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Abstract--Two new square root Kalman filtering algorithms 
are presented. Both algorithms are based on the spectral V -  A 
of the covariance matrix where V is the matrix whose columns 
are the eigenvectors of the covariance and A is the diagonal 
matrix of its eigenvalues. The algorithms use the covariance 
mode in the time propagation stage and the information mode 
in the measurement update stage. This switch between modes, 
which is trivial in the V - A  representation, increases the 
efficiency of the algorithms. In the first algorithm, which is a 
continuous/discrete one, the V and A 1/2 matrices are propagated 
in time in a continuous manner, while the measurement update 
is a discrete time procedure. In the second algorithm, which is 
a discrete/discrete one, the time propagation of the V -  A 1/2 
factors is performed in discrete time too, using a procedure 
which is similar to the one used for the discrete measurement 
update. The discrete propagation and the measurement update 
are based on singular value decomposition algorithms. The 
square root nature of the algorithms is demonstrated numerically 
through a typical example. While promising all the virtues of 
square root routines, the V -  A filters are also characterized by 
their ability to exhibit singularities as they occur. 

1. Introduction 
SOON AFTER the introduction of the Kalman filter (KF) (Kalman, 
1960; Kalman and Bucy, 1961), it has been recognized that 
numerical problems may arise in its implementation in practice 
(Bellantoni and Dodge, 1967; Potter and Stern, 1963). Basically, 
the problems stem from the use of short word-length computers 
to compute the covariance matrix in ill-conditioned cases. This 
led to the computation of non-positive definite covariance 
matrices, which often also resulted in divergence. To overcome 
these problems, square root (SR) algorithms were developed. 
The most popular SR method is Bierman's discrete time U-D 
algorithm (Bierman, 1976; Thornton and Bierman, 1975). The 
algorithm uses a decomposition of the covariance matrix into 
a U D U  r form where U is a unit upper triangular matrix and D 
is a diagonal one. At each measurement instant, U and D are 
updated and propagated between measurements. 

This paper introduces two new discrete-time square root 
V - A  algorithms; namely, a continuous/discrete (continuous 
time update/discrete measurement update) and a dis- 
crete/discrete algorithm. The continuous/discrete algorithm 
relies upon the results presented in Oshman and Bar-Itzhack 
(1985a), combining the continuous time update method 
developed there with a new, discrete, measurement update. In 
the discrete/discrete version a new discrete time update is 
presented. The new algorithms employ singular value decompo- 
sition (SVD), for which there exist today effÉcient and stable 
algorithms. 

*Received 14 August 1985; revised 14 February 1986. An 
original version of this paper appears in the 24th I E E E  Conf. 
Dec. Control, Ft. Lauderdale, Florida, December 11-13, 1985, 
pp. 1640-1645. © 1985 IEEE. This paper was recommended 
for publication in revised form by Associate Editor J. Mendel 
under the direction of Editor H. Kwakernaak. 

-I- Department of Aeronautical Engineering, Technion - Israel 
Institute of Technology, Haifa 32000, Israel. 

From a computational viewpoint, the new algorithms pre- 
sented in this paper are more complex than other SR procedures 
that exist today. This is so because of the reliance upon 
the SVD technique (as opposed to more efficient orthogonal 
transformations, on which other SR algorithms are based). 
Nevertheless, the new algorithms may be of great importance 
in certain applications, e.g. where loss of accuracy due to harsh 
numerics is expected, or where continuous monitoring of the 
eigenfactors is necessary in order to reveal singularities as they 
occur and to identify those state subsets that are nearly 
dependent (Bierman, 1977, p. 100; Lawson and Hanson, 1974, 
p. 72). It is believed that as the SVD is becoming today a tool 
of primary importance in control theory, further research will 
eventually lead to the development of new SVD algorithms of 
higher efficiency, to the benefit of the new V - A  filters. 
Moreover, with the rapid emergence of very large scale inte- 
gration (VLSI), new parallel computing structures have been 
introduced for efficient, real time implementation of matrix 
arithmetic algorithms such as Cholesky decomposition, eigen- 
value decomposition etc. (Ahmed et al., 1982). It is anticipated 
that the power of the new technology will be used to develop 
special purpose processor arrays that will perform the SVD 
faster and more cheaply than the conventional general purpose 
single processor computer. 

2. Discrete-time V -  A measurement update. 
In the ensuing, the following notation will be used to describe 

the measurement equation: 

Yk = HkXk + Vk, (2.1) 

where Yk 6 Rm, xk E R", and v k is assumed to be a zero-mean white 
sequence with covariance Rk. 

The measurement update problem is as follows: given the SR 
factors Vk+ l/k and "*k+l/kAl/2 o f  Pk+ l/k, where Vk+ t/k is the eigen- 
vectors matrix at time tk+t given observations up to and 

A1/2 is the diagonal matrix of the square including time tk, ' 'k+ 1/k 
roots of the eigenvalues, and Pk + 1/k = Vk + t/kAk + t/k VXk+ t/~' com- 
pute the a posteriori square root factors, namely: Vk+ I/k+ 1 and 
Al/2k+l/k+l,  without computing explicitly the covariance Pk+llk 
(i.e. no "squaring" of the factors is permitted in order not to 
lose the square root characteristics of the method). The solution 
to the measurement update problem is summarized as the main 
result in the next theorem. 

Theorem 1. Measurement  update o f  the spectral factors  
Given: the time propagated factors V k + t~k and Akl/+2 t~k of PR +llk 

(which is assumed to be positive definite), the measurement 
matrix H k + 1 and the non-singular measurement noise covariance 
matrix R k + 1, define the augmented matrix A k + 1 as follows: 

A z~ r l /  A - 1 / 2  g / T  1~ - T/2q (2.2) 
k + l - -  LVk+l/k+*k+l/k AAk+l"Xk+l  A, 

and perform a singular value decomposition of it: 

(2.3) 
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then the measurement updated spectral factors Vk+~/k+ : and 
A~ + ~ ~ ~ are obtained as the following result of the SVD: 

Vk+l,~. , = Ya+~ (2.4a) 

1 ' 2 Ak~ ,k+ = gk+~l. (2.4b) 

I Y~+~ is an n x n orthogonal matrix whose columns are the 
eigenvectors of Ak, 1Ak~+ 1, and E~ + 1 is an n x n diagonal matrix 
whose entries are the singular values of Ak+ 1, i.e. the positive 
square roots of the eigenvalues of A~+ ~A[+ 1.) 
Pro@ Write the measurement update equation in the "'infor- 
mation form": 

I ~ p - I  1 1 Pk+l,~+l k+~,,~ + Hk+~Rk.~Itfk+l. (2.5) 

Using the spectral factors of P, (2.5) may be written as: 

Vk 4 1 , k + l A k + l , k + l V k + l k + l l  I 

I~ + ~,~A~+~,~,V~+1, ~ + Hk+IR~+IHk+IT 1 (2.6) 

and using the definition of Ak+~ from (2.2) it is easy to verify 
that 

A ~ V' = Ak+~A~+ (2.7) Vk+lk41 '~k+l ' k+l  k + l , k + l  1" 

In (2.7) A k +  1 is replaced by its SVD factors (2.3) to get 

~';.1 k+ ,Ak+~.k , ,V~+l ,k+ , -  Yk+lZk~lY/+~, (2.8) 

from which the result follows. 
Note that the new update algorithm is free of explicit 

equations, a fact that may be advantageous in certain implemen- 
tations. Rather, the algorithm is based upon the SVD technique. 
The latter is an extremely important  tool of modern numerical 
linear algebra (Klema and Laub, 1976), today it also plays an 
important role in linear control theory. As mentioned before, 
scveral efficient and reliable subroutines which compute the 
SVD are in use today in mathematical packages as L INPACK 
(Dongarra et al., 1979), EISPACK (Garbow et al., 1977) and 
others. Probably one of the best known algorithms for com- 
puting the SVD is the Golub Reinsch algorithm (Golub and 
Reinsch, 1970). This efficient algorithm was shown to be 
numerically stable. The stability stems from the fact that it is 
based on the orthogonal Householder and Givens trans- 
formations, which are famous for their numerical stability and 
accuracy (Golub and Van Loan, 1983). The new measurement 
update algorithm, which employs the SVD, inherits those 
excellent characteristics. 

To complete the SR update algorithm the algorithm for 
updating the state estimate must  be specified. The latter is 
the ordinary KF algorithm; consequently, what is left to be 
determined is how to compute the filter gain using the square 
root factors. This may be done in two ways, as follows. 

Define the matrix Mk+ Uk+ 1 as 

= Wk+l,k+lHr+~, mk + I + 1 1 (2.9) 

where the square r o o t  Wk+l/k+ 1 is 

= l/, A 1/2 (2.10) ]/~k + l : k +  ] k+ 1,'k+ 1 k + l , ' k +  1" 

Then it is easy to see that the Kalman gain, based on the a 

posteriori factors, is 

Kk~ z = Wk+W,+~Mk+I/k+1Rk+~I. (2.1l) 

Note that in the conventional KF  algorithm there is no direct 
way of obtaining the gain using the a posteriori covariance 
matrix, G+ ~,.k+ 1, because the computat ion of Pk+ l,.k+ 1 requires 
already the knowledge of the gain. 

An alternative formula for the computation of the gain based 
on the a priori factors is obtained as follows. Define the matrix 
J~V~k + l~k a s  

Mk+l,k = v "r ( 2 . 1 2 )  W k + l , k H k + l ,  

where the a priori square root Wk+ ~:k is defined analogously to 
(2.10). 

The Kalman gain K k ~ ~ is then 

Kt,÷ I = Wk+l,~:Mk.ljk(M~l/j, Mk+l!k + Rk+O 1. (2.13) 

The decision on whether to use (2.11) or (2.13) to compute K 
depends on the values of R~ + 1 and M~+ l:kMk + 1,'~ + Rk + ~. For 
example, (M[+ 1Mk+ 1 + Rk+ i) might be algorithmically singular 
in (2.13), in which case the use of (2.11) may be the only way of 
computing the gain reliably; or, on the other hand, Rk~ ~ may 
be very "small" in (2.11), so that the gain computat ion using 
(2.1 l j might lead to amplification of numerical noise in the state 
measurement update, while the use of (2.13) poses no problem. 

Finally, in the next theorem an algorithm for the measurement 
update when a suboptimal gain is used is outlined. 

Theorem 2. Measurement update ¢~ the spectral .factors using 
general (not necessarily optimal) gain 

Given the time propagated factors Vk+ ~,k and A~+21a ofPk+ ~,~, 
the measurement matrix ttk+ ~, the non-singular measurement 
noise covariance Rk+~ and the gain matrix /(k+~ (which may 
be suboptimal), define the augmented matrix Bk+ ~ as 

Bk+ ~ =± [(1 -- Kk+#tk+OVk+~,kA~/+2t.kIK, Vd+ ~RkT,]"~ (2.14) 

and perform a singular value decomposition of it 

Bk., = Pk+,[Zk+, 1012~+,, (2.15) 

then the updated factors are 

Vk+l'k '  1 = Y k + l  (2.16a1 

A~21/k* l  -- ~ +  1. (2.16b) 

The derivation of this algorithm follows from the Joseph form 
update (Maybeck, 1981): 

P~+,k+l = E1 - Kk+ IHk~ 1]Pk. 1k[l -- K'k+ fftk+,]~ 

+ kk + -x (2.17t ,Rk+ 1Kk+ 1 

along the same lines of the proof of Theorem 1. 
In Oshman and Bar-I tzhack (1985b) three well known examples 

are presented where it is shown analytically that the above 
discrete V - A measurement update algorithm has the accuracy 
and numerical stability characteristics of an SR routine. 

Having obtained the algorithms for the gain computation, 
the new measurement update algorithm is complete. To form a 
complete estimator, this result has to be tailored to a time 
update algorithm. This is done next. 

3. V A square root.filtering 
In this section two versions of the V - A  SR filter are 

presented. They are the continuous/discrete and the dis- 
crete/discrete filters. 

A. The continuous~discrete SR .filter. The time update of the 
state estimate is similar to that of the ordinary KF, which poses 
no problem that the SR algorithms are intended to solve. The 
time update of the covariance matrix consists of the slution of 
the following Lyapunov equation 

P(t) = F(t)P(tl + P(t)F(t) ~ + Q(t), (3,1a) 

with the initial condition 

P ( t k ) -  Pk/k" (3.1b) 

Its V-- A solution is a special case of the V - A solution of 
the matrix Riccati equation (Oshman and Bar-l tzhack,  1985a). 
The resulting algorithm is presented in Table 1, where the 
complete continuous/discrete algorithm is summarized. 

Next a discrete/discrete estimation algorithm is derived, in 
which the time update stage is also performed in a discrete 
manner. 
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TABLE 1. THE CONTINUOUS/DISCRETE V--  A FILTER ALGORITHM 
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System model 

Measurement model 

Initial conditions 

State estimate 
time update 

V -  A ~/z time update 

V -  A 1/2 
measurement update 

State estimate 
measurement update 

Kalman gain matrix 

x(t) = F(t)X(t)  + G(t)w(t); E{w(t)} = O; E{w(t)w(s)  ~} = Q(t ) f ( t  - s) 

v(t~) = H(tk)x(t~) + V(tk); e{v(t,)} = O; E{v(t~)v(tl) r} = R(tk)6 u 

~o = E[x(0)], Po = E[(x(O) -- RoXx(O) -- Ro) T] 

~(t) = F(t)~(t); t ~ I ts ,  t k + i] 

~(t)  = ~1~; x~+ ~i~ = ~(t~ + ~). 

l 1 { S(t) = ~F( t )S( t ) -  S(t)~_ A(t) Uz 

(/(t) = V(t)-Q(t) 

F(t) = diag[)h l ( t) ,  722(t)  . . . . .  ~nn(t)] 

?/i(t) = v'f(t)Tii(t)vi(t) 

Ti,(t ) = s2(t)[F(t) + F(t) T] + G(t)Q(t)G(t) T 

Yiq(t) for 
s~(t) ~ - s~(t) ~ 

f2q,(t) = 0 for 

D.m,~sign~" 7~(t) ~ for 
[s,~t) ~ - s~(t) ~ )  

71.(t) = V~q(t)Tiq(t)vi(t) 

T~q(t) = s~t)2F(t) + s,(t)ZF(t) T + G(t)Q(t)G(t) ~ 

a~+ 1 z~ r~,' A-l/2 
- -  L,,~ + llk,',~ + ll,~ l H,~ + l R f + ~  2] 

~,(t) < f~m~ 
si(t) 2 - sq(t) 2 

s~(t) = s~(t) 

y~(t) 
si(t)2 _ sq(t)2 >1 ~"~max 

SVD 
Ak+~ Y~+1UX~+al T -~ 0]Z~ ÷ 

Read: Vk+l/k+ 1 Yk+l;  A1/2 = " 'k+l/k+l  = Ek+ll 

£k+ Uk+ I = Rk÷ Uk + Kk+ l[Yk+ i -- nk+ l~k+ 1/k] 

a poster ior i  
-1  

Kk+ 1 = W k + l / k + l M k + l / k + i R k +  1 
where 

v A l l  2 
W k + l / k + l  ~ Vk+l/k+l'~k+l/k+l 

Mk + 1 = W~+ Uk + 1H~+ 1 

a priori  

Kk ~- 1 = Wk + l /kMk + l/k(M~+ 1/kMk + 1/k + Rk + 1)-  1 

or ~ where 

5/2 
I Wk+ l/k : Vk+ l/kAk+ l/k 

[ Mk  + 1/k = W~+ ut, H[+ 1 

B. Discre te /d i scre te  S R  f i l ter.  As in the continuous/discrete 
version, the time propagation of the state estimate using 
the ordinary KF  algorithm poses no problem which the SR 
algorithms are intended to solve. Therefore, the ordinary KF  
algorithm for propagating the state estimate can be used either 
in its discrete or even in its continuous version. Again, the 
problem is in propagating the V -  A factors of the covariance 
matrix. The algorithm for doing that is formulated in Theorem 
3, 

Theorem  3. 71me upda te  o f  the spec tra l  f a c t o r s  
Given the measurement updated factors Vk/k and 1/2 Ak/k of P~/k, 

the state transition matrix ~k, the input gain matrix G k and the 
process noise covariance Qk, define the augmented matrix/~k as 

t~k 1/2 = [(~kVk/kAk/k I GkQ 2/2] 

and use an SVD routine to decompose -4k into 

(3.2) 

"~k = ~[~'k 10]Z-/k, (3.3) 

then the time updated factors of Pk+ ~/k are 

Vk + l/k = Yk (3.4a) 

Au2 •k. (3.4b) k + l/k 

Proof .  The time update equation, using the spectral factors, is 

T T T Vk+ ~/kAk+ ukVk+ 1/k = ~kVk/kAk/kVk/kfbk 

+ GkQkG~. 

Using the definition of Ak from (3.2), (3.5) becomes: 

(3.5) 

T A k ~  
Vk + I/kmk + l/k Vk + Ilk = 

which, replacing Ak by its SVD factors (3.3), gives 

(3.6) 

- -  2--T Vk+ 1/~A~+ 1/kV[+ 1/~ = YkZk Y~ 

and the result follows. 

(3.7) 

When the foregoing discrete time propagation is augmented 
with the discrete measurement update algorithm presented in 
Section 2, a complete discrete/discrete V - A  SR filter is 
obtained. This algorithm is summarized in Table 2. 

C. Discussion. As mentioned before, relying upon the SVD 
technique, the new V - A  filters suffer from a higher com- 
putational cost than other existing SR filtering algorithms. Thus, 
using the Golub and Reinsch SVD algorithm (1970), the time 
update and the measurement update of the V - A  factors in 
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TABLE 2. THE DISCRETE/DISCRETE V -- A FILTER ALGORITHM 

System model 

Measurement model 

lnitial conditions 

State estimate 
time update 

SVD processor 

F -  A 1/2 
time update 

V -  A 1i2 

measurement update 

State estimate 
measurement update 

Kalman gain matrix 

Yk ~ H k X k  + Vk,E.lyk/'l ) = O; E{VkVl r} = Rk(~kl 

% = E[X(O)], Po = El(x(0) - %Xx(0) - %)T] 

Xk + 1/k = (~)kXk/k 

SVD 
Ak -~ Y~[Xk I O]Z~ 

where AkCR . . . . .  , Yk~R"'", Zk~R "'~. 

input: Ak; output: Yk,Zk 

Use the SVD Processor with the input: 

Ak 1,'2 = [ %  K,kA,,,, I GkQ~'2] e R . . . . .  

Read: V~+l/k = Yk 

A~',?~,k = Xk 

Use the SVD Processor with the input: 

Ak 1/2 T -T/2 +m = [Vk+L.~Ak+I.k]Hk+IRk+ 1 ] e R  "'° 

Read the results: 

1,'2 

~'k* lik* I = X k * l / ~ . + K k ~ l [ Y k + l  Hk ~ l~k*  l/k] 

a posteriori 
- 1  Kk.  1 = W~ + l,k+ lMk .  ~,k+ lRk+~, 

where 

= V k + l , k + l A k + l , k +  1 Wk+ l & ± l  1,2 

a priori 

t Kk.  1 = Wk*l.kMk+l,k(M~+ kMk* k + Rk*l) I 
where 

or 
W = v~, 1,,2 k+ t,k 1 ,kAg+ 1/k 
Mk.l:~ W~, H T 1/k k + 1 

Note: the algorithms appearing in Tables 1 and 2 assume white measurement noise that is uncorrelated with the process noise. 

the discrete/discrete filter require both O(6n 3) flops* (Golub and 
Van Loan, 1983), while Bierman's U - D  algorithm requires O(n 2) 
flops for the measurement  update of the U-D factors (Bierman, 
1976) and O(l.5n 3) flops for the time update (Thornton and 
Bierman, 1975). However, in view of the new hardware devel- 
opment, mentioned in the introduction, it is believed that the 
additional computat ion required by the new algorithm will be 
of no concern. 

It is of interest to note that the V -  A SR filters presented 
above are hybrid type filters, which utilize alternately the 
covariance mode (in the time update stage) and the information 
mode (in the measurement  update stage). Thus, because of the 
operation in both modes, the new filters possess the advantages 
of the covariance and information filters. These advantages are: 
the ability to cope with the case of infinite initial covariance (no 
initial information), the efficiency of the covariance formulation 
in processing time updates and the efficiency of the information 
formulation in processing measurement updates. Moreover, 
because of the duality between the discrete time update of the 
covariance factors and the discrete measurement update of the 
information matrix factors, the fact that the V - A filter operates 
in both modes implies algorithmic equivalence between the 
procedures used in the two stages of the filter (as can be seen 
by comparing the measurement update of Section 2 with the 
time update of this section). This equivalence introduces a saving 
factor in the implementation of the filter, because both stages 
actually use the same algorithm. This fact is also valuable for its 
simplification of the error analyses of specific implementations. 

* A flop is roughly the amount  of work needed to carry out 
the FORTRAN statement: S = S + A(1, K).B(K, J)(Golub and 
Van Loan, 1983). 

4. Filtering example 
In this section results of a simple filtering example are 

presented. The purposes of this are (a) to demonstrate that the 
new V A algorithm works satisfactorily and (b) to demonstrate 
the superior numerical stability and accuracy of the new 
algorithm when compared to the conventional KF  algorithm. 
Example 4.1. The dynamic system is that of a simplified single 
channel Inertial Navigation System (INS) error model which is 

: IE (I Iil d ~ 0 ; J  L~ 0 , (4.1a) _ = + ; : .  , 

dt R - ~ t~ 

where earth gravity, g, is 9.81 m s-2 and the reciprocal of earth 
radius, R - I ,  is 0.157E 6 m  J. The states @, 6t, and 4~ are, 
respectively, position, velocity and tilt errors. Finally, e, and ~:0 
are, respectively, accelerometer and gyro generated white noise 
components  whose mean is zero. The measurement equation is 
taken as 

L04,0 001 i:, l +, 
zk= 0.0 l.o 0.0 LOJ~ 

where n k is the measurement zero mean white noise, whose 
covariance is 

R k diag[0.008 0.008]. 

Equation (4.1 a) is propagaled at 0.1 -s steps, thus the discrete dynamic 
equation obtained from (4. I a) is 

Xg + l -- ~kXk + ~k, 
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where 

0.0 1.0 -0.04905- 
~k = 0.0 1.0 -0.981 

.0 0.157E-7 1.0 

The vector e~ is a zero mean white sequence, whose covariance 
matrix Qk is chosen as 

Qk=diag[0.0 0.2E-9 0.15E-15]. 

The initial estimation error covariance matrix is chosen to be 

Po = diag[0.25E + 5 0.12E + 5 0.12E + 5]. 

The initial state is 

Xo r = [5.0 1.0 0.273E-1] 

error of 6p is shown, as obtained by the three filters. As can be 
seen from this figure, the conventional filter loses all numerical 
significance in the first time points, which results in negative 
variances (the corresponding square roots are plotted as negative 
values in Fig. 1). In Fig. 2 the time history of the absolute value 
of the estimation error of 6p is shown. 

Finally, note that when the initial covariance is set to 

P0 = diag[0.25E + 9 0.12E + 9 0.12E + 9], 

the conventional KF cannot handle this relatively large initial 
covariance because of an algorithmic singularity which occurs 
in the term [HoPoH~ + R0] (which has to be inverted during 
the computation of the Kalman gain). Using the V - A SR filter, 
however, such initialization problems are not encountered, since 
the covariance factors are updated independently of the gain, 
and the gain itself can, this time, be computed using the a 
posteriori factors (see the discussion in Section 3). 

and its initial estimate is chosen to be 

%x= El.0 0.5 0.005]. 

The discrete F - A  filter and the discrete conventional KF 
are both used to obtain an estimate ik of xk. The simulation is 
run taking measurements at a rate of 10s-1. The F - A  filter 
is used in single precision (SP), while the conventional filter is 
run both in single and in double precision (DP). As expected, 
the results obtained by the F - A filter in SP are almost identical 
to those obtained by the DP  version of the KF. On the other 
hand, the SP version of the conventional filter results in negative 
entries on the covariance main diagonal, which in turn results 
in a very large estimation error during the first updates. In Fig. 
1 the time history of the standard deviation of the estimation 

5. Conclusions 
In this paper two new V - A  square root filter algorithms 

were presented. Only the case of vectorial updating was pre- 
sented since the scalar updating is merely a special case of the 
former. It should be noted that in some other SR routines one 
can perform scalar updating only, while here one has the choice 
of performing either one. 

A simple filtering example was also presented which indicated 
that the new filter algorithm works satisfactorily, and dem- 
onstrated its superiority over the conventional KF  algorithm. 

Acknowledgement The authors express their gratitude to Dr. G. 
J. Bierman, President of FEA Inc. for a valuable discussion and 
comments, and for his suggestion of the measurement update 
algorithm in the case of suboptimal gain. 

40 

30 

- I  

20 

I0 

- 2 0  

- 3 0  

- 4 0  

I I I I I I 
I 2 3 4 5 6 

I I I 
7 8 9 

T i m e  (s  x 0 . 1 )  

FIG. 1. Standard deviation of the estimation error of 6p. (The 
solid line is for the conventional KF  in single precision. The 
broken line is for the V -  A filter in single precision and for the 

conventional KF  in double precision.) 

1 
IO 



6(14 Brief Paper 

1.0 

0 9  

0 8  

0 .7  

0 . 6  

~" 0 5  

0.,4 

0 .3  

0 2  

O. 

\ 

To 6 6 . 4 7 9  

\ 

I 
I I [ I 

I 2 3 4 5 

To 32.385 

t - ~ - L . _ _  

I I ~ - - ' ~  I 1 [ 1 I [ 
6 7 8 9 IO II 12 13 14 15 

Time (s xO. I )  

FIG. 2. Absolute value of the estimation error of 6p. (Th~ solid 
line is for the conventional KF in single precision. The broken 
line is for the V - A  filter in single precision and for the 

conventional KF in double precision.) 

Re[erences 
Ahmed, H. M., J. M. Delosme and M. Morf (1982). Highly 

concurrent computing structures for matrix arithmetic and 
signal processing. Computer, 15, 65. 

Bellantoni, J. F. and K. W. Dodge (1967). A square root 
formulation of the Kalman-Schmidt  filter. AIAA J, 5, 1309. 

Bierman, G. J. (1976). Measurement updating using the U-D 
factorization. Automatica, 12, 375. 

Bierman, G. J. (1977). Factorization Methods for Discrete Sequen- 
tial Estimation. Academic Press, New York. 

Dongarra, J., J. R. Bunch, C. B. Moler and G. W. Stewart (1978). 
LINPACK Users Guide. SIAM Publications, Philadelphia. 

Garbow, B. S., J. M. Boyle, J. J. Dongarra and C. B. Moler (1972). 
Matrix Eigensystem Routines: EISPACK Guide Extension. 
Springer Verlag, New York. 

Golub, G. H. and C. Reinsch (1970). Singular value decompo- 
sition and least squares solutions. Numer. Math., 14, 403. 

Golub, G. H. and C. F. Loan (1983). Matrix Computations. 
Johns Hopkins University Press, Baltimore, Maryland. 

Kalman, R. E. (1960). A new approach to linear filtering and 
prediction problems. Trans. ASME J. Basic Engng, 82D, 34. 

Kalman, R. E. and R. S. Bucy (1961). New results in linear 
filtering and prediction theory. Trans. ASME J. Basic Engng, 
83, 85. 

Klema, V. C. and A. J. Laub (1976). The singular value 
decomposition: its computation and some applications. IEEE 
Trans. Aut. Control, AC-25, 164. 

Lawson, C. L. and R. J. Hanson (1974). Solving Least Square~ 
Problems. Prentice-Hall, Englewood Cliffs, New Jersey. 

Maybeck, P. S. (1979). Stochastic Models, Estimation and Control. 
Vol. 1. Academic Press, New York. 

Oshman, Y. and I, Y. Bar-Itzhack (1985a). Eigenfactor solution 
of the Riccati equation a continuous square root algorithm. 
IEEE Trans. Aut. Control, AC-30, 971. 

Oshman, Y. and I. Y. Bar-Itzhaek (1985b). New I /A square 
root filter. TAE Report No. 576, Technion-Israel Institute ot 
Technology, Haifa, Israel. 

Potter, J. E. and R. G. Stern (1963). Statistical filtering of space 
navigation measurements. Proc. AIAA Guid. Control Conf. 

Thornton, C. L. and G. J. Bierman (1975). Gram-Schmidt  
algorithms for covariance propagation. Proc. IEEE Con[~ 
Decis. Control, 489. 


