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Modal Control of Piezolaminated Anisotropic Rectangular Plates
Part 2: Control Theory

Scott E. Miller,* Yaakov Oshman,1" and Haim Abramovich*
Technion—Israel Institute of Technology, Haifa 32000, Israel

A general selective modal control design methodology is presented for piezolaminated anisotropic plate systems
that utilizes selective modal transducers to realize any number of possible modal control strategies. A selective
modal control design procedure is specified that defines a step-by-step framework through which the structural
and control subdesign processes are effectively integrated. Several conditions that sufficiently ensure asymptotic
stability are derived and then discussed in the context of deriving selective modal control methods that are stability
robust to modeling and implementation errors. Several selective modal control examples are then given in which
selective modal transducers are designed and control laws chosen so as to allow for 1) the contributions of any
given mode to the active energy extraction rate to be directly specified and 2) pole locations to be selectively and
dynamically varied or 3) both pole locations and selective modal transducer design constants to be optimally
determined. A numerical example is presented in which a stability-robust optimal selective modal control method
is developed for a cantilevered anisotropic plate. Maintaining a linear feedback law, a single self-sensing selective
modal transducer is employed whose design parameters were chosen to optimize the system response to a given
initial excitation. Frequency and transient response analyses show a dramatic enhancement in system performance
and accurately concur with theoretical predictions. The example serves both to illustrate the design process and
to independently validate selective modal transducer and selective modal control theoretical results.

I. Introduction

W ITHIN the past decade several vibration control techniques
have been developed for simple beam and plate systems that

utilize distributed piezoelectric transducers formed from polyviny-
lidine fluoride (PVDF). PVDF actuators have been designed whose
spatially varying piezoelectric field properties were exploited to pro-
vide for the simultaneous control of all modes or special modal
subsets in cantilevered and simply supported beams.1'2 Miller and
Hubbard3 developed a reciprocal sensor theory and subsequently
incorporated PVDF sensors and actuators into multicomponent sys-
tems in which each component itself was a smart structural mem-
ber. Burke and Hubbard4 developed a formulation for the control
of thin elastic (Kirchhoff-Love) isotropic plates subject to most
combinations of free, clamped, or pinned boundary conditions, in
which the active elements were spatially varying biaxially polarized
piezoelectric transducer layers. Lee5 generalized the classical lam-
inate plate theory to include the effect of laminated piezoelectric
layers and, thus, to provide a theoretical framework for the dis-
tributed transduction of bending, torsion, shearing, shrinking, and
stretching in flexible anisotropic plates. Miller et al.6 subsequently
employed Lyapunov's second method to derive a general active
vibration suppression control design methodology for anisotropic
laminated piezoelectric plates.

As was discussed in our companion paper,7 the aforementioned
vibration control strategies share several common limitations. Per-
haps most significantly, although all of these methods reduce the
vibration control task to a selection of individual piezolaminae field
functions, none offer a general method for determining those field
functions so as to ensure active vibration suppression. Therefore, a
clearly defined design methodology is developed herein in which
the structural and control design processes are integrated to yield a
framework for truly selective modal control (SMC). A broad class
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of stability robust SMC approaches is defined through the iden-
tification of conditions that sufficiently ensure global asymptotic
stability without requiring perfect knowledge of design parameters,
structural constants, or modal behavior. Specific SMC design ex-
amples are given that allow for 1) the contributions of any given
mode to the active energy extraction rate to be directly specified
and 2) pole locations to be selectively and dynamically varied or
3) pole locations, selective modal transducer (SMT) design param-
eters, and feedback laws to be optimally determined. The SMC
design approach is illustrated through a numerical example involv-
ing a piezolaminated anisotropic plate. The stability robust, single
input/single output type, optimal design that emerges serves to ver-
ify the major theoretical conclusions presented in both Parts 1 and
2 of this work.

II. System Description
Figure 1 describes the geometry of the general system under con-

sideration. A rectangular anisotropic plate with exactly N piezo-
electrically active laminate layers is considered. Contrary to what
may be implicitly assumed from the figure, transducer layers may
be located anywhere in the structure. The length dimensions of the
system in the x and y directions are denoted La and Lb, respectively.
Each piezoelectric layer may be independently anisotropic, and its
electromechanical field strength may be selectively varied in both
spatial dimensions. The material properties within each lamina are
assumed continuous. A complete system description may be found
in Part 1.

rolling axis

Fig. 1 Geometry of general piezoelectric laminate system.
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MILLER, OSHMAN, AND ABRAMOVICH 1877

Applying the well-known Kirchhoff-Love approximation, the
equations of motion of the general system described in Fig. 1 were
developed in Part 1 and are expressed in the form

xtt+Cxt+ Kx =——- (1)

where

r± ± o o

0 — —

0 0 0

0

_?L 2——— ——a*2 a*ay ay2
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(7)

x = [u v w]'

AH Ai6 A12 #11 #16 #12

A16 A66 A 26 #16 #66 #26

A12 A26 A 22 #12 #26 #22

B\\ #16 #12 011 016 012

#16 #66 #26 016 066 026

#12 #26 #22 012 026 022

AiJ9 BiJ9 and 0,-,- are the constitutive material constants that char-
acterize the mechanical stress-strain behavior of the composite
system. The constants bo and c() are viscous and structural damp-
ing coefficients, respectively, whereas X is the identity operator.
yk _ y*(£) is the spatially independent driving voltage applied
across the &th piezolamina. The electromechanical field strength of
each piezolamina is described mathematically via the product ek^Ak,
where A* is a dimensionless and spatially varying piezoelectric field
distribution function and 4 e 9?6 is a vector of piezoconstants rel-
ative to the point of maximum electromechanical transduction.

The boundary conditions as derived in Part 1 are stated in Table 1,
where the in-plane resultant forces (N = [N{ N6 N2]f) and mo-
ments (M = [Mi M6 M2]') are given by

>^ pk \kvk (%}7 ''O ^ '

and the transverse shear force resultants Q\ and Q2 are defined as

(2i) = [(Mi)L + [(M6)], (9)

(62) = [(M6)lc + [(M2)]y (10)

Finally, the current accumulated on the surface electrode of the &th
lamina because of the mechanical displacement of the laminates
was determined in Part 1:

(£xt)'ek
QAkdA

Table 1 Boundary conditions___

x = -(La/2, Lal2) y = -(Lb/2, Lb/2)
(Af i )o rw
(N6) or v
(Ql)OTW
(Mi)orwx
(A/6) or wy

(A^2) or v
(N(>) or u
(62) or w

(Mi} or wy
(M6) or wx

III. SMC
A. General Definition

The SMTs developed in Part 1 may be used to implement a num-
ber of modal control strategies for composite plates in which both the
SMT design and control law are chosen to optimize or else prespec-
ify the dynamic response of a targeted modal subset. These SMC
strategies may be designed so as to guarantee asymptotic stability
regardless of errors that occur in the design process. Moreover, the
freedom to arbitrarily determine SMT behavior as part of the de-
sign process typically leads to enhanced system performance and
reduced burden on the control law itself.

It was shown in Part 1 that if specific criteria (henceforth called
SMT construct conditions) regarding the location, orientation, num-
ber, and electromechanical transduction of piezosublaminae are
obeyed then the SMT design process allows for the equations of
motion [Eq. (1)] to be reduced to the form

qm + (fco + c()X)qm + = -amX,mVa(t) m = 1, 2, . . .
(12)

where Am , qm(t), and am are the eigenvalue, generalized modal co-
ordinate, and designer-specified modal participation factor (MPF)
associated with the rath mode, respectively. The SMT driving volt-
age is referred to as Va(t). The preceding SMT actuator equation is
complemented by the following SMT sensor equation:

(13)

where /3j is the (sensor) MPF associated with theyth mode. When
Eqs. (12) and (13) are realized via the same set of piezosubla-
minae,8'9 otj = fij and the SMT is called a self-sensing selective
modal actuator (SSMA). When functioning as dedicated selective
modal actuators (SMAs) or selective modal sensors (SMSs), SMTs
are henceforth referred to as SMAs or SMSs.

The system description may be further generalized to include the
possibility of multiple SMTs. Assuming that each SMT requires
exactly N piezosublaminae and assuming the existence of exactly
p dedicated SMAs and q dedicated SMSs, the general equation of
motion of the form

Cxt+ K,x = ——

is reduced via the SMT construct conditions (see Theorem 1 , Part 1)
to

p
qm + (&o + c()X)qm + \mqm = - ̂  amXm Vj(f) (15)

1 = 1

whereas the q SMS output equations become (via Theorem 3, Part 1)
00

n € [ 1 , 2 , . . . , ? ] (16)

where the driving voltage of the /th SMA (/ e [1 , . . . , / ? ] ) is referred
to as Vj(0 and the measured current of the nth SMS (n e [! , . . . ,#])
as ij(r). If the /th SMA is self-sensing (i.e., an SSMA) then, for
some n e [1, . . . , q], I = n and ft" = a1, for all 7. Note that the
rath mode is controllable only if at least one al

m ^ 0 for some
/ € [1 , . . . , p] and observable only if at least one ftl

m ^ 0 for some
/ e [ l , . . . , # ] . Let R be an r-dimensional subset of modes targeted
for active control. Since ct!

m, f>n
m — 0 Vra £ R, then from Eqs. (15)
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1878 MILLER, OSHMAN, AND ABRAMOVICH

and (16) each excluded mode is completely decoupled from all other
modes and, hence, will not lead to spillover in any active control
strategy based solely on the targeted subset. Considering only the r
modes in /?, Eqs. (15) and (16) may be constructed in the form

•0r

dt

Lqr J

(17)

q\

Lqr J

a
ph

il 0
01

or, in abbreviated notation,

xa = Axa + i = [0 -(3']xa (18)

where x'a = [q'a q'a]' and the matrix definitions are obvious. For
convenience the output vector i contains the q SMS current outputs
normalized relative to ph. The matrices a € £ftr>/> and j3 e Vir'q
are defined such that if the £th SMA is self-sensing then the kth
columns of a and j3 are identical. If all SMAs are self-sensing (and
no dedicated SMSs exist), a = j3.

SMC is realized when the matrices a, /3, and a control law of the
general form V = V(i) are established so as to best satisfy a given
performance objective. Design parameters may be chosen either di-
rectly or else through the optimization of a general performance
index of the form J = J(xa, a, (3). In general terms, the SMC
design procedure evolves through the following process: 1) A com-
posite plate structural design is determined to satisfy the mechanical
requirements (mass, stiffness, fabrication complexity, etc.). 2) The
structure is modeled. 3) A suitable performance objective is estab-
lished; Eq. (18) is acquired based on the r modes targeted for active
control and then used to determine a suitable control law and selec-
tion of MPFs. 4) The design is assessed and, if no further reiteration
is required, the piezofield functions (Af) for each piezolamina are
determined via Eq. (30), Part 1. The design is then implemented
physically. Some of these steps are now briefly considered.

1. Structural Design
The process of satisfying structural requirements will necessarily

dictate the number of piezolaminae to be incorporated, and hence the
number of available SMTs. The structure must be designed such that
all SMT (geometric) construct conditions are satisfied (Conditions
C1-C5, Part 1): hence, six laminae per anisotropic plate SMT are

required (orthotropic and isotropic plates require fewer layers) with
some imposed restrictions regarding skew angles. From a control
standpoint the advantage of multiple SMTs may be small, as many
control design objectives are likely to be sufficiently attainable even
via a single SSMA.

2. Performance Objective
Having obtained a satisfactory representation of Eq. (18), perfor-

mance objectives must be determined that will dictate the dynamic
character of the actively controlled plate as well as the stability ro-
bustness of the system to errors that will inevitably occur during
the modeling and implementation phases. The consequence of such
errors is that the field distribution functions (A[, AJ) that are ul-
timately implemented will lead to an imperfect realization of the
MPFs (residing in a and (3) specified as the outcome of the design
process. Higher order modes whose MPFs were theoretically set to
zero are likely, in final implementation, to possess nonzero MPFs.
Stability robustness is, therefore, assessed in terms of the sensitivity
of a given design to errors in a and /3 as r -> oo. In the sections
that immediately follow, criteria are determined to assess the sta-
bility robustness of a given design and a number of representative
performance objectives are discussed.

B. Stability Robust SMC
In this section, sufficient conditions that ensure asymptotic sta-

bility are developed and then discussed in the context of stability
robustness. Letting k e [1, . . . , N] and / e [1, . . . , /?] , it is conve-
nient to associate each of the p - N actuator laminae with unique
indices k and /. The (k, /) piezolamina is then uniquely associated
with a driving voltage V{(t), piezofield function A[, and piezoprop-
erty vector (eo)l

k. Each of the dedicated q • N sensor laminae may
be likewise assigned an indexed pair (k, n) (n e [1, . . . , q]) and
associated with AJJ, (tfo)£, and a measured current i%(t) given by
Eq. (1 1). If the (k, /) layer is self-sensing, then the (k, /) and (k, n)
piezolaminae are identical for some n e [! , . . . ,#]. The following
postulate is then introduced.

Postulate 1: Consider an anisotropic rectangular plate containing
at least p • N piezolaminae whose equations of motion are_ given
by Eq. (14). Then, if the entire set of control inputs (Vl

k(t)}l^={""p
N

satisfy
/. /.

/ / (
J J A

> 0 (19)

the closed-loop system is asymptotically stable.
Proof: Consider the following (positive definite) Lyapunov func-

tional:

J = - J
txt + (£xyKa(£x)]dA (20)

whose first and second terms in the integrand, respectively, represent
the kinetic and mechanical strain energy states.10 The functional
time derivative is then

J = f f [phx'txtt (£xt)'Ka(£x)]dA (21)

Substituting Eq. (8) into the preceding expression (with modified
double index notation) yields

dA

(22)

Integrating the first term of Eq. (22) by parts,

, dA + 73 + 74 (23)
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MILLER, OSHMAN, AND ABRAMOVICH 1879

where /3 and 74 are the line integrals

/

L/;/2

(
L/,/2

Proof: A required SMA construct condition is that Vk(t) =
*())( Vj(r) (Part 1, Theorem 1). Hence, Eq. (27) becomes

L

•/

La/2

[N
•La/2

- M6wxt -

N6vt

N2vt + Q2wt

(24)

(25)

It is obvious that both of the preceding integrals vanish for any
possible set of boundary conditions admitted in Table 1. Combining
Eqs. (1), (4), and (8) with Eq. (23) and dismissing the boundary
integrals leads to the result

(26)

According to the second method of Lyapunov, the system is
asymptotically stable if J is negative definite. Realize that Eq. (26)
is synonymous with energy flux and that only the second term on the
right-hand side (RHS) of the equation contains the influence of the
piezoelectric layers. The first term represents the energy flux inher-
ent to the passive system. It was established in Part 1 that the operator
C is positive definite for all systems under study except for those
exhibiting rigid body motions in a perfectly vacuous environment.
(In such a case, however, a flexible modal subsystem may be de-
rived whose damping operator C is nonetheless positive definite.6)
Excluding this special case, the first term is always dissipative (i.e.,
negative definite): hence, the system will be asymptotically stable
as long as the piezoelectrically induced forces do not add energy to
the system. Asymptotic stability is then contingent on the negative
semidefiniteness of Jp, where

(27)

which is the condition stated in the postulate.
Remark: The expression

is equivalent to the measurement obtained from the (£, /) piezolam-
ina when functioning as a self-sensing actuation layer [Eq. (11)].
Hence, in this special case

(28)

which lends itself to an intuitive explanation: the contribution to the
total energy flux (i.e., power) because of the active electromechani-
cal transduction is the total sum of electrical power associated with
each individual layer. It also indicates that asymptotic stability is
automatically ensured if each layer is self-sensing and the control
input to each layer is any function opposite in sign to the measured
current.

Postulate 1 may be used to establish a criterion for asymptotic
stability that is central to the development of stability robust SMC.
Defining qa = [q\,..., qr]'', see Theorem 1.

Theorem 1: Consider an anisotropic rectangular plate containing
p SMAs whose equations of motion are given by Eq. (18). Then,
if v = V(qa) is such that q'aaV > 0, the closed-loop system is
asymptotically stable.

N
i Aj dA (29)

(30)

Substituting Eq. (30) into Eq. (29) and expressing the result in matrix
form,

1=1 k = lJJA

Theorem 3, Part 1, establishes that
N

jp = -ph(q'aocV) (31)

the negative semidefiniteness of which is ensured by the condition
stated in the theorem. D

Several corollaries of Theorem 1 are now established. Denoting
the element by element Schur product of two matrices A and B as
A o B and defining sgn(i) = [sgn(zj/p/i) • • • sgnftf/p/*)]', see the
following corollary.

Corollary 1: Consider an anisotropic rectangular plate containing
p=q self-sensing SMAs such that a = (3 in Eq. (18). Then, if V —
—g(t) o sgn(i') for any arbitrary function g(t) e %lp with only non-
negative elements, the closed-loop system is asymptotically stable.

Proof: Ifoi = (3 then i = -ct'qa [Eq. (18)]. Hence, in this special
case, Jp = phV'i is negative semidefinite (NSD) if V = —g(t) o
sgn(i). a

The following corollaries pertain to linearly derived formulations

Corollary 2: Consider an anisotropic rectangular plate containing
p SMAs and q SMSs whose equations of motion are given by Eq.
(18). Let V = -G(t)i for any arbitrary G e W<q . Then, if a and /3
are such that (aG/3') e SHr'r is positive semidefinite, the closed-loop
system is asymptotically stable.

Proof: Substituing V = —G(t)i into Eq. (31) and then applying
Eq. (18) yields jp .= -ph[q'a(aG/3f)qa], which is NSD for any
positive semidefinite (PSD) OiG/3f. D

Corollary 3: Consider an anisotropic rectangular plate containing
p self-sensing SMAs such that a = /3 in Eq. (18). Let V = -G(t)i
for any arbitrary G e $tp'p. Then, if G is positive semidefinite, the
closed-loop system is asymptotically stable.

Proof: If a = (3 then i = -a!qa [Eq. (18)]. Then from Eq. (31),

= -ph[q'a(oLGoL')qa-\ = -ph\i'Gi\ (32)

which is NSD only if G is PSD. D
Corollary 4: Consider an anisotropic rectangular plate contain-

ing p SMAs and q SMSs whose equations of motion are given by
Eq. (18). Let min(/?, q) = 1 and let V = -G(t)i for any arbitrary
G e W-q. Then, if all elements of a, /3, and G are nonnegative, the
closed-loop system is asymptotically stable.

Proof: If p = 1 or q = 1 then rank (aG/3') = 1 and thus aG/3'
has at most one nonzero eigenvalue.11 Since tr(aG/3;) is equal to
that nonzero eigenvalue, all eigenvalues of aG/3' are nonnegative if
tr (aG/3;) > 0. All eigenvalues are thus nonnegative if all elements
of a, /3, and G are likewise nonnegative, in which case [aG/37] is
PSD. Asymptotic stability is established via Corollary 2. D

Theorem 1 and its corollaries establish the five cases given in
Table 2. Case 1 is the most general of all cases listed, and it will
be difficult to use the associated stability criterion to assess stability
robustness. Cases 2 and 4 show that as long as a = /3 as r -* oo
then asymptotic stability is guaranteed provided that, respectively,
V = -g(t) o sgn(0 or V = -Gi for any PSD gain matrix G.
If i is entirely derived via p self-sensing SMAs, then a = (3 is
essentially ensured even when modeling and implementation errors
yield MPFs that differ somewhat from those specified as the outcome
of the design process. Case 3 is the most general linear scenario:
stability robustness is assessed through determining the sensitivities
of the eigenvalues of aG/3' to perturbations in a and /3. A parameter
space may be determined (or bounded) that defines the entire set of
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1880 MILLER, OSHMAN, AND ABRAMOVICH

Table 2 Stability criteria case study

Case MPFs min(p, q) Control law Criterion
1
2
3
4
5

a^/3 >1 V = V(qa)
a = /3 >1 V = V(i)
0.^(3 >1 y = -Gi
a = /3 >1 F=-Gi
a ^ /3 1 F = -Gi

q'a<*V > 0
V = -g(f) o sgn(0

aG/3' > 0
G > 0

elements a, /3, G > 0

admissible a and (3 for which all eigenvalues remain nonnegative. In
case 5 asymptotic stability is sufficiently ensured when a and (3 are
composed entirely of nonnegative elements. Asymptotic stability
is obviously possible even if this condition is violated (as long as
aG/3' is PSD), but the condition itself may possibly be verified
on an actual structure through an experimental test: each targeted
mode may be excited individually and the sign of each specific
modal participation factor determined. It is obvious that stability
robustness is most easily ensured (virtually automatically) through
either the case 2 or case 4 configurations.

C. Representative Performance Objectives
1. Nonlinear Selective Energy Extraction

Several possible performance objectives are now explored. In this
first example, a nonlinear SMC method is derived (i.e., a, /3, and a
control law are determined) whose objective is to explicitly define
the contribution of each mode to the active energy extraction rate.
The case 2 (Table 2) stability criteria are imposed so as to ensure
a stability robust design: hence, a. — /3 and the control law is
V = -g(0 o sgn(i). Recalling that i = -ot!qa [via Eq. (16)], the
control law becomes

V = -g(f) o sgn(i) =

(33)

where gl(t) is the /th (nonnegative) element of g(t). Substituting
Eq. (33) into Eq. (31), the energy flux may be expressed in the form

(34)

The character of the energy extraction rate may then be specifically
determined by the arbitrarily chosen elements of g(t) e Stp. Two
special cases are worth mentioning: if p = 1 andg(f) = 1, then

= -ph

whereas if p = r, g(t) = [1 • • • 1]', and aj. =
Kroenecker delta function), then

(35)

i (where <57-/ is the

(36)

From a structural point of view, Eq. (35) is the simplest possible case
(only a single SMT is required) whereas Eq. (36) is the most complex
(one SMT per mode). Nonetheless Eq. (36), unlike Eq. (35), avoids
the existence of nontrivial state trajectories for which jp = 0 and,
hence, guarantees active energy extraction along any trajectory.

2. Linear Selective Energy Extraction
When the case 3 (Table 2) scenario is obeyed so that the control

law is V = —Gi, then the energy flux expression [Eq. (31)] becomes

JP = - (37)

from which an energy-based linear method may be derived. The
performance objective is to select a, /3, and G(t) to maximize the

energy extracted from each targeted mode relative to a specified
weighting. The control law transforms Eq. (18) into the (closed-
loop) system equation

Aa * A - ^ Q _^^ J (38)

Integrating Eq. (37) over the time interval t = [0, tf], the total
energy that is actively added to the system via the piezoelectric
laminae is then

/"/
= ~ph I [q'a

Jo
(aG(3f)qa]dt (39)

Introducing an arbitrarily specified state weighting matrix, Q e 9<f>r,
an optimal gain matrix G(t) and set of MPFs (contained in a, /3)
may be determined through the maximization of the performance
index

J = ° - ° -O fi'aG/3'g
(40)

subject to Eq. (38). Since the optimal solution is stable, aG/3' is PSD
and stability robustness is assessed through sensitivity of its PSD
character to perturbations in a and /3. If a = j3 (case 4, Table 2),
then stability robustness is ensured a priori. Enforcing that a = /3,
however, will inevitably lead to an optimal value of the performance
index that will be less than the value obtained via the case 3 opti-
mization (hence less effective control) since fewer parameters are
allowed in the optimization.

3. Parameter Optimization via Response to Initial Conditions
A parameter optimization process may be used to determine an

SMC design based on a case 3 (Table 2) scenario that is optimal
with respect to a given set of initial conditions. For simplicity let G
be a constant matrix and consider the following objective function
to be minimized subject to Eq. (38):

J
,00

= / (*al
Jn

Q e
R 6

(41)

where Q and R are arbitrarily specified PSD symmetric weight-
ing matrices. Defining C0 = [0 — /3'], then since V = —Gi =

(42)

(43)

(44)

/

oo

xf
a(Q + C'()G'RGC())xadt

..

Equation (42) may be recast in the form12

where P e 9i2r>2r is the solution to the Lyapunov equation

A'aP + PAa = -(Q + C'QG'RGC0)

It is obvious from Eq. (43) that the resultant solution is only op-
timal with respect to a given set of initial conditions. If the initial
conditions typify expected operating conditions, then the resultant
design is likely, in general, to perform well. Dependence on ini-
tial conditions could be eliminated altogether, if so desired, using
the average performance function approach proposed by Levine and
Athans. 13 Stability robustness of the (case 3) design must be assessed
as discussed earlier. As before, if a case 4 scenario is imposed such
that a = /3, then the optimization yields a design for which stabil-
ity robustness is essentially guaranteed but that is likely to be less
effective than the optimal case 3 solution.

4. Eigenvalue Selection
Again returning to the general linear (case 3, Table 2) scenario,

the performance objective now considered is to find a, /3, and G to

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
A

pr
il 

14
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/3

.1
33

21
 



MILLER, OSHMAN, AND ABRAMOVICH 1881

move the open-loop poles as close as possible to a specified set of
desired locations. Defining

Table 3 Example structure material properties

P2r]'

= [(Pl)()'"(P2r)()]f

(45)

(46)

where PJ is the j th (possibly complex) pole location of Aa and (/?7)0
is the desired yth pole location, then the performance objective may
be realized through the minimization of

J=(p-poYQ(p-Po) (47)

subject to Eq. (38), where Q e 9fP'2r is a PSD symmetric weighting
matrix.

5. Independent Modal Space Control Method Realization
As a final example, a distributed linear realization of the well-

known independent modal space control method14 is sought, in
which the control effort is directed entirely toward selectively (and
even dynamically) altering the eigenvalue locations of the closed-
loop system. A case 4 (Table 2) scenario is assumed. Moreover,
q = p = r so that a e 8ftr>r and is a diagonal matrix. A control
law of the form V = — Qi is assumed, where Q is a linear operator
defined as

0

I
Jo

(48)

and cm(t) and km(t) are arbitrarily specified scalar functions associ-
ated with the mth mode (m e R). The control law is thus an imple-
mentation of r distinct proportional-plus-integral control sublaws.
The system is assumed to be initially at rest. Then, upon integra-
tion, the closed-loop system equations [Eq. (38)] may be reduced
and rendered in the form of an r -dimensional set of second-order
linear differential equations such that for all m e [1, . . . , r]

= 0 (49)

Consequently, the character of the controlled system may be varied
arbitrarily and dynamically via the functions cm (t) and km (t) . Re-
alize, nonetheless, that r SMTs are required and that stability is not
necessarily ensured with respect to perturbations in a. Hence, the
general design is not stability robust although special forms of the
control law are, for example, if all km(t) = 0 and cm(t) > 0.

IV. Numerical Example
A numerical example is now given that serves both to illustrate the

SMC design process and to verify the analytical results developed.
A general design procedure is identified and then implemented to
arrive at an SMC design capable of providing stability robust con-
trol for the first six modes of an anisotropic plate. A parameter
optimization process is used to derive a suitable set of MPFs and
a control law. Implementation is realized via a single SSMA. The
SMC design is then validated through numerical simulation.

A. Step 1: Structural Design
As already described, the first step in the design process is to de-

termine the structural design of the composite plate so as to satisfy
any mechanical requirements. In this example problem the structural
requirements are assumed to warrant the geometry given in Fig. 2.
A laminated composite structure is considered in which three me-
chanically isotropic and piezoelectrically biaxial PVDF layers are
bonded to each surface of a double-layered graphite-epoxy com-
posite substrate. Thus, only a single SMT will be implemented. The
layers are sequentially numbered from top to bottom (the top layer
is referred to as layer 1 and the bottom layer as layer 8). Relevant
material properties are given in Table 3, where EH, E22, G\2, v,

Property

En, Pa
£22, Pa
Gi2, Pa
V12
p, kg/m3

(2^)0=0 deg (C/m2)
(e32)0=0deg (C/m )

PVDF

2.00 x 109

2.00 x 109

1.42 x 109

0.3
1780

60 x 103

20 x 103

G-epoxy

14.5 x 109

9.60 x 109

4.10 x 109

0.3
1551
——

Table 4 Sublaminae skew angles and thicknesses

Layer 1 2 3
Skew angle, deg 60 0 -60
Thickness, /Ltm 28 28 28

4 5 6 7 8
45 -45 -60 0 60
140 140 28 28 28

Table 5 Damping coefficients and natural frequencies

Open loop
Mode

1
2
3
4
5
6
7
8
9

10

£m,%

0.057
0.237
0.376
0.764
0.937
1.442
1.548
1.831
1.980
2.348

com, rad/s

2.191
9.475
13.49
30.58
37.49
57.67
65.91
73.26
79.23
93.94

Ideal closed loop
£m,% &>m, rad/s

99.98
32.67
6.308
8.436
2.292
5.569
1.548
1.831
1.980
2.348

2.709
8.660
12.53
29.86
37.16
56.78
65.91
73.26
79.23
93.94

Actual closed loop
£m,% (Om, rad/s

99.85
32.51
6.168
8.421
2.176
5.461
1.532
1.827
1.878
2.452

2.712
8.653
12.58
29.87
37.48
56.32
65.94
73.23
78.91
94.05

y disturbance
dft)

PVDF Graphite-Epoxy

Fig. 2 Example problem geometry.

and p refer to the (two) principal stiffness moduli, bulk modulus,
Poisson ratio, and volume density, respectively. Laminae skew an-
gles (9k defined in Fig. 1) and thicknesses are given in Table 4.
The asymmetric layup of the substrate (layers 4 and 5) cause the
structure to behave anisotropically. PVDF sublaminae skew angles
and thickness were chosen so as to satisfy all SMT construct condi-
tions (Theorem 1, Part 1). Moreover, — 60/0/60-deg piezolaminae
skew angle groupings were chosen so as to ensure that the matrix
EQ = J^jt = i e*(e*Y ig weU conditioned (see Appendix A, Part 1).

B. Step 2: Model Generation
A discrete model for the passive system is now developed. The

ANSYS finite element modeling (FEM) package15 was used to
generate mass and stiffness matrices (M and K) based on a 169
node finite element representation of the plate. Viscous and struc-
tural damping losses were added to the model by introducing a
damping matrix C such that C = b()I + c0#, where [b(}, c(}] =
[0.0001,0.0005]. The first six mode shapes are given in Fig. 3.
Stretching-bending coupling is prevalent, as expected. The first 10
(open-loop) natural frequencies (the mth such natural frequency,
&>m = \A™) and damping ratios (£w) are listed in Table 5. For the
purpose of demonstrating the design procedure and validating the
major theoretical findings, both the open-loop natural frequency
predictions given in Table 5 and nodal displacement data given in
Fig. 3 are assumed to be perfectly accurate.
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1882 MILLER, OSHMAN, AND ABRAMOVICH

length (m)
width (m)

length (m)

1
S o -

0.3

length (m)
width (m)

Mode 1 Mode 2 Mode 3

S o -

Mode 4

0.3

length (m)
0.6

length (m)

ModeS

width (m)
0.3

length (m)

Mode 6

0.6

Fig. 3 First six structural modeshapes (deflections are scaled); starred boundary indicates a clamped condition.

C. Step 3: Performance Objective
In this particular example the structure is expected to be excited

initially through an impulsive disturbance force [d(t)] acting at a
free corner, as shown in Fig. 2. The performance objective is to op-
timize the system response to the specified excitation using a linear
feedback law while excluding from the analysis all modes with natu-
ral frequencies above 60 rad/s. To realize the objective, the approach
of Sec. III.C.3 is selected. The targeted modal subset is limited to
the first six structural modes, as higher modes exceed the specified
bandwidth. Equation (38) is thus obtained, where the (open-loop)
state matrix, A e 9t12>12, is in the form specified in Eq. (18). Defining

, thenot =

= GOLO! (50)

where G is the gain constant. To minimize Eq. (41) with respect
to a and G, the impulsive force is modeled as a unitary initial
displacement acting at the specified location that is resolved via the
FEM model into the initial condition position vector

[0.2816 - 0.3937 - 0.2713 0.4520 0.2182 - 0.6635]'

(51)
to be used in Eq. (43). For the sake of demonstrating and validating
the methodology at hand, Eq. (51) is considered perfectly accurate.
The weighting matrix, Q in Eq. (41), was selected so as to penalize
each mode in inverse proportion to its associated damping coeffi-
cient: lightly damped modes are thus penalized more severely. In
particular, fiO', 7), Q(j + 6, 7 + 6) = ?6/& for ; = [1, . . . , 6],
and all other elements of Q are zero. The control effort is penalized
through setting R e 9ft1 to 1. Carrying out the minimization yields
as optimal values

(«i, . . . , a6, G) = (0.2511, 0.01495, 0.006281, 0.001479,

0.0005305, 0.0004385, 1.59)
Figure 4 describes how the pole locations of the open-loop sys-

tem [Eq. (18)] are moved in the complex plane when the optimal
MPF values are assumed and the feedback gain G is allowed to

60

40

-20

-40

-60

*: optimal MPF pole
+: suboptimal MPF pole
x: open loop pole '̂
o: open loop zero

-8 -4 -2
Real Axis

Fig. 4 System root locus for different values of G using optimal MPF
values.

vary. The closed-loop pole locations at the optimal gain value are
marked in the figure with an asterisk. Although damping is substan-
tially enhanced, it is noted that if G = 2.482, then much greater
modal damping is realized (as indicated by the plus + points on the
plot), whereas the cost functional increases only slightly (from a
minimum value of 1.729 to a value of 1.896, whereas in the passive
case J = 497.06). It is, therefore, decided to implement a final de-
sign using the suboptimal G = 2.482 value. Open-and closed-loop
damping coefficients and natural frequencies that are determined
directly from the obtained (complex) pole locations are listed in
Table 5 as the ideal values (middle columns). To provide a basis for
validating the methodology, these values are considered perfectly
accurate: computational errors in the minimization are deemed neg-
ligible, and the modeling process has been considered ideal.

D. Step 4: Laminae Piezofield Functions
Having determined the targeted subsystem mode shapes and

MPFs, the SSMA design is brought to completion through im-
plementing the piezoelectric field distribution function algorithm
[Eq. (30), Parti],

(52)
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MILLER, OSHMAN, AND ABRAMOVICH 1883

Layer 1

length (m)

Layer 2
length (m)

0.6 0 width (m)

Layer 3

0.3

length (m)

Layer 4 Layer 6
Fig. 5 Piezofield functions for the six SSMA sublaminae.

where the scaling factors g(* Vk € [1,.
tion<£ and matrix R are defined as

g» = max I (^o) R~lKa £(j>(x, y) \,
(x.y) 6 A ' v 7 '

., 6], modal subset func-

*€[ ! , . . . , 6] (53)

(54)

»' (55)

Based on the optimal MPF values and data given in Tables 4 and 5,
field function descriptions for each active layer is then determined
via numerically approximating Eq. (52) and are shown in Fig. 5. The
corresponding set of scaling factors #„ for layers 1-6 were found
to be 40.67, 102.13, 28.52, 35.00, 102.04, and 29.21, respectively.
The numerical approximation of Eq. (52) gives rise to computational
errors, which are addressed in the next section.

E. Validation
Having completed the design process, the SSMA design and SMC

control law would normally be implemented on the actual structure.
For the sake of verifying both the SSMA theory given in Part 1 and
the SMC results here, actual structural implementation is replaced
here with a numerical simulation. Premultiplying the plate equation
of motion [Eq. (1)] by ph and recalling that V*(f) = gj Va(t) such
that

Va (56)

the FEM model (step 1) was derived by ignoring the RHS and dis-
cretizing the left-hand side of Eq. (56) to arrive at a numerical model
in the form

where jc is a time-dependent vector of x, y, z displacements at each
node location. Using the piezofield functions just determined and
including the disturbance force [d(t)], the state equations are aug-
mented through the discretization of the RHS of Eq. (56),

MX + Cx + Kx =/Va + dd(t) (58)

MX + Cx + Kx = 0 (57)

where d is a unit vector whose only nonzero element corresponds
to the z translation of the single node at which the disturbance is
applied (see Fig. 2). Then, limiting the number of modes of interest
to 20 for the purpose of simulation, a modal transformation of the
form jc = Vq was performed on Eq. (58), where V is a matrix
whose columns are the first 20 eigenvectors of Eq. (58) and q is a
20-element column vector containing the first 20 modal coordinates.
The modal system representation is then given as

(59)

where C and K are diagonal matrices whose respective elements
contain the terms fr0 + c^m and Xm. The elements offq were ob-
served to be very nearly equal to amA,m, although numerical differ-
entiation gave rise to marginal errors. In particular, the closed-loop
damping and natural frequency data that were obtained through
Eq. (59) are listed as the actual values in Table 5. The actual
values compare favorably with the listed ideal values, which are
those values that assumedly would have been obtained if there
were no numerical errors. Note that modes 7-10, which are out-
side the targeted modal subset, are virtually not influenced through
active control since the SMTs function as predicted. It is rea-
sonable to assume that discrepancies between the ideal and ac-
tual natural frequency estimates in Table 5, which never exceed
0.5%, may be entirely attributed to errors inherent to the numeri-
cal approximation of Eq. 52 and the discretization of the RHS of
Eq. (56).

To facilitate a performance analysis, a reference measurement
w(f) is added whose output is the z displacement of the plate at the
point at which the disturbance is applied. Hence, upon conversion
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1884 MILLER, OSHMAN, AND ABRAMOVICH

of Eq. (59) to the form of Eq. (18), the augmented system equations
are

where i(t) = (\/ph)is(t). The required feedback law is then

Va = [-G 0] I" ' 1 (62)

Open- and closed-loop frequency and transient response analyses
were computed using the preceding system description. The Bode
magnitude and phase plots of the transfer function m(s)/d(s) are
given in Fig. 6. Solid lines refer to the passive system response,
whereas dashed lines indicate the active system response. Figure 6
shows substantial closed-loop attenuation of the first six modes,
whereas all higher order modes remain essentially unaffected. In
computing the transient response given in Fig. 7, a unit impulse
disturbance was applied through d(t) and the transient response as
measured through the reference measurement m(t) was recorded.
The closed-loop transient response is extremely rapid. The results

10
Frequency (rad/sec)

10

Fig. 6 Frequency response of m(s)ld(s); solid and dashed lines indicate
open- and closed-loop response, respectively.

Fig. 7 System response to an impulse disturbance d(f); (top) open loop
impulse response, m(t) and (bottom) closed loop impulse response, m(t).

validate the SMC design approach as an effective means of realizing
a specified performance objective.

V. Conclusions
A general design procedure for the realization of SMC has been

presented for piezolaminated anisotropic plate systems. General sta-
bility criteria were established from which stability robust SMC
approaches may be derived. Several representative objective func-
tions were given in which 1) the contributions of any given mode to
the active energy extraction rate are directly specified, 2) the closed-
loop pole locations are selectively and dynamically assigned, or else
3) eigenvalue locations and SMT design parameters are optimally
determined. Most of the listed performance objectives were shown
to be realizable through stability robust SMC implementations re-
quiring only a single SMT and proportional feedback. The design
procedure was demonstrated through a numerical example in which
an SMC method for a composite piezolaminated anisotropic plate
was developed. The outcome of that procedure, a specific SSMA
design and accompanying control law derived through the param-
eter optimization of a specified objective function, was then val-
idated through numerical simulation. The results of the numerical
study were shown to support theoretical conclusions derived in both
parts of this study. Transient and frequency response analyses illus-
trated a profound improvement in system performance via the SMC
approach.
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