7) of which R" consists; that

is,
k  m,
=3 D PgPug

2.6)
g=1p=1
where v, € N(P — AJI).
Equation (2.6) can be rewritten as
; k m,
o= 2 Pafu;+ 2 Y, Pagfv, Q.7
p=1 g=1p=1

g#i

where a distinction has been made between the eigenvectors /v; €
NP — N\I) and all the eigenvectors which correspond to
eigenvalues other than A;.

Note that the m; orthogonal eigenvectors which were chosen as
a basis of the null space N(P — N[I) are not unique. Any change
in these vectors which is done in the same null space spanned by
them, merely changes them from one arbitrarily chosen basis to
another. Therefore, in the expression for /v; we may drop, without
loss of generality, its projection onto its own null space and thus
leave in (2.7) only those terms which are orthogonal to the null
space of /v;. Consequently,

k  m,
=3 2 Pag,.

g=1p=1

g#i

(2.8)

The expression [P — /A;J]/v; in (2.5) also belongs to R, thus it
can be expressed in terms of a basis of R”, in particular, it can be
expressed in terms of the eigenvectors basis as follows:

m, kK m,
[P-/NIVv=Y, PBiPvi+ Y, Y, #8,°v,

p=1 g=1 p=1
g+i

2.9

where, like in (2.7), the expression was divided into vectors in the
null space N(P — A1) and vectors in the rest of R”. Substitution
of (2.8) and (2.9) into (2.5) yields

kK my m; Kk m,
[P-N\I] 2 E P Pug+ 2 PBiPu;+ 2 E PB4 v =0
p=1

g=1p=1 q=1p=1
g=i q#i

(2.10)
and since PPy, = A, v,, (2.10) becomes
k

Mg m;
Y P =N +2850Pu,+ 3 26:7u,=0.  (2.11)
q=1p=1 p=1
g+
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The left-hand side of (2.11) is a linear combination of linearly
independent vectors. Thus, the only way it can equal zero is that
each one of the coefficients be equal to zero; that is,

PB3;=0 2.12a)
p —A\)Y+PR. = p= 1, m‘l
O‘qo\q A)+ Bq g=1, Lk g#i. (2.12b)
Consequently
» =1, ey m,
r — q p ’ 2 q
277 )\i_>\q g=1, -,k g#i. (2.13)
To evaluate »8, substitute (2.12a) into (2.9) to obtain
kK my
[P—IX V= 2 E PR euT - Py, 2.14)

g=1 p=1
g+i

and then premultiply (2.14) by ¢ v,{. We choose # # i, therefore,
due to the orthogonality between ¢v; and ‘v;, we obtain

k  m,
solpiu=3 3 PBfu] 2.15)

g=1p=1
g#i
The orthonormality of the various eigenvectors also implies

T - 0 for p#g or q#:—h
A 1forp=gand g=h

hence, the only term on the right-hand side of (2.15) which does
not vanish is the one for which p = g and g = A, then
sy T Ply;= 2B,

A change of indexes yields

PB,,:%Z'PJ'U,-. (2.16)
Substitution of 73, from (2.16) into (2.13) yields
P L @.17)
T NN ’

and a substitution of ¢, from (2.17) into (2.8) yields the desired
result

Pf u,

(2.18)

Finally, premultiplying (2.14) by Jp] and using again the
orthonormality property of the eigenvectors yields

N=lvTPhy;. (2.19)
Equations (2.18), (2.19) form a set of differential equations for
the eigenvalues and eigenvectors of the matrix P(f), given the
matrix derivative P(¢) as a function of these variables.

These results are similar to results known from the theory of
perturbations of matrices that depend on a parameter [16], {17].
Derivatives of eigenvalues and eigenvectors were computed also
in optimization problems in structural dynamics [18]. In those
cases the eigenfactor derivatives were used to compute the change
in the eigenfactors of a matrix as a result of a slight perturbation.
However, those results were not extended to the case of time
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derivatives over an unlimited time span and obviously not to the
solution of the matrix Riccati equation. Bierman [19] too treated
the problem of covariance propagation via its eigenvalues and
eigenvectors. His results are similar to the equations presented
above, except for the fact that he applied the results to the
Lyapunov (linear) equation, while we deal with the Riccati
(nonlinear) equation. However, in order to use those results, one
must compute P(f) (using its eigenfactors) at each integration step.
In addition, the case of very close eigenvalues was not treated. In
the following sections we will extend the results given in (2.18)
and (2.19) to the solution of the Riccati equation and particular
attention will be given to the case of close eigenvalues.

B. Rate of Change of the Eigencomponents of the Riccati
Solution

In order to simplify the notation in the ensuing development let
us rewrite (2.18) and (2.19) in a different form. To meet this end,
let us order the eigencomponents as follows:

m m m
1)\1’2)\1, cen l>\1, 1)\2’ 2)\2, “eey 2)\2’ "',1)\10 2)\’“ k)\k

Ly 2y eee My Ly 20 L0 M2 oLl 1y 2 L. Tk
Vi, "V, H Uy, U2, U2, ’ U2, s Uk “Ug,s L [/2

and equate the two sequences, respectively to Ay, ** -,
**, Uy, then (2.18) can be written as follows:

N, and vy,

b= )'\"’P)'i‘ i=1, -, n (2.20)
)\;e)\,,
and (2.19) can be written as
N=vlPy;,  i=1, -, n (2.21)

Equations (2.20) and (2.21) which hold for self-adjoint matri-
ces in general, certainly hold for the solution of the following
matrix Riccati equation:

P = FOP(t) + POFO T+ QN ~-P(OHCHP(). (2.22)

If we premultiply (2.22) by v T and postmultiply it by v;, using
(2.21), we obtain

A= INF+NFT+ Q= NCl. (2.23)

Now premultiply (2.22) by vZ and postmultiply it by v; to obtain

vIPu;i=v][NF+NFT+ Q- NN Cly; (2.24)

which is the numerator expression in the coefficient of v, in
(2.20).
In order to simplify the notation, define the matrix function T},

T NF+NFT+ Q- C. (2.25)
Then (2.24) can be written as
vIPvi=vlTv;. (2.26)
Next define the scalar function y;,
Yig 2vi Tiqu;. .27

From (2.25), it is easy to see that Tj, = T,;, therefore,
Vig=V5= u‘.TTZ]vq =vTT,v,,

ie.,
Yig = Ygi- (2.28)

We define now the matrix 2, whose element on the gth row and
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the /th column is

Yig ey
Qu=|N-hy O NEA (2.29)
0 for Ni=2,
thus Q is a skew symmetric matrix.
Also define
A=dlag ()\l' )\29 ST xn) (2303.)
F=dlag (‘Yl]: Y225 ° s 'Ynn)- (230b)

Using these definitions, (2.20) and (2.21) can now be written as
follows:

A=T (2.31a)

V=1R. 2.31b)
In order to solve (2.31) for the eigenvalues and eigenvectors of
P(7), we have yet to specify the initial conditions, and these are
easily found by diagonalizing P(?) at £ = ¢,.

C. Square Root Formulation

Having obtained the set of differential equations (2.31), for the
eigenvalues and eigenvectors of P, it is easy to derive an
equivalent set in terms of the square root of the eigenvalues. This
is done next.

Define the scalar functions s(f) as

=YD i=1,2,,n (2.32)
Differentiating (2.32) with respect to time yields
s',-=i A (2.33)
2s;
and using the elements of (2.31a) in (2.33) we get
s',-=%gii . (2.34)
Define
S=diag (51, 52, ***, Sa) (2.35)
then (2.34) can be written as
§=3 TS (2.36)

For the nonzero elements of Q@ as defined in (2.29) we obtain

Yig — Yig
§2—52 (si—S)(si+5p)

Q= 2.37)

which is then used in (2.31b) to compute V.

The meaning of this formulation will be discussed in Section V.

Examination of (2.31) or their equivalent (2.36), (2.37) reveals
that the case of multiple eigenvalues poses no problem at all since
the elements of & which correspond to those eigenvalues vanish;
however, the question arises whether the case of very close
eigenvalues can cause numerical difficulties, as it may lead to the
computation of very large eigenvector derivatives. This issue is
investigated next.

HI. THE CASE OF CLOSE EIGENVALUES

Examination of (2.29) [or its square root equivalent (2.37)}
and (2.31b) reveals that when some of the eigenvalues converge,
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the computation might run into difficulties, as the magnitudes of
the derivatives of the corresponding eigenvectors become intoler-
ably large. A possible solution to the problem is the use of a
special program that can handle stiff differential equations. Some
known programs that are intended for this use are Gear’s DIFSUB
[20], and Starner’s IMPSUB [21]. The latter program is a
modification of the former, and can solve ‘‘infinitely stiff>’
problems in which the derivatives of some of the variables may be
missing. However, the use of such special programs may
sometimes be inefficient or even impossible. Therefore, we
present in this section another solution to the problem of
eigenvalue convergence. Our solution consists of a minor modifi-
cation of the algorithm for computing Q. The resulting algorithm
which removes the difficulty suffers practically no reduction in
accuracy. In order to present the remedy to the problem, let us
assume that at some-stage of the numerical integration of the
differential (2.31), one obtains a cluster of r eigenvalues which
are close to one another. Consequently, their eigenvector deriva-
tives become intolerably large [see (2.29) or (2.37)]. For the sake
of clarity we can assume, with no loss of generality, that all other
n — reigenvalues stay distinct.

Let us order the eigenvalues such that those which belong to the
cluster are the first 7 eigenvalues in the array: A, Ay, - * -, A,
Ni1s tt 0y Ay Accordingly, we order the corresponding eigenvec-
tors as follows vy, vy, ***, Uy, U1, °, U,. We perform now a
direct sum decomposition of the #-dimensional Euclidean space
R" into two subspaces as follows:

=858S,, 3.1

where

S, is the invariant subspace spanned by the first r eigenvectors
(belonging to the clustered eigenvalues),

and

S,-- is the invariant subspace spanned by the rest of the n—r
eigenvectors (S,_,=S;, the orthogonal complement of S,).

For each of the eigenvectors belonging to S,, we may compute the
derivative using (2.31b) as follows:

i=1,2, -, r (3.2)

n
U= E quvq,
g=1

where {; is the g, i element of the matrix Q which is defined in
(2.29). In accordance with the decomposition (3.1), we make a
distinction between the eigenvectors belonging to the clustered
eigenvalues and all other eigenvectors. Accordingly, (3.2) is
written as

v; =0+ 9079, i=1,2, -, r 3.3)
where
v = Er: Qqivg (3.4a)
and o
v = 2”: Qaiv,. (3.4b)

g=r+1

Obviously, !’ € S,and """ € §,_,.

We now proceed by making the following proposition.

Proposition 3.1: The rate of change of the subspace S, is
independent of the components of those derivatives, of its
spanning eigenvectors, which belong to S,. That is, S is
independent of the eigenvector derivatives v(l), vz s Tt v

To prove this proposition we note that, in general, the rate of
change of any subspace of R” may be expressed as a function of
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its basis vectors, and their derivatives (i.e., a description of their
change). In our case this claim means that the rate of change of the
subspace S, can be expressed as a function of the following
vectors:

{Ul, Uy, °°°, vr}ESra

{,;(lr)’ ,;(zr)’ sy ,_;£r)} ES,

and

{!}(ln—r), I}S_"_’), e l;S}l—r)}esn_r.

Now, in passing from (2.7) to (2.8) it was argued that a change in
the eigenvectors, which is performed in the null space spanned by
them, merely changes the basis of the null space and not the null
space itself. Similarly, since {#{°};_; € §,, this set of vectors
expresses the change of the eigenvector set {v;}7-, in S,, and thus
it does not contribute to the change of S, itself. That is, the set
{v{}_, represents the rotation of the set {v;}7_, in the subspace

spanned by it.
As a consequence of this argument, we may express the rate of
change of S, as a function of {v;}7_, and {v*"~7}{_, alone, and

hence Proposition 3.1 is proved.
Next we define the orthogonal projector E; as the matrix
representation of the linear transformation of any vector x € R”
into its orthogonal projection on the null space N(P — \;J); that is
E,'XGN(P— }\,I)

VXER". (3.5)

For any subspace L C R" for which an orthonormal basis is
available, the projector E; from R” onto L may be computed by

EL:E xjxf (3‘6)
j=1

where x;, X, ***, X, are a set of basis vectors of L [22]. In
particular, we may use (3.6) to compute the orthogonal projector
upon the subspace S,:

E=3 wo]. 3.7
i=1

The projector E, can also be expressed in terms of the individual
projectors on the subspaces spanned by each of the eigenvectors
{v}i: € S, 123]

Er=i E;

i=1

(3.8)

where, obviously, E; = v/,

The following proposition relates the rates of change of the
subspace S; and E,, the orthogonal projector upon it.

Proposition 3.2: The rate of change of the projector E,
is independent of those components of the derivatives of
the eigenvectors spanning S,, which belong to S,, i.e., it is
independent of v{’, 9, -- -, v¥. )

To prove this proposition, we note that £, carries any vector
X € R"into its orthogonal projection £,x in S,. From Proposition
3.1 we know that the subspace S, does not change as a resuit of the
action of the components of the derivatives {v{’}7.,. The
orthogonal projection is unique, hence, it is also not affected by
{v{"}].,. We therefore conclude that the rate of change of E, is
independent of {v{’}I_;.

Next we use spectral decomposition in order to decompose P(f)
as follows:

n
P(t)=Y, NE:. (3.9

i=1
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Denote the mean value of the clustered eigenvalues by X, then
(3.9) can be written as

P(t) = é ()\i_ )-\r)Ei + )-\rEr"' i )\iEi

i=1 i=r+1

(3.10)

where use of (3.8) was made. Note that in (3.10), N\;, A,, E;, and
E, are all time varying. Also note that the clustered eigenvalues
are assumed to be close to one another but none of them are
identical. As the clustered eigenvalues are assumed to be very
close to one another we can make use of the following
proposition.

Proposition 3.3: Define the approximation index d as follows

délma}x [N—N] (3.11)
<ijsr
and approximate P(7) by P.(f) where
POENE+ Y NE; (3.12)
then i=r+1
|P-Pc||<rd (3.13)
where the matrix norm used here is the spectral norm.
This proposition can be easily proven since
IP-P|<, IN—K|=rd. (3.19)
i=1
From this proposition it is clear that
P-P .
I1P=Pc|| ——0 (3.15)

As a consequence, we conclude that when the clustered
eigenvalues are very close to one another, we may neglect the
term 27, (\; — N)E; on the right-hand side of (3.10), at a price
of a negligible error in the computation of P(7). That is, we may
use the projector E, instead of the individual projectors E; in order
to compute P(f). Now, from Proposition 3.2 we know that the
components {v{’}/, have no effect on the change of £, in time,
and from Proposition 3.3 we see that P(f) can be approximated by
a decomposition which contains £, but not the individual E; of v;
which are in S,. Consequently, the approximation of P(7) which is
based on E, (3.12) is independent of the components {v{°}/_;.
We therefore conclude that when the eigenvalues are clustered,
these components may be approximated in some way, such that
there is no need to use the expression (2.29) which is the source of
the difficulty. This approximation will have very little effect on
the accuracy of the computation. For the implementation of the
last result, we use a modified version of (2.29)

'Yiql

Yig
f
— or N, < Qrnax
Qp= 0 for A=}, (3.16)
. Yig Yig
Qmax N b 5 3y | = %max
sign {N—)\q} or Ny Q

where Q.. has to be determined prior to the computation
according to the ability of the software used and the accuracy
sought.

In the following section where we present numerical results, we
also present a simple numerical example of a case of close
eigenvalues which demonstrate the results of this section.

IV. NUMERICAL EXAMPLES

In this section we present results of two examples. The purpose
of this presentation is 1) to demonstrate that the algorithm is
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Fig. 1. The behavior of Ay and A;. in the vicinity of ¢, for the three solutions.
A: The direct solution in single precision. B: The direct solution in double
precision. C: The new algorithm in single precision.

working, 2) to show the higher accuracy of the algorithm vis-a-vis
the direct solution, and 3) to use an example by way of
demonstrating the behavior of the eigenvectors when eigenvalues
approach one another.

A. Example 1

In this example of order three we mainly wish to demonstrate
the behavior of the eigenvectors which belong to two eigenvalues
as the latter approach one another. As a byproduct, the accuracy
of the algorithm is demonstrated also.

The coefficient matrices of the matrix Riccati equation were
chosen as follows [see (1.1)]:

Three different runs were performed. In the first run the direct
solution of (1.1) was computed in single precision and then the
eigenfactors of the solution matrix were computed at the end of
each time step. The behavior of A, and A;. about 7. is shown in
Fig. 1. In the second run the same solution method was used, only
here it was computed in double precision. The behavior of A, and
A3, in this case is also shown in Fig. 1. Finally, the algorithm
presented in this paper was used in the third run which was
performed in single precision. The results of this run are also
shown in Fig. 1. The value of Q,,, which was chosen in the third
run [see (3.17)] was Q. = 107. We note that the accuracy
achieved using the direct solution in double precision resembles
the accuracy achieved when using the new algorithm in single

0.5E-3 0.2 10. 10. 10.
F =10.1. 0.2E-3 0. Q=diag [1.2.3.] C=|10. 10. 10.
0.1E-1 0 0.1E-3 10. 10. 10.
and the initial condition was
10.00858 0.4760068E — 2 0.47860067E -2
P, = 0.4760068F — 2 7.500974 —2.496704
0.47860067E - 2 —2.496704 7.501056

The eigenvalues of the latter matrix were A; = 5.00428963, A, =
9.9977026, and A; = 10.0085878. At time £, = 0.1037EF — 4 the
eigenvalues of the solution matrix P(r.) were N\, = 4.9984, X,
Ase = 9.9977; that is, two of ihe eigenvalues became identical. (It
should be noted that since the solution was a numerical one and
was performed on a discrete computing machine, the equality was
only to within a finite, albeit small, difference.) Note that the
computation at /. is trivial [see (2.29)]. The time point ¢, is listed
here as a reference point only. We are interested in the
computation in the vicinity of #. and not at ¢, itself. The matrix
Riccati equation was solved on an IBM 3081D machine using the
Runge-Kutta-Verner fifth- and sixth-order integration method
which is implemented in a member of the IMSL library (Edition
9.1). The initial step size of the integration was set to be Af =
108 5. (The integration routine automatically divides the initial
step size to meet a given error measure. The error measure was
chosen to be equal in all runs of this example.)

precision (this observation is based on the computation of As.
before 7. and of A,. after #.). This quality exhibited by the new
algorithm is a distinct characteristic of square root algorithms.

To analyze the behavior near 7, of the two eigenvectors which
belong to the eigenvalues A,. and A;. we turn to (2.29) and
(2.31b). Define

Y23 &1 _ T
@ A TN RC VW @.h
then from (2.28), (2.29), and (2.31b)
0 — s wy
[v; 2 03] =[v; 2 03] ] o 0 —a 4.2)
—wy Wy 0
from which we obtain
l}l = Wil — Wl (4.3&)
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(4.3b)
(4.3¢)

V= — w3l + WUy

U3 = Wl — wyba.

From (4.1) it is realized that at the vicinity of ¢., where the second
and third eigenvalues approach one another, ;. (w; near £.) takes
a very large value. Since all the eigenvectors are of unit length, it
is concluded from (4.3) that

(4.4a)

l}3c ~W1:V20 (4 .4b)
Vie, Va2, and vz, denote, correspondingly, vy, v,, and v; at the
vicinity of #, and due to the value of w;., the magnitude of the
latter two vectors is enormous. At the same time the magnitude of
¥ is bounded. From the analysis presented in Section III and from
(4.4), it is concluded that at the vicinity of ¢., v,. and v;, rotate
perpendicularly to one another at a very fast rate in the subspace
S, which they span. This subspace is obviously a plane which
practically does not change its orientation in the three-dimensional
space of the problem. The reason why the plane practically does
not change its orientation stems from the fact that although v, and
v3, rotate rapidly in the close vicinity of ¢, the change in v,., the
normal to the plane, is negligible throughout the short time
interval in which the fast change in v, and v;. occurs. This is so
since the value of the rate of change of v,. is bounded. The
behavior of w, in this example is shown in Fig. 2.

Fig. 3 describes the behavior of the rotation of v, and v;. as a
function of time in the plane S,. The angle « is defined in plane S,
from some reference line. We note that besides a short interval
about £, the motion of v, is quite regular. As explained earlier,
although v, and v;. change erratically at a small time interval near
f., their exact value is irrelevant as long as they span the plane
which is perpendicular to v, and the latter is indeed accomplished
when the new algorithm is used as outlined in the preceding
sections.

Finally, in order to assure that the preceding results are
independent of the integration method, the example was repeated
using Gear’s stiff method integration routine of the same library.
This repetition yielded similar results.

Vae~ W1V3c

B. Example 2

In this example we wish to demonstrate the accuracy of the new
algorithm. Here we considered a continuous filtering problem
where

P,=diag [0.02, 0.02, 0.02, 0.214E - 10, 0.214E~ 10]

0 10. 0 0 0
—0.1587E-6 0. 0.6E—4 1. 1.

F = 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

Q=diag [0, 0, 0, 0, 0.713E—15]
H=[1,0,0,0,0]
R-1=0.15E+6.
For the filtering problem C = HTR-!H. The initial step size was
At = 0.1 s and the integration routine used was Gear’s stiff
method integration routine of the library mentioned in Example 1.

Note that in the time invariant case, equation (1.1) has the closed
form solution [3]
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Fig. 2. The behavior of w,. as a function of time near ¢..
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Fig. 3. 'The angular change of v,. and e in the plane S, at times close to 1,.

Zy Zy
Z= 4.
[ZZ‘ 222] @59
Z=exp I 0 F I(t—to). 4.5d)

When the direct solution of (1.1} was computed in single
precision some of the eigenvalues of the solution matrix became
negative and the solution blew up at time r = 221.4 s. Moreover,
even the closed-form solution (4.5) blew up since the matrix B

P(H)=AB-! (4.5a) was nearly singular. However, when the new algorithm was used
to solve (1.1), a solution was obtained at any desired point prior or
A=Zy+ZpP, B=Zy+Z,P, (4.5b) beyond 221.4 s. At time #; = 100 s, for example, the result was
0.33E-05 0.77E-07 0.82E—-04  0.15E-08 0.11E-08
0.77E-07 0.30E—-08 0.49E - 05 0.87E—-10 0.65E-10
P,=1082E-04 049E-05 0.17E—-01 —0.45E-07 -0.35E-07 (4.6)
0.15E-08 0.87E-10 —-0.45E-07 0.21E-10 —0.63E-12
0.11E-08 0.65E—-10 —0.35E-07 -0.63E—12 0.15E-10
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To demonstrate that this is indeed the solution, the value of P,
was computed at #; — At and #; + Af and then a computation of
Py, was performed using

Prf+At_Ptf—At

P, o, @7

Next the value of Py was used on the right-hand side of (1.1) to
compute P,"‘} and then an accuracy index was computed as follows:

e= ||P,f— P,’;” 4.8
where the norm was the Euclidean norm. This computation
yielded the result

e=0.4324E - 06. 4.9)
The new algorithm yields the correct solution when the direct
solution and the closed-form solution fail. This is again a distinct
characteristic of square root algorithms.

Finally, it should be noted that the divergence of the direct
solution is characteristic in certain problematic filtering problems.
Such a case was purposely chosen for this example in order to
demonstrate the performance of the new algorithm.

V. CONCLUDING REMARKS

In this paper we have presented an algorithm which yields,
directly, the eigenfactors of the solution of the matrix Riccati
equation (1.1). The algorithm consists of a set of differential
equations which express the first time derivative of the eigenfac-
tors in terms of the eigenfactors themselves and do not use the
solution matrix of (1.1). The algorithm handles distinct as well as
multiple eigenvalues. The algorithm is basically a square root
algorithm. We presented a version which is analogous to
Bierman’s UDUT algorithm where V, the orthogonal matrix of
eigenvectors, is analogous to U, and A, the diagonal matrix of
eigenvalues, is analogous to D. We presented also a full square
root version in which S rather than A is used where § is a diagonal
matrix of the positive square root of the eigenvalues.

We presented two examples in which we used the full square
root version. Repeating these examples with the UDUT-like
version, yielded similar conclusions. The examples showed that
the accuracy achieved using the new algorithm in single precision
resembles the accuracy obtained when using the direct solution in
double precision.

We developed a more concise version which used the ortho-
gonality of the eigenvectors; however, that version had a lower
accuracy and was, therefore, abandoned.

Finally, we used the eigenfactor solution to successfully
develop a discrete square root filter algorithm which will be
presented in a subsequent paper.
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