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Eigenfactor Solution of  the  Matrix  Riccati  Equation-A 
Continuous Square Root Algorithm 

Abstract-This paper introduces a new algorithm for solving the 
matrix  Riccati equation. Differential equations for the eigenvalues and 
eigenvectors of the solution matrix  are developed in which their 
derivatives are expressed in  terms of the eigenvalues and eigenvectors 
themselves and not as functions of the solution matrix.  The solution of 
these equations yields, then, the time behavior of the eigenvalues and 
eigenvectors of the solution matrix. A reconstruction of the  matrix itself 
at any desired time is immediately obtained through a trivial  similarity 
transformation. 
This algorithm serves two purposes. First, being a square root solution, 

it entails all the advantages of square root algorithms such as nonnegative 
def~teness  and accuracy. Secondly, it furnishes the eigenvalues and 
eigenvectors of the solution matrix continuously without resorting to the 
complicated route of solving the equation directly  and then decomposing 
the solution matrix into its eigenvalues and eigenvectors. 

The algorithm which handles cases of distinct as well as multiple 
eigenvalues is tested on several examples. Through these examples it is  
seen that the algorithm is indeed more accurate than the ordinary one. 
Moreover, it  is  seen  that the algorithm works in cases where the ordinary 
algorithm fails and even in cases where the closed-form solution cannot 
he computed as a result of numerical difficulties. 

I. INTRODUCTION 

THE matrix Riccati equation . 

p(t) = F(t)P(t) + P(t)F(t) ‘+ Q(t) - P(t)C(t)P(t) 

P(to) =Po ,  t l  to (1.1) 

in which Q, C ,  and Po are n X n real symmetric matrices and F is 
an n X n real matrix, plays, as is well known, a central role in 
optimal control and estimation [ 11-[5]. Suppose that one is 
interested in a continuous observation of the eigenvalues and 
eigenvectors (eigencomponents) of the solution P(t). This can be 
done by  a frequent decomposition of P(t) into its eigencompo- 
nents. However, due to computational limitations, this approach is 
inefficient and may even be impossible. It is, therefore, desired to 
find a set of differential equations whose solution yields the 
eigencomponents of P(t) directly without a  need to decompose 
P(t) or use it in any other way. 

Another interesting aspect to such a solution, if found, is 
entailed in its being actually a square root solution [6]-[9] to the 
Riccati equation. This can be seen as follows. Let V(r) be a matrix 
whose columns are the eigenvectors of P(t) and let A(?)”’ be  a 
diagonal matrix whose elements are the positive square roots of 
the eigenvalues of P(t) (they are of course real and nonnegative) 
then a matrix W(t) can be defined as follows: 

W(t) P V(t)A(t)”* (1.2) 

where W(t) is a square root of P(r) since 

P( t )  = W( t )  W( t )  T. (1.3) 
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The fact that the eigenfactors of P(t) are solved directly implies 
that V(t) and A(t) are obtained directly without resorting to the 
computation of P(?) itself. 

We note here  the analogy between this method for solving 
indirectly the Riccati differential equation, and square root 
methods that are well known and widely  used in discrete filtering 
problems. Square root methods are used to overcome the inherent 
numerical instability which is involved in the direct implementa- 
tion of the discrete measurement Kalman filter, and to increase the 
accuracy which can be achieved with  a given fmite wordlength 
[8], [9]. Of all these methods, in which the estimation error 
covariance is replaced by its factors, one of the most popular is 
Bierman’s U-D covariance factorization. This algorithm uses  a 
UDUT factorization of the covariance matrix, and in place of the 
covariance matrix, its U-D factors are updated after each 
measurement and are propagated in time. Bierman’s method 
guarantees nonnegativity of the computed covariance, and is 
numerically stable and far  more accurate than the original 
covariance filter. Cases that are strongly ill-conditioned may also 
arise in the continuous version of the Kalman filter, as is shown 
later. In these cases,  square root methods for solving the Riccati 
equation are of great value. However, in comparison with 
discrete-time algorithms, continuous-time algorithms have at- 
tracted less interest; this is probably so because in most 
applications the discrete-time algorithms are more in tune with 
digital implementations. Several algorithms were developed for 
the continuous propagation in time of the error covariance square 
root factors (i.e., for the solution of  Lyapunov’s equation). 
Andrews [IO] and Tapley and Choe [ 111 proposed algorithms for 
the triangular square roots of P(t). Tapley and Peters [ 121 
proposed an algorithm for the time propagation of the U-D factors 
of f i r ) .  All of these algorithms have to be combined with some 
discrete square root measurement update algorithm, in order to 
yield a complete continuous-discrete square root estimator. Mod, 
Levy, and Kailath [ 131 addressed the continuous-time estimation 
problem and presented a square root algorithm for the solution of 
the nonlinear covariance (Riccati) equation. Their algorithm uses 
a lower triangular square root factor of P(t) and resembles the 
algorithms of Andrews, and Tapley and Choe, from a computa- 
tional standpoint. 

In this paper we present a method by which, given the matrix 
Riccati differential equation, one may solve directly for the 
eigenvalues and eigenvectors of et). We further show that this 
method can be used as a continuous square root algorithm for the 
solution of the matrix Riccati differential equation. Unlike the 
discrete fdtering case where two different algorithms are needed; 
namely, one for time propagation and one for measurement 
update, here,  in the continuous case, only one algorithm is 
needed. We note here that the main difference between the new 
algorithm and the above-mentioned continuous-time algorithms is 
the particular choice of the eigenfactors of P(t); namely, V - A 
as the “square  root” factors to be propagated. There are cases 
where the differential equations for the propagation of the factors 
of P(r) in triangular square root algorithms fail because of 
improper integration implementation. That is, the integration 
algorithms do not adapt to the singularities associated with “bad 
geometry” and low measurement noise. The algorithm presented 
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in the ensuing should not have this problem since, as will be 
shown later, the algorithm contains logic to identify singularities 
and eigenvalue cluster. 

In the section that follows we derive  the differential equations 
for the eigenvalues and eigenvectors of P(t).  We then show how 
these equations are used as a square root solution of the Riccati 
equation in the cases of distinct or equal eigenvalues. 

Next, the case of close eigenvalues is dealt with, and it is shown 
that a solution can still be obtained in this case at a price of some 
added complexity. We demonstrate the analytical results by digital 
simulations, and show the superior numerical stability of the 
method. We conclude with a discussion of the results and of other 
applications of the method. 

n. DIFFERENTIAL EQUATIONS FOR THE EIGENCOMPONENTS OF P(t) 

A .  Rate of Change of the  Eigencomponents of Self-Adjoint 
Matrices 

The ensuing development is based on the following theorem. 
Theorem I :  Let P(t) be an n X n complex matrix function 

which depends on the real parameter t ,  and let P(t)  satisfy the 
following two conditions for every t E R .  

a) P(t)  is self adjoint, i.e., P(t) = P(t)*, where the asterisk 
denotes the conjugate transpose matrix. 

b) P(t) is an analytic function of the real variable t .  
Then there exist scalar functions { hi(t)) := and a matrix-valued 

function V(t), which are analytic for t E R and possess the 
following properties for every t E R :  

i) P(r)= V(t)-' diag [Xl(t), X,(t), e ,  X,(t)]V(t); 

ii) V(t) V(t)* = I .  

For proof of this theorem, see [ 141. 
Note that P(t),  the solution of (1.1) satisfies the two conditions 

of Theorem 1, thus P(t) can be decomposed as follows: 

P( t )  = V( t )  A( t )  V( t )  (2.1) 

for all t E R and moreover, V(t) and A(t) are analytic. 
Let us denote the number of different values that the eigen- 

values of P(t)  take by k and the multiplicity of the ith eigenvalue 
by mi. We then denote each of the n eigenvalues of P(t) by ' X i  
where the superscript j is used to distinguish between the mi 
eigenvkalues which take the same value Ai. Obviously, 1 I j 5 mi 
and Ci= mi = n. In order to simplify notations we will use the 
superscript of the eigenvalues only when necessary. In the ensuing 
we will make use of the following well-known characteristics of 
the self-adjoint P matrix [15] (for convenience, from now  on  we 
drop the argument t ) .  

a) For the ith eigenvalue Xi  of multiplicity mi, the dimension 
of the null space of [P  - hi l l ,  denoted by N(P - hJ) ,  is mi. 

b) There are mi linearly independent eigenvectors of P 
corresponding to Xi which span the subspace N(P - XiI).  These 
eigenvectors are orthogonal to all the eigenvectors belonging to X, 
for which q f  i. In analogy to the notation used for the 
eigenvalues, we denote the eigenvectors belonging to the ith 
eigenvalue by { J u i ) ~ i  

c) In all,  there is a complete set of n linearly independent 
eigenvectors which span R". These vectors can be chosen to be 
an orthonormal set, i.e., 

v' * uq=Bjq (2.2) 

where Bjq is Kronecker's delta function. 
d) The n-dimensional Euclidean space R" is a direct sum of 

the k eigenspaces corresponding to the k distinct eigenvalues of P ,  

that is, 
k 
e N(P- hiz) = R". (2.3) 

i=  I 

With all this on hand, we now proceed by writing that for each 

[p -JXi~] iUi=o  j =  1, . . . , m i  i = l ,  . - - ,  k. (2.4) 

In the following development we will deal specifically with the ith 
eigenvalue and its corresponding j th eigenvector 'vi, but it is 
obvious that the results are equally applicable to all eigenvalues 
and eigenvectors. By virtue of Theorem 1 we may now 
differentiate (2.4) with respect to time to obtain 

eigenvalue, we have 

[ P - j X j z ] ' V j +  [P-');,Z]ju,=O. (2.5) 

Since Gi E R", it can be expressed as a linear combination of 
vectors in the null-spaces N(P - X q Z )  of which R" consists; that 
is, 

k m, 
J&= x x p a q p v q  (2.6) 

q = l  p = l  

where Pvq E N(P - &Z). 
Equation (2.6) can be rewritten as 

p = l  q = l  p = l  
q f i  

where a distinction has been made between the eigenvectors jvi  E 
N(P - A i l )  and all the eigenvectors which correspond to 
eigenvalues other than X i .  

Note that the mi orthogonal eigenvectors which were chosen as 
a basis of the null space N(P - A i l )  are not unique. Any change 
in these vectors which is done in the same null space spanned by 
them, merely changes them from one arbitrarily chosen basis to 
another. Therefore, in the expression fori& we  may drop, without 
loss of generality, its projection onto its own null space and thus 
leave in (2.7) only those terms which are orthogonal to the null 
space of jui. Consequently, 

q = l  p = l  
q f i  

The expression [P - j~ J ] jv i  in (2.5) also belongs to R", thus it 
can  be expressed in terms of a basis of R", in particular, it can be 
expressed in terms of the eigenvectors basis as follows: 

m. k m. 

p = l   q = l   p = l  
q f i  

where, like in (2.7), the expression was divided into vectors in the 
null space N(P - A i l )  and vectors in the rest of R".  Substitution 
of (2.8) and (2.9) into (2 .5)  yields 

q= 1 p =  I p =  I q = l  p = l  
q f i  q f i  

(2.10) 
and since P p u ,  = XqPvq,  (2.10) becomes 

q= 1 p= 1 
q f i  

p = I  
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The left-hand side of (2.11) is  a linear combination of linearly 
independent vectors. Thus, the only  way it can equal zero is that 
each one of the coefficients be equal to zero; that is, 

ppi = 0 (2.12a) 

"Qq(hq - X;) + P B q  = 0 
p = l ,  ... 
q = l ,  e . . ,  k;  q f i .  

' mq (2.12b) 

Consequently 

PQq = - P O q  p = l ,  . - -  ' m4 

Xi-?,, q = l ,  - e - ,  k; q# i .  
(2.13) 

To evaluate P o q  substitute (2.12a) into (2.9) to obtain 

[P-JX;]jv;= x x p f l q g v ;  p v q .  
k m, 

q = l  p = l  
q f i  

(2.14) 

and then premultiply (2.14) by gv;. We choose h # i ,  therefore, 
due to the orthogonality between gvh and jv i ,  we obtain 

(2.15) 
q= I p= I 
q t i  

The orthonormality of the various eigenvectors also implies 

"; . Pvq= 
0 for p # g  or q f  h 
1 fo rp=g  and q = h  

hence, the only term on the right-hand side of (2.15) which does 
not vanish is the one for which p = g and q = h, then 

A change of indexes yields 

Substitution of P o q  from (2.16) into (2.13) yields 

pv;PJvi 
q- &X, 

Pcy -- (2.17) 

and a substitution of P a q  from (2.17) into (2.8) yields the desired 
result 

(2.18) 

q t i  

Finally, premultiplying (2.14) by JUT and using again the 
orthonormality property of the eigenvectors yields 

jh.-jvTpjvi. 

Equations (2.18), (2.19) form a set of differential equations for 
the eigenvalues and eigenvectors of the matrix P(t), given the 
matrix derivative P ( f )  as a function of these variables. 

These results are similar to results known from the theory of 
perturbations of matrices that depend on a parameter [ 161, [ 171. 
Derivatives of eigenvalues and eigenvectors were computed also 
in optimization problems in structural dynamics [ 181. In those 
cases the eigenfactor derivatives were used to compute the change 
in the eigenfactors of a matrix as a result of  a slight perturbation. 
However, those results were not extended to the case of time 

1 -  1 (2.19) 

derivatives over an unlimited time span and obviously not to the 
solution of the matrix Riccati equation. Bierman [19] too treated 
the problem of covariance propagation via its eigenvalues and 
eigenvectors. His results are similar to the equations presented 
above, except for the fact that he applied the results to the 
Lyapunov (linear) equation, while we deal with the Riccati 
(nonlinear) equation. However, in order to use those results, one 
must compute P(t) (using its eigenfactors) at each integration step. 
In addition, the case of very close eigenvalues was  not treated. In 
the following sections we will extend the results given in (2.18) 
and (2.19) to the solution of the Riccati equation and particular 
attention will be given to the case of close eigenvalues. 

B. Rate of Change of the  Eigencomponents of the  Riccati 
Solution 

In order to simplify the notation in the ensuing development let 
US rewrite (2.18) and (2.19) in a different form. To meet this end, 
let us order the eigencomponents as follows: 

'XI, 2hl, . ' 9 mlX1, lhl, 2h2, . ' . , m2X2r ' . . , I X k ,  2 X k ,  ' . ."kXk 

'VI, 'VI, * f m l v I ,  'u2, 2v2, . * 9 m2vZ, ' ., lvk, 2uk, . ' . , mkVk 

and equate the two sequences, respectively to AI, - a ,  A,, and vI ,  ... , u,,, then (2.18) can be written as follows: 

vq i = l ,  n (2.20) 
q= 1 
hfx, 

and (2.19) can be written as 

j,i=vTPvi i =  1, - .  . , n.  (2.21) 

Equations (2.20) and (2.21) which hold for self-adjoint matri- 
ces  in general, certainly hold for the solution of the following 
matrix Riccati equation: 

&t) = F(r)P(t) + P(r)F(t) + Q(t) - P(r)C(t)P(t). (2.22) 

If we premultiply (2.22) by v 7  and postmultiply it  by vi,  using 
(2.21), we obtain 

h;=v'[X;F+X;Fr+Q-XfC]vj. (2.23) 

Now premultiply (2.22) by v: and postmultiply it by vi to obtain 

v ~ P v ; = v ~ [ X i F + X q F T + Q - ~ ; X q C ] v i  (2.2) 

which is the numerator expression in the coefficient of vg in 
(2.20). 

In order to simplify the notation, define the matrix function Zq 

Tiq 6 XiF+ XqFr+ Q - X,XqC. (2.25) 

Then (2.24) can be written as 

v;Pvi= v;Tfqv;. (2.26) 

Next define the scalar function y iq  

yiq P v;Tiqv;. (2.27) 

From (2.25), it is easy to see that TL = Tqi, therefore, 

Y ; ~ = Y Y % = v T T ~ ~ = v T T ~ ~ v ~ ,  

].e., 
Yiq = Yqi . (2.28) 

We define now the matrix a, whose element on the qth row and 
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the ith c o l u m n  is 

Qqi= [T xi- xq for xi #X, (2.29) 
for hi = hq 

thus Q is a skew symmetric matrix. 
Also defme 

A=diag (Al, h2, - 0 . )  X,) (2.30a) 

r=diag (rll. ~22. e . . ,  m,). (2.30b) 

Using these definitions, (2.20) and (2.21) can now be written as 
follows: 

A=r (2.31a) 

v= m. (2.31b) 

In order to solve (2.31) for the eigenvalues and eigenvectors of 
P(t), we have yet to spec@ the initial conditions, and these are 
easily found by diagonalizing P(t) at t = to. 

C. Square Root Formulation 

Having obtained the set of differential equations (2.3 l), for the 
eigenvalues and eigenvectors of P ,  it  is easy to derive an 
equivalent set in  terms of the square root of the eigenvalues. This 
is done next. 

Define the scalar functions s(t) as 

the computation might run into difficulties, as the magnitudes of 
the derivatives of the corresponding eigenvectors become intoler- 
ably large. A possible solution to the problem is the use of a 
special program that can handle stiff differential equations. Some 
known programs that are intended for this use are Gear's DIFSUB 
[ZO], and Starner's IMPSUB [21]. The latter program is a 
modification of the former, and can solve "infmitely stiff' 
problems in which the derivatives of some of the variables may be 
missing. However, the use of such special programs may 
sometimes be inefficient or even impossible. Therefore, we 
present in this section another solution to the problem of 
eigenvalue convergence. Our solution consists of  a minor modifi- 
cation of the algorithm for computing a. The resulting algorithm 
which removes the difficulty suffers practically no reduction in 
accuracy. In order to present the remedy to the problem, let us 
assume that at  some'stage of the numerical integration of the 
differential (2.31),  one obtains a cluster of r eigenvalues which 
are close to one another. Consequently, their eigenvector deriva- 
tives become intolerably large [see (2.29) or (2.391.  For the sake 
of clarity we can assume, with no loss of generality, that all other 
n - r eigenvalues stay distinct. 

Let us order the eigenvalues such that those which belong to the 
cluster are the first r eigenvalues in the array: XI, X2, * * e ,  X,, 
X,, ,, - - * , X,. Accordingly, we order the corresponding eigenvec- 
tors as follows vl ,  v2, * . a ,  v,, u,+ * * e ,  u,. We perform now  a 
direct sum decomposition of the n-dimensional Euclidean space 
R" into two subspaces as follows: 

R" = S, S,- ,  (3.1) 

where 

s i ( t )=Jx,o  i = ~ ,  2, e . . ,  n. (2.32) S, is the invariant subspace spanned by the first r eigenvectors 
(belonging to the clustered eigenvalues), 

Differentiating (2.32) with respect to time yields 
and 

(2.33) S,-r is the invariant subspace spanned by the rest of the n - r 
eigenvectors (Sn-r = SF, the orthogonal complement of S,). 

and using the elements of (2.31a) in (2.33) we get For each of the eigenvectors belonging to S,, we  may compute the 
derivative using (2.31b) as follows: 

s.-- . Yii 
1 -  ai (2.34) 

Define ii=f: Qqiuq, i = l ,  2, - e - ,  r (3.2) 

where Qqi is the q, i element of the matrix Q .  which is defined in 
(2.29). In accordance with the decomposition (3.1), we make a 
distinction between the eigenvectors belonging to the clustered 

(2.36) eigenvalues and all other eigenvectors. Accordingly, (3.2) is 
written as 

S = diag (sl, s2, , s,) (2.35) q= I 

then (2.34) can be written as 

. 1  
2 

s=- rs-I. 

For the nonzero elements of Q as defined in (2.29) we obtain 

(2.37) 

which is then used in (2.31b) to compute V.  
The meaning of this formulation will be discussed in Section V. 
Examination of (2.31) or their equivalent (2.36), (2.37) reveals 

that the  case of multiple eigenvalues poses no problem at all since 
the elements of Q which correspond to those eigenvalues vanish; 
however, the question arises whether the case of very close 
eigenvalues can cause numerical difficulties, as it  may lead to the 
computation of very large eigenvector derivatives. This issue is 
investigated next. 

III. THE CASE OF CLOSE EIGENVALUES 

Examination of (2.29) [or its square root equivalent (2.37)] 
and (2.31b) reveals that when some of the eigenvalues converge, 

where 

and 

(3.4a) 
q = l  

Cy-,),= f: Qqivq. (3.4b) 
q = r +  1 

Obviously, uy) E S, and UY-" E S,-,. 
We now proceed by making the following proposition. 
Proposition 3.1: The rate of change of the subspace S, is 

independent of the components of those derivatives, of its 
spanning eigenvectors, which belong to S,. That is, S, is 
independent of the eigenvector derivatives uy), uy), - * ,  u!). 

To prove this proposition we note that, in general, the rate of 
change of any subspace of R n  may be expressed as a function of 
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Denote the mean value of the clustered eigenvalues by xr ,  then 
(3.9) can be written as 

r n 

P(f )  = (hi- Lr)E, + LrEr + h;Ei (3.10) 
i =  1 i = r +  I 

where use of (3.8) was made. Note that in (3.10),  X i ,  xr ,  E;, and 
E, are all time varying. Also note that the clustered eigenvalues 
are assumed to be close to one another but none of them are 
identical. As the clustered eigenvalues are assumed to be very 
close to one another we can make use of the following 
proposition. 

Proposition 3.3: Define the approximation index d as follows 

its basis vectors, and their derivatives (i.e., a description of their 
change). In our  case this claim means that the rate of change of the 
subspace Sr can be expressed as a function of  the following 
vectors: 

{ V I ,  ~ 2 1  * . * ,  V r } E s r ,  

and 

("W-r) "Cn-r), . . ., "p-r)}~=s~-~. 
1 ' 2  

Now, in passing from (2.7) to (2.8) it was argued that a change in 
the eigenvectors, which  is performed in the null space spanned  by 
them, merely changes the basis of the null space and not the null 
space itself. similarly, since { uf)}i= E S,, this set of vectors 
expresses the change of the eigenvector set { ui} f=  I in S,, and thus 
it does not contribute to the change of S, itself. That is, the set 
{ uy)} i= I represents the rotation of the set { u i }  ;= I in the subspace 
spanned by it. 

As a consequence of this argument, we may ex ress the rate of 
change of Sr as a function of { vi>i= ,  and { u?-r{;=l alone, and 
hence Proposition 3.1 is proved. 

Next we define the orthogonal projector E; as the matrix 
representation of the linear transformation of any vector x E R" 
into its orthogonal projection on the null space N(P - A i l ) ;  that is 

Eix€N(P- Ail) V X € R " .  (3.5) 

For any subspace L. C R" for which an orthonormal basis is 
available, the projector EL from R" onto L may be computed by 

0 

EL = X~X; (3.6) 
j =  I 

where xI, x2, * * - , x, are a set of basis vectors of L [22]. In 
particular, we  may use (3.6) to compute the orthogonal projector 
upon the subspace Sr: 

(3.7) 
i=  1 

The projector E r  can also be expressed in terms of the individual 
projectors on the subspaces spanned by each of the eigenvectors 
{ u ; } I = ~  E S r  1231 

r Er=c Ei 
i=  I 

where, obviously, Ei = viur. 
The following proposition relates the rates of change of the 

subspace Sr and E,, the orthogonal projector upon it. 
Proposition 3.2: The rate of change of the projector E r  

is independent of those components of the derivatives of 
the eigenvectors spanning S,, which belong to S,, i.e., it is 
independent of uy), uf), * * ,  ti:). 

To prove this proposition, we note-that E r  carries any vector 
x E R" into its orthogonal projection Erx in S,. From Proposition 
3.1 we  know that the subspace Sr does not change as a result of the 
action of the components of the derivatives { uy)}r=,. The 
orthogonal projection is unique, hence, it is also not affected by 
{ti:)} f=  1 .  We therefore conclude that the rate of change of E r  is 
independent of { u y)} f= I .  

Next we use spectral decomposition in order to decompose et) 
as follows: 

P(t) = XiEi. (3.9) 

dP max IXi-X,l 
I r i , j s r  

and approximate P ( f )  by Pc(t) where 
n 

PJt)  4 X r E r  + XjEi 
then i = r +  1 

IIP-Pcll s r d  

where the matrix norm used here is the spectral norm. 
This proposition can be easily proven since 

IIP-P,II<c \Ai-Xrl<rd. 
r 

i =  1 

From this proposition it is clear that 

IIP-PcII &-- 0. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

As a consequence, we conclude that when the clustered 
eigenvalues are very close to one another, we may neglect the 
term Cy= I ( X i  - &)Ei on the right-hand side of (3. lo ) ,  at a price 
of  a negligible errpr in the computation of P(t) .  That is, we  may 
use the projector E, instead of the individual projectors E; in order 
to compute P(t Now, from Proposition 3.2 we know that the 
components { u i  A } ;= r have no effect on the change of E r  in time, 
and from Proposition 3.3 we see @at P(t) can be approximated by 
a decomposition which contains E, but not the individual E; of vi 
which are in S,. Consequently, the approximation of P(t) which is 
based on E r  (3.12) is independent of the components {UT)} ;= 
We therefore conclude that when the eigenvalues are clustered, 
these components may be approximated in some way, such that 
there is no  need to use the expression (2.29) which is the source of 
the difficulty. This approximation will have very little effect on 
the accuracy of the computation. For the implementation of the 
last result, we use a modified version of (2.29) 

nqi= { o for A;= X, (3.16) 

where am has to be determined prior to the computation 
according to the ability of the software used and the accuracy 
sought. 

In the following section where we present numerical results, we 
also present a simple numerical example of a case of close 
eigenvalues which demonstrate the results of this section. 

IV. NUMERICAL EXAMPLES 

In this seaion we present results of two examples. The purpose 
;= 1 of this presentation-is 1) to demonstrate that-the algohthh is 
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T I M E  ( S E C  * lfi-') 

Fig. 1. The behavior of hk and h3c in the vicinity of 1, for the three solutions. 
A: The direct solution in sin-le precision. B: The direct solution in double 
precision. C: The  new dgoXthm in single precision. 

working, 2) to show the higher accuracy of the algorithm vis-a-vis 
the direct solution, and 3) to use an example by  way of 
demonstrating the behavior of the eigenvectors when eigenvalues 
approach one another. 

A .  Example I 

In this example of order three we  mainly  wish to demonstrate 
the behavior of the eigenvectors which belong to two eigenvalues 
as the latter approach one another. As a byproduct, the accuracy 
of the algorithm is demonstrated also. 

The coefficient matrices of the matrix Riccati equation were 
chosen as follows [see (l . l)]:  

[ 1 0.5E-3  0.2 0 . E -  1 
F = 0.1 0.2E-3 0. 

0.1E- 1 0. 0.1E-3 

and the initial condition was 

Three different runs were performed. In the first rim the direct 
solution of (1.1) w a ~  computed in single precision and then the 
eigenfactors of the solution matrix were computed at the end  of 
each time step. The behavior of X2, and X,, about t, is shown in 
Fig. 1. In the second m i  the same solution method was used, only 
here it was computed in double precision. The behavior of XZc and 
X3, in this m e  is also shown in Fig. 1 .  Finally, the algorithm 
presented in this paper was Used in the third run whieh was 
performed in single precision. The results of this run are also 
shown in Fig. 1 .  The value of Q, which was chosen in the third 
run [see (3.17)] was fl,- = 10'. We note  that the accuracy 
achieved using the direct solution in double precision resembles 
the accuracy achieved when using the new algoiithm in single 

Q=diag [ I .  2. 3.1 C= [!!: 10. 
10. 

10. 10. 

10.00858 0.476OO68E - 2 0.47860067E - 2 
0.4760068E-  2 7.500974 - 2.496704 

0.47860067E - 2 - 2.496704 7.501056 1 
L 

The eigenvalues of the latter matrix were X, = 5.00428963, X2 = 
9.9977026, and X, = 10.0085878. At time t, = 0.1037E - 4 the 
eigenvalues of the solution matrix Pftc)  were XI, = 4.9984, X2cr 
As, = 9.9977; that is, two of the eigenvalues became identical. (It 
should be noted that since the solution was a numerical one and 
was performed on  a discrete computing machine, the equality was 
only to within a finite, albeit small, difference.) Note that the 
computation at t, is trivial [see (2.29)]. The time point t, is listed 
here as a reference point only. We are interested in the 
computation in the vicinity of t, and not at t, itself. The matrix 
Riccati equation was solved on an IBM 3081D machine using the 
Runge-Kutta-Verner fifth- and sixth-order integration method 
which is implemented in  a member of the IMSL library (Edition 
9.1). The initial step size of the integration was set to be At = 

s .  (The integration routine automatically divides the i.nitial 
step size to meet a given error measure. The error measure was 
chosen to be equal in all runs of this example.) 

precision (this observation is based on the computation of ?i3, 
before t, and of X2, after t,). This quality exhibited by the new 
algorithm is  a distinct characteristic of square root algorithms. 

To analyze the behavior near t, of the two eigenvectors which 
belong to the eigenvalues 12,  and )13c we turn to (2.29) and 
(2.31b). Define 

(4.2) 

(4.3a) 
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u2 = - W3UI + U l U 3  (4.3b) 
u3 = - W I U 2 .  (4.3c) 

From (4.1) it is realized that  at the vicinity of t,, where the  second 
and third eigenvalues  approach  one  another, wIc (wI near t,) takes 
a very  large  value.  Since all the  eigenvectors  are of  unit length, it 
is concluded  from (4.3) that 

~ Z c - W l c ~ 3 c  (4.4a) 
u 3 c  - W l c ~ 2 c  (4.4b) 

u l , ,  u2,, and u 3 ,  denote,  correspondingly, uI ,  u2, and u3 at the 
vicinity  of t, and  due to the  value of wlc ,  the magnitude  of the 
latter two vectors is enormous. At  the same  time the  magnitude  of 
ul is bounded.  From'the  analysis  presented in  Section lII and from 
(4.4), it is concluded that  at  the  vicinity  of t,, u2, and u3, rotate 
perpendicularly  to  one  another  at  a very fast rate in  the subspace 
S, which  they span. This subspace is  obviously a plane  which 
practically does not change its orientation in the  threedimensional 
space of the  problem.  The  reason why the plane practically does 
not change its orientation  stems  from the fact that although u 2 ,  and 
u3, rotate rapidly in the  close vicinity of t,, the  change in ulc,  the 
normal to the  plane, is negligible  throughout  the  short time 
interval in  which the  f&t  change in u2, and u3, occurs.  This is so 
since  the  value of the rate of change of ulc  is bounded.  The 
behavior of w l c  in this example  is shown in Fig. 2. 

Fig. 3 describes  the  behavior of the rotation of u2, and u3, as a 
function  of  time in the  plane S,. The  angle CY is  defmed  in plane S, 
from  some  reference line. We note that  besides a  short interval 
about t,, the  motion  of u2, is quite  regular. As explained earlier, 
although u2, and u3, change erratically at  a  small time interval near 
tc, their exact value is irrelevant as long as they span  the  plane 
which is perpendicular  to ul, and  the latter is indeed  accomplished 
when the new algorithm is  used as outlined in the  preceding 
sections. 

Finally, in order  to  assure that the preceding results are 
independent of the  integration  method,  the  example was repeated 
using Gear's stiff method integration  routine of  the same library. 
This repetition yielded similar results. 

B. Example 2 

In this example  we wish to demonstrate the accuracy of  the  new 
algorithm. Here we considered  a continuous filtering problem 
where 

Po'diag t0.02, 0.02, 0.02, 0.214E- 10, 0.214E- 101 

0 10. 0 

F = [  0 0 0 
-0.1587E-6 0. 0.6E-4 1 .  

0 
0 0 0  O f )  
0 0 0  0 0  

O I1 
Q=diag [0, 0, 0, 0, 0.713E- 151 

H= [I, 0, 0, 0, 01 
R-'=O.l5E+6. 

For the filtering problem C = HTRR-'H. The initial step size was 
At = 0.1 s and the integration  routine used  was Gear's stiff 
method integration  routine of the library mentioned in Example 1. 
Note  that  in  the time  invariant  case,  equation (1.1) has the closed 
form  solution [3] 

P(t)  =AB-' (4.5a) 

A=Z2l+Z22Po  B=Z11+Z,2Po (4.5b) 
- - 

977 

t 
' t  
I 
I 
L 

t 

I 

I 
1 

Fig. 2. The behavior of ulr as a function of time near I,. 

3 

-1.: t 

Fig. 3. The a n g u l a r  change of u2< and u3, in the plane S, at times  close  to r,. 

Z=exp [ ] ( t - t , ) .  -FT C 
Q F  

(4.5c) 

(4.5d) 

When  the direct solution of (1.1) was computed in single 
precision  some of the eigenvalues  of  the  solution  matrix  became 
negative  and the  solution blew  up at  time t = 221.4 s. Moreover, 
even  the  closed-form  solution (4.5) blew up  since  the  matrix B 
was  nearly singular. However, when the new algorithm was  used 
to  solve (1 . 1), a solution  was obtained  at any desired point prior  or 
beyond 221.4 s. At  time tf = 100 s, for  example, the  result  was 

I 1 0.33E-05 0.77E-07 0.82E-04 0.15E-08 O.llE-08 
0.77E- 07 0.30E-  08 0.49E-05 0.87E- 10 0.65E- 19 

P y  = 0.82E-04  0.49E-05  0.17E-01  -0.45E-07  -0.35E-07 . (4.6) 
0.15E-08  0.87E- io -0.45E-07  0.21E- 10 -0.63E- 12 
0. l lE-08 0.65E- 10 -0.35E-07  -0.63E- 12  0.15E- 10 
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To demonstrate that this is indeed the solution, the value of Pt, 
was computed at t/ - At and t/ + At and then a computation of 
Pr, was performed using 

(4.7) 

Next the value of Pv was used on the right-hand side of (1.1) to 
compute Pgand then an accuracy index was computed as follows: 

where the norm was the Euclidean norm. This computation 
yielded the result 

e= 0.4324E - 06. (4.9) 

The new algorithm yields the correct solution when the direct 
solution and the closed-form solution fail. This is again a distinct 
characteristic of square root algorithms. 

Finally, it should be noted  that the divergence of the direct 
solution is characteristic in certain problematic filtering problems. 
Such a case was purposely chosen for this example in order to 
demonstrate the performance of the new algorithm. 

V. CONCLUDING REMARKS 

In this paper we have presented an algorithm which yields, 
directly, the eigenfactors of the solution of the matrix Riccati 
equation (1.1). The algorithm consists of a set of differential 
equations which express the first time derivative of the eigenfac- 
tors in terms of the eigenfactors themselves and do not  use the 
solution matrix of (1.1). The algorithm handles distinct as well as 
multiple eigenvalues. The algorithm is basically a square root 
algorithm. We presented a version which is analogous to 
Bierman’s UDUT algorithm where V,  the orthogonal matrix of 
eigenvectors, is analogous to U, and A, the diagonal matrix of 
eigenvalues, is analogous to D. We presented also a full square 
root version in which S rather than A is  used where S is a diagonal 
matrix of the positive square root of the eigenvalues. 

We presented two examples in which we  used the full square 
root version. Repeating these examples with the UDUT-like 
version, yielded similar conclusions. The examples showed  that 
the accuracy achieved using the new algorithm in single precision 
resembles the accuracy obtained when using the direct solution in 
double precision. 

We developed a more concise version which used the ortho- 
gonality of the eigenvectors; however, that version had a lower 
accuracy and was, therefore, abandoned. 

Finally, we  used the eigenfactor solution to successfully 
develop a discrete square root fdter algorithm which  will be 
presented in a subsequent paper. 
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