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A novel sensor selection strategy is introduced, which can be
implemented on-line in time-varying discrete-time systems. We
consider a case in which several measurement subsystems are
available, each of which may be used to drive a state estimation
algorithm. However, due to practical implementation constraints
(such as the ability of the on-board computer to process the
acquired data), only one of these subsystems can actually by
utilized at a measurement update. An algorithm is needed, by
which the optimal measurement subsystem to be used is selected
at each sensor selection epoch. The approach taken here at
solving this problem is based on using the square root V-Lambda
information filter as the underlying state estimation algorithm.
This algorithm continuously provides its user with the spectral
factors of the estimation error covariance matrix, which are used
in this work as the basis for an on-line decision procedure by
which the optimal measurement strategy is derived. At each sensor
selection epoch, a measurement subsystem is selected, which
contributes the largest amount of information along the principal
state space direction associated with the largest current estimation
error. A numerical example is presented, which demonstrates the
performance of the new algorithm The state estimation problem is
solved for a third-order time-varying system equipped with three
measurement subsystems, only one of which can be used at a
measurement update. It is shown that the optimal measurement
strategy algorithm enhances the estimator by substantially

reducing the maximal estimation error.
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1. INTRODUCTION

In many engineering situations, a variety of
possible measurements can be carried out on a
dynamic system, whose state is of interest. These
measurements may serve to drive a computational
state estimation scheme (like the Kalman filter or its
variants). For example, in large space structures (LSS),
it is possible to use cheap, easy to mount piezoelectric
sensors in a highly distributed fashion in many (or
all) components of the flexible structure. Because
LSS are continuum structures which require large
dimensional models, a highly distributed measurement
system may be of a great importance, especially when
stringent requirements of shape, orientation, vibration
suppression and pointing accuracy are imposed.
However, in practice, some physical constraints will
prohibit the usage of such a system to its full capability,
i.e., only a limited subset of all sensors installed in the
structure could actually be used at cach measurement
epoch. Thus, for example, the computational burden
associated with the on-line processing of too many
measurements may require computing resources that
may not be available (taking into consideration the
fact that the on-board computer will, most probably, be
busy with other tasks, such as computing control gains,
etc.). In some other instances, when the measured
signals have to be transmitted to the processing unit
using a (possibly time-shared) communication link,
this link may have band limitations that may dictate
the communication of only a limited set of all the
information acquired. Thus, it is seen that in some
cases the question may arise as to which subset of
measurements, out of all measurements available at
a particular time, should be used by the on-board
computer to drive the estimation algorithm, such
that a certain optimality criterion is satisfied. The
research reported herein is involved with this
question.

The dynamic system considered here is modeled
by a lumped-parameter time-varying, discrete-time
mathematical model. The measurement system consists
of a set of discrete-time subsytems, not all of which
can be used at the same time. It is required that
the algorithm for determining the optimal sensor
selection strategy be an on-line algorithm, in order to
accommodate systems whose time-varying parameters
cannot be predicted very reliably before the mission
(e.g., LSSs, whose in-space behavior cannot be assessed
accurately based on very limited on-Earth testing). The
criterion for determining the optimal measurement
strategy is derived out of optimum state estimation
requirement.

The optimal measurement strategy problem
has been addressed in the past by several authors,
although none of them has dealt with the case of
on-line strategy determination. In [3, 11], the case
of measurement subsystems, that had costs associated
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with their usage at each time, was considered. The
problem was formulated as a general optimization
problem with a cost functional which involved the
trace of the estimation error covariance matrix,
and was solved using the matrix minimum principle.
This led to the formulation of a complex, nonlinear,
two-point boundary value problem, which can be
solved practically only off-line using methods such
as Kelley’s min-H technique [12]. This, in turn,
means that the method is not suitable for use in
time-varying problems, in which the grounds for
determining the optimal measurement policy are
not known in advance. Meier, et al. [15] treated

the control of measurement subsystems within a
stochastic feedback control system, using a dynamic
programming approach. This approach yielded a
nonlinear, deterministic, optimal control problem.
A somewhat related problem of optimally allocating
sensors in a distributed-parameter system was treated
in [1, 6, 18], however, in these cases an off-line
solution for the (time-invariant) optimal location of
sensors in the system was determined.

A different approach is taken here, which alleviates
the computational burden problem and facilitates
the implementation of the algorithm in on-line
applications. The proposed method is based on
the square-root (SR) solution of the estimation
problem using the covariance spectral factors [17].
Most commonly, the main motivation for using an
SR estimator stems from its excellent numerical
characteristics, which are superior to those of the
conventional Kalman filtering algorithm. In our case,
however, another motivation for using a special SR
formulation (based on the spectral decomposition
of the estimation error covariance matrix), called
the V-Lambda algorithm, stems from the fact that
this SR algorithm provides the spectral factors of
the estimation error covariance continuously as the
estimation process evolves in time. Thus, the user
is provided with an invaluable physical insight into
the estimation process [10]. Using the information
obtained from the spectral factors, a decision algorithm
may be derived, by which the measurement strategy
problem can be easily solved using the on-board
computer in an on-line fashion.

In the next section the mathematical model of the
discrete-time system under consideration is defined,
and the optimal measurement strategy problem
is formulated within the framework of the given
mathematical model. Since the measurement strategy is
determined using the V-Lambda SR filtering algorithm
as the underlying estimation technique, this algorithm
is detailed for completeness in Section III. The optimal
measurement strategy algorithm is next derived in
Section IV, followed by a numerical example in
Section V. Some concluding remarks are offered in
Section VI.
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Il. PROBLEM FORMULATION

In the ensuing, the following notation is used to
describe the discrete-time stochastic process whose
state is to be estimated:

Xi+1 = Fixi + Gywy. 1)

Here x; € R” is the state vector, {wx} € R? is a
Gaussian white sequence with zero mean and
positive definite covariance Q, and F; € R™" is the
state transition matrix. It is assumed that the initial
condition random vector xg has a Gaussian distribution
with mean ¢ and positive definite covariance Pp.

The state of the system can be observed through
any one of the following M measurement subsystems:

vi=Hix+v, j=12..M @

where y] € R™ is the measurement vector of the jth
measurement subsystem at time #, {v,’c} € R™ is the
Gaussian white noise sequence of the jth measurement
subsystem with zero mean and positive definite
covariance R;, and H] € R™ is the measurement
matrix associated with the jth measurement subsystem.
It is further assumed that the measurement noise
(associated with each of the measurement subsystems),
the process noise, and the initial condition random
vector are not correlated.

Having defined the mathematical model of the
system under consideration, we now state the optimal
measurement configuration strategy problem which is
addressed in this work.

A. Problem Statement

Suppose that at each measurement update epoch
only one measurement subsystem can be utilized
(because of physical constraints such as those
mentioned in the Introduction). The problem is to
determine an optimal sensor selection strategy (a
sequence {j(#)}), which specifies which measurement
subsystem (designated by its serial number j) is to be
used at the measurement update epoch #, such that
a certain estimation optimality criterion is satisfied.
Before presenting the optimality criterion chosen, the
following well-known facts from estimation theory are
recalled [7].

Since we are dealing with a linear dynamic system
whose inputs (the process and measurement noises), as
well as the initial state random vector, are assumed
to be Gaussian distributed, the probability density
function (pdf) of the state estimate (conditioned on
the measurement history) is also Gaussian [14]. This
pdf is characterized by a quadratic form involving the
estimation error and the error covariance matrix; thus,
if the estimation error at f; given the measurements up
to and including #; is defined as

/i =Xk — Ry
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and the associated error covariance matrix is Py, this
quadratic form is

Onyj =%y P/ %es
and O/, can be used to calculate an equi-error
ellipsoid in state space, which describes the
geometrical distribution of the “quality” of the state
estimate; the semiaxes of the error ellipsoid have
lengths equal to the square roots of the eigenvalues
of the covariance matrix, and the orientations of these
axes (the principal axes) in state space are given by
the covariance matrix eigenvectors. Thus, if Vi /; is
the matrix formed by taking the eigenvectors of the
covariance Py; as its columns, and the following
linear transformation is defined

X = Vk/]’zk

then the estimation error covariance matrix
corresponding to the transformed vector z; is the
diagonal matrix of the eigenvalues of Py, ; (the error
covariance of xi). Therefore, each eigenvalue of the
covariance matrix is an estimation error varjance
along a principal direction in state space, which is
uncorrelated with all other principal directions and
is defined by the corresponding eigenvector (i.c., this
principal direction is one of the axes of the error
ellipsoid). Moreover, the eigenvector corresponding to
the largest eigenvalue of the covariance matrix (whose
value is the length of the largest semiaxis of the error
ellipsoid) defines the direction in state space along
which the quality of estimation is the poorest.

With these basic ideas on hand, the optimality
criterion which is used in the sequel is stated next.

B. Optimality Criterion

At each sensor selection epoch, the objective of
the proposed algorithm is to maximize the amount
of information (contributed to the system by the
measurement) along the state space direction
associated with the maximal estimation error.

In light of the preceding discussion, the meaning
of the optimality criterion as stated above is that
the measurement system is chosen according to
its information contribution along the state space
direction defined by the eigenvector (or, more
generally, eigenvectors) corresponding to the largest
eigenvalue. Since the solution to the problem can be
most naturally presented within the framework of
the V-Lambda SR filter, this estimation algorithm is
outlined next.

[ll. DISCRETE-TIME V-LAMBDA ESTIMATION
ALGORITHM

In this section the discrete-time (information modc)
V-Lambda estimation algorithm is described (for
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derivation see [17]). Complying with the conventional
discrete-time Kalman filter style, the algorithm consists
of two subalgorithms, namely, the measurement-update
(which incorporates the new information contained

in the most recently acquired measurement into the
estimation process), and the time-update algorithm (by
which the state estimates, along with the estimation
error covariance matrix, are propagated in time
between measurement epochs). However, contrary

to the Kalman filter (and similarly to other SR
algorithms), the covariance matrix is replaced in

the V-Lambda algorithm by its factors, which are
chosen, in this specific case, to be the spectral factors:
V, the matrix whose columns are the covariance
eigenvectors, and A, the diagonal matrix whose entries
are the covariance eigenvalues (other SR estimation
algorithms are based on other SR factorizations of

the covariance, such as the U-D factorization [5] and
the QR factorization [8]). Both update levels of the
algorithm are presented below.

A. V-Lambda Measurement Update Level

The measurement update problem is as follows.
Given the SR spectral factors Vj,_1 and A;/lk/ 31 of

the a-priori information matrix Pk‘/L_l at f, where
Pyjk-1 is the a-priori estimation error covariance,
Vijk—1 is the eigenvector matrix, Ay k-1 is the diagonal
eigenvalue matrix and Pk/k—l = Vk/k~1Ak/k—1VkT}k_1s
and given the a-priori normalized state estimate d; Jk=1
(defined below in (4)), compute the a-posteriori SR
factors Vi and A,:/lk/ 2, and the updated normalized

estimate &k Jks defined as
-1/2 R
dus = Mg Ve e )

Before stating the measurement update algorithm,
it must be noted that, since in our case there exist M
measurement subsystems from which we can choose
only one at each measurement update epoch (or, more
generally, at each sensor selection epoch), the results
of the measurement update will vary according to
which subsystem was active at the particular update
epoch. However, for each measurement subsystem,
predetermined before the actual update takes place,
the measurement update algorithm described below is
the optimal (minimum variance, unbiased) algorithm
which is algebraically equivalent to the Kalman
filtler update. We assume, therefore, that the jth
measurement subsystem was chosen to be active
in the measurement update at time ;. The actual
measurement update algorithm is summarized below.

Given the time propagated factors Vy/x—1 and

-1/2
Ak/lf—l’

Ry and the a-priori normalized estimate d;/;_, where

the nonsingular measurement noise covarjance

. —1/2 .
diji—1:= Ak/k/—leT/k—lxk/k"l Q)
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and assuming that the jth measurement subsystem is

active, define an augmented matrix 4; € R**™" as
~1/2 T
A V,
k/k=1"k k-1
A= s 3
R, H;

and perform a singular value decomposition (SVD) of
it to obtain
Tk op
A =Y 0 U;. 6)
Then, the measurement updated spectral factors are
related to the SVD factors of A4, as follows

Vi = Ur (7a)
-1/2
AL = (7b)
Moreover, define by, as
&k/k—l
be=| i ®
Ry ¥

and premultiply it by YkT; then, partitioning the
resulting vector in accordance with the partition of by,
the updated normalized estimate is found as follows

ak/k]
€k

Y= | ©)
where the m-vector e, is the estimation residual

(the innovation) [17]. (Note: ¥}, € R**™»"*™/ and

Ur € R™" are the orthogonal matrices of the left and
right singular vectors of Ay, respectively, and £ € R™"
is a diagonal matrix whose non-zero elements are the
singular values of A). The time-update algorithm is
independent of the particular measurement subsystem
used, and is therefore the ordinary information mode
V-Lambda time-update, summarized below.

B. V-Lambda Time-Update Level

Given the a-posteriori SR information factors
Visi and A /%, where Pejic = Vigihi eVl the
nonsingular transition matrix F, the input gain
matrix G € R™? and the nonsingular process noise
covariance Qk € R”?, define the augmented array
Blc c Rn+p,n+p:

Qk-1/2

-1/2 -1
Ak/k/ VkT/kF © Gk

Bk = (10)

-1/2 -1
Ak VkT/ka

and perform a partial triangularization of it; that is,
find an orthogonal transformation 7 such that

M, Lk]
0 N

where M, € RP? is upper triangular. Proceed with an
SVD of Ny in (11) to obtain

Ny = Wi ZF

TBy = [ (11)

(12)
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where Wy, Z; are the orthogonal matrices of the left
and right singular vectors of Ng, respectively, and Sy is
the diagonal singular values matrix; then, the a-priori
eigenfactors at #; 41 are given by

Al =5 (132)
Vivie = Zk (13b)
and the time propagation of the state estimate is
performed according to
Kes1/k = Fifygi (14)

(which is the regular Kalman filter algorithm).

In the next section we show how the V-Lambda
estimation algorithm is utilized in a natural manner
as a means for determining the required optimal
measurement policy.

IV. MEASUREMENT CONFIGURATION USING
INFORMATION CONCEPTS

Reviewing the V-Lambda filtering algorithm
presented in the preceding section, it is clear that since
the eigenfactors (the eigenvalues and eigenvectors) of
the estimation error covariance matrix are serving as
the estimation variables (thus replacing the covariance
matrix itself), they are available to the user at each
moment during the estimation process. Hence, we can
make use of these variables without worrying about
having to diagonalize the covariance matrix (which
is precisely what we would have to do had we not
used the V-Lambda filter). However, before using
the eigenfactors, in order to distinguish between the
measurement subsystems according to the information
contributed by each one of them along the state space
direction associated with the maximal estimation error
(see the optimality criterion, Section II), the following
mathematical preliminaries are needed.

First, for each measurement subsystem, designated
by the couple (H, J ,R};), the measurement information
contribution matrix at time #; is defined as

Ji =H] R] He. (1)

This definition is based on the definition of the
information matrix for stochastic systems [13] and can
be reasoned as follows. Assume, for the sake of clarity,
that the system dealt with is a static system, i.e., the
state of the system is a constant (in time) random
vector. Then, if a sequence of N measurements are
taken (using a measurement system characterized

by the geometry matrix H; and covariance R;), the
information matrix at time # is given by:

N
Ly =P;' +> HIR;'Hy
k=1
which presents the total information of the system
at time ¢y as a sum of the a-priori information
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(represented by Py 1), and the contributions
{HTR;'H,}}_, to the total information made by
the measurement system at the measurement update
epochs %, k = 1,2,...,N.

Next, for any subspace £ C R" let E; be the
orthogonal projector onto this subspace, ie., E; is the
matrix representation of the linear transformation of
any vector x € R” into its orthogonal projection on L.
Also, we equip the vector space R™” formed by all real
n x n matrices (with the usual definitions of matrix
addition and multiplication) with the inner product
defined by the trace operator; that is, if A€ R™ and
B € R™", then their inner product is defined as [16]:

(A,B) := tr(BT A). (16)

With all this on hand, we now return to the
optimality criterion defined in Section IL. In order
to allow for eigenvalue multiplicities, we assume
that the n eigenvalues of Py (the covariance matrix
at £, the sensor selection epoch) take g different
values, denoted by {A1,)2,...,Aq}. Let the multiplicity
of ); be ;. Since Py is a symmetric matrix, the
geometric multiplicity of each eigenvalue is equal
to its algebraic multiplicity, that is, corresponding
to the eigenvalue ); (with algebraic multiplicity i)
there are p; linearly independent eigenvectors of Py.
These eigenvectors form a basis for the null space
of [P, — \il], denoted by N'(P, — A;I), which is the
eigenspace of Py associated with \;. Since we are
interested in maximizing the input of information along
the state space direction corresponding to the maximal
estimation error, we first observe that this requirement
can be interpreted as maximizing the measurement
information contribution along the subspace spanned
by the eigenvectors corresponding to the maximal
eigenvalue. Denoting this eigenvalue by Amax, the
corresponding subspace is N (Px — Amaxl). Let Emax
be the orthogonal projector onto this subspace,
and let 7/ (15) be the information contribution of
the jth measurement subsystem at 4; then, using
the preceding definitions, a scalar measure of the
information contribution (by the jth measurement
subsystem) along N (P — Amax]) is defined as

ph = (Enax, TJ) = t1(J{ Emax)-

For any subspace £ C R" for which an orthonormal
basis is available, the projector Er, onto £ may be
computed by [4]

7)

a
L= xx
j=1

where {X;,Xp,...,X¢} is an orthonormal set of basis
vectors for L, i.e., X! x; = 6;; where 6;; is Kronecker’s
delta function. In particular, denoting the fmax
eigenvectors corresponding to Amax bY {V1,¥25 - s Vi s
this lincarly independent set of eigenvectors can be

chosen to be an orthonormal set, and, hence, may be
used to compute the projector Emax:

P max

— T
Enax = E Vivi.
i=1

Using (18) in (17) we obtain the following expression

for p}: .
pi =1tr [(va?) JkJ] .
i=1

Since the filtering algorithm used is the V-Lambda
algorithm, the eigenvectors and the eigenvalues of

the covariance matrix are available at all times;

hence, the computation of p;, for each measurement
subsystem j amounts to only using these variables in
(19). Since (19) constitutes a quantitative measurc

of the information contributed by each measurement
system along the subspace of maximal estimation error,
this is what we need in order to select the optimal
measurcment subsystem at #; (i.€., that system which
maximizes the information contribution along the
subspace associated with the maximal estimation error).
That is, the optimal subsystem (denoted by its index )
is

(18)

(19)

jti) = argmaxpy.

Remarks

1) Since the sensor selection strategy is based
on identifying, first, the largest eigenvalue, the
implied assumption in the foregoing analysis is
that all elements of the covariance matrix have the
same physical dimension (otherwise, the size of
the eigenvalues might be meaningless). This can be
achieved, for example, by appropriately normalizing the
state vector components, i.¢., by using nondimensional
quantities. Note, that this common procedure is
desirable also in other respects, since it can be used
to yield smaller numerical range for the resulting
variables.

2) Note that the measurement strategy
determination consists of computing, at each sensor
selection epoch f, the set of scalar measures {p, }1}":1,
and conducting a search for the maximum in this set.
Since the use of the V-Lambda filtering algorithm
facilitates the computation of the measures pl. by
making the covariance eigenfactors readily available,
the resulting procedure should be simple enough to be
implemented in real-time in most applications.

3) The presented algorithm assumes that only
one, out of the M available measurement subsystems,
can be used at each measurement update. In a
straightforward manner, the algorithm can be
modified to treat the case where M’ out of the M
available measurement subsystems can be used at each
measurement update (where M > M’ > 1).

4) It is interesting to examine the role of p}; in the
context of the measurement update equation. To this
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end, we write the measurement update in information
mode [2]:

Pl=pl +H'RTH (20
k/k kfk—1 k e Atk )

(assuming that the jth measurement subsystem is
active at #). Then, using the spectral decomposition
of the covariance [9]

1
Pejr1= Z)\iEi

i=1

(in which E; is the orthogonal projector onto the
subspace N (Py k-1 — Ail)), (20) becomes

I
T =1
P = N'E;+H]/ R H.

i=1

@1)

Postmultiplying (21) by Epay, the projector
corresponding to Amax, and using the orthogonality
property of the projectors [9], ie.,

EE;=0 for i#j
yields

P
where the definition (15) was used. Taking the trace of
both sides of (22) and using the linearity property of

the trace operator yields

+Emax = A xEmax + T Emax (22)

tr(Pk_/}cEmax) = <Emax,Pk_/}c) = /Lmax/\;@}x + P;'i

(where we have also used the fact that if E; is the
orthogonal projector onto the subspace £ C R”,

then tr[E,] = o, where ¢ is the dimension of the
subspace £). The last equation shows clearly that the
total a-posteriori information along the eigenspace
corresponding to the maximal a-priori estimation
error (Epax, Pk‘/}c) is comprised of the following two
parts: 1) the a-priori information pmaA;L along

that eigenspace, and 2) the contribution p] of the
most recent measurement along that eigenspace.
Therefore, maximizing p; (by choosing the appropriate
measurement subsystem) has the effect of maximizing
the amount of information input to the filter along the
direction of maximal a-priori error.

5) In the case of a spatially distributed
measurement system, where the measurement
geometry matrix is a function of both time and space,
the algorithm outlined above, properly adapted to
this case, may serve to optimally allocate the sensors
according to the state of the estimation process. In
this case a function p, () is sought, which defines the
optimal location p; of the system sensors as a function
of time, i.c.,

Ye = H[ps(tx), te]xe + vi.

Using standard optimization techniques this optimal
location may be found by maximizing a performance
index which is based on the preceding analysis:

Hmax
J=tr [(Z'V,'V,-T) Jk(P;)J

i=1

where the information contribution of the
measurement system, Jx(p;), is now a continuous
function (with possible physical constraints) of the
spatial coordinate p;.

The performance of the new measurement
configuration algorithm is demonstrated in the next
section by way of a numerical example.

V. FILTERING EXAMPLE

In this section we present the results of a simple
filtering example, in order to demonstrate the
performance of the optimal measurement strategy
algorithm. The dynamic system considered is described
by the following time-varying discrete-time model

Xer1 = Fixp + W, x = (x1,%2,x3)7

where

(095 010 O
Fe=| 0 095 0 |[[sin0.01z)+0.1]
(0001 0 0975
E{w;} =0

[ 0.01 0.0001 0.0001

E{w;wl} =10.0001 - 0.01 0
00001 0 0015

Po = E{[x0 - E(%)][%0 ~ E(%0)]"}
= diag[250.,250.,250.].
The measurement system consists of three optional
discrete-time subsystems, only one of which can
be used at a measurement update. These three

measurement subsystems are described by the
following mathematical model:

yi=Hjxe+vl, =123

1. 0 0 0 0 1.
H = ] , H= [
0001 0 O

0 0001 0
, [o 105 0 ]
Hk =
0 0 0001
E{vi}=0, E{viv] }=diag01 01}, j=1,2
E{v}}=0, E{viv} } =diag0.05 0.05]

Efvivi'} =0, Kk #L

The filtering problem for this system was solved
with and without measurement system optimization.
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Fig. 1. Optimal measurement strategy.

Four computer simulations were run. In the first one,
measurement system optimization was used. In the
other three runs, one measurement system was used
for the complete simulation period. The filtering
algorithm was the V-Lambda algorithm described in
Section II1. Measurements were acquired at a rate of
one measurement per time step, and the simulation
was carried for 300 time steps. When the sensor
selection algorithm was employed, the spacing between
two consecutive configuration epochs was 25 time
steps.

Fig. 1 shows the optimal measurement strategy
obtained by using the measurement optimization
algorithm. It is seen that the optimal strategy consists
of using measurement subsystem 2 for the major part
of the simulation time, while subsystems 1 and 3 are
used for short periods only. In Figs. 2-4 the time
histories of the estimation error standard deviations
of the three state variables are compared, when
the optimal measurement policy is used and when
subsystem 1 is used (without optimization). As can be
observed from Figs. 2 and 3, the optimal measurement
policy produced worse results than those obtained by
using measurement subsystem 1 for the entire run.
However, this can be explained easily by observing
that the estimation error associated with x3 is much
larger than those associated with the other two state
components; the optimal strategy, which aims at
providing the maximal amount of information input
along the direction of maximal estimation error,
chooses to decrease the estimation error of x3, at
the price of allowing the estimation error of x; and
x, to increase slightly. Similar results were obtained
from a comparison of the optimal output strategy with
measurement subsystems 2 and 3.

VI. CONCLUSIONS
A new measurement system configuration

technique is presented for discrete-time systems
with measurement system constraints. The algorithm

Standard Deviation

Time

Fig. 2. Optimal strategy versus measurement system 1. Estimation
error of xj.

Stenaard Deviction

Fig. 3. Optimal strategy versus measurement system 1. Estimation
error of x;.

n

Standara Deviatis
o

Fig. 4. Optimal strategy versus measurement system 1. Estimation
error of x3.

can be implemented on-line when using the

SR V-Lambda state estimation algorithm. The
measurement configuration strategy is determined

at each configuration epoch based on information
considerations, namely: the measurement subsystem
to be used is that one which provides the maximal
amount of information along the state space direction
associated with the maximal estimation error. The
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proposed procedure can be used with time-varying
systems, since all that is required at the sensor
selection epoch is the current state of the estimation
process, and there is no explicit dependency on past or
future values of the estimation variables.

Based on the V-Lambda filtering algorithm, the
new technique demonstrates the advantages of using
this SR formulation, which continuously provides the
user with the spectral factors of the estimation error
covariance.
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