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Modal Control of Piezolaminated Anisotropic Rectangular Plates

Part 1: Modal Transducer Theory

Scott E. Miller,* Yaakov Oshman," and Haim Abramovich*
Technion—Israel Institute of Technology, Haifa 32000, Israel

Selective modal transducers are developed for piezolaminated anisotropic plate systems that are capable of
sensing and exciting any specified set of vibrational modes according to a specified set of modal participation
factors. Transduction of selected modes is accomplished through combining the effect of three piezolaminate
pairs whose piezoelectric fields are varied spatially. Each coupled pair contains a single layer located anywhere
strictly above the reference plane, which is complemented by a second layer colocated below the reference plane.
Piezoelectric constitutive properties associated with each layer in a given couple must be identical, whereas the
constitutive properties of all three couples must be uniquely different. If all selective modal transducer layers are
formed from the same stock material, the stock material must be piezoelectrically biaxial and the skew angles
of all couples must be unique. Individual actuator inputs must be proportional to a common controel function
or, conversely, the sensed output must be a weighted sum of the measurements acquired by individual layers.
An algorithm is presented that dictates how the piezoelectric field strength of each selective modal transducer
layer must be varied spatially and is an explicit function of piezoelectric constants, mode shapes, and designer-
chosen modal participation factors. Selective modal transducers for orthotropic systems are shown to require three

piezolaminate layers rather than three coupled pairs.

I. Introduction

ITHIN the past decade several vibration control techniques
have been developed for simple beam and plate systems that
utilize distributed piezoelectric transducers formed from polyviny-
lidine fluoride (PVDF).!=3 PVDF actuators have been designed
whose spatially varying piezoelectric field properties were exploited
to provide for the simultaneous control of all modes or the selective
control of desired modal subsets in cantilevered and simply sup-
ported beams.* Miller and Hubbard® developed a reciprocal sensor
theory and subsequently incorporated PVDF sensors and actuators
into multicomponent systems in which each component itself was a
smart structural member.%7 Burke and Hubbard?® developed a formu-
lation for the control of thin elastic (Kirchhoff-Love) isotropic plates
subject to most combinations of free, clamped, or pinned bound-
ary conditions, in which the active elements were spatially varying
biaxially polarized piezoelectric transducer layers. Lee® and Lee
and Moon'® generalized the classical laminate theory!! to include
the effect of laminated piezoelectric layers and, thus, to provide a
theoretical framework for the distributed transduction of bending,
torsion, shearing, shrinking, and stretching in flexible anisotropic
plates. Miller et al.'> subsequently employed Lyapunov’s second
method to derive a general active vibration suppression control de-
sign methodology for anisotropic laminated piezoelectric plates.
The aforementioned vibration control strategies for both beams
and plates share several common limitations. Although all of these
methods reduce the vibration control task to a selection of individual
piezolaminae field functions, none offers a general method for deter-
mining those field functions so as to ensure active vibration suppres-
sion. A poor choice in piezofield functions, although guaranteed not
to destabilize the structure through the active addition of vibrational
energy, may extract little or no vibrational energy from the system.
Furthermore, often the designer is concerned with suppressing vi-
brations in only a certain modal subset. The generalized function
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approach to choosing spatial field functions,** although adequate
in certain scenarios for guaranteeing some measure of active energy
extraction from all modes, generally will not be able to provide a
means to selectively target a specific modal subset. Finally, most
methodologies mentioned have been exclusive to isotropic systems
and are thus incompatible for use with orthotropic and anisotropic
aeroelastic structures commonly encountered. Ultimately these lim-
itations would be best answered through the development of a se-
lective modal control (SMC) methodology for anisotropic plates in
which the designer optimally utilizes the available piezolaminae so
as to most effectively realize any admissible performance objective.

As a first step toward realizing an SMC design methodology, a
selective modal transducer (SMT) theory is herein developed. SMTs
are a class of transducers that are capable of sensing and exciting
any specified set of vibrational modes of an anisotropic plate in a
selectively weighted fashion. The transduction of selected modal
subsets of an anisotropic plate is accomplished through combining
the effect of six piezolaminae whose piezoelectric field distributions
vary spatially. Orthotropic plate SMTs are shown to be possible with
as few as three layers. Design criteria are identified that lead to an al-
gorithm for determining the specific piezoelectric field distributions
and feedback gains required of each layer in the composite trans-
ducer. 1’3I‘he SMC methodology is then presented in our companion
paper.

II. System Description

A. Geometry

Figure 1 describes the geometry of the general system under con-
sideration. A rectangular anisotropic plate with exactly N piezo-
electrically active laminate layers is considered. Contrary to what
may be implicitly assumed from the figure, transducer layers may
be located anywhere in the structure. The length dimensions of the
system in the x and y directions are denoted as L, and L, respec-
tively. Each piezoelectric layer may be independently anisotropic,
although typically the active layers are either transversely isotropic
or else their mechanical stiffness relative to the substrate allows their
anisotropy to be neglected. The material properties within each lam-
ina are assumed continuous. The bounded domain containing the
system under consideration is denoted as A and its boundary is
denoted as I.

Each piezolamina is assumed to be uniformly coated on both sur-
faces with negligibly thin conductive electrode layers. An electrical
field applied across the thickness of the kth piezolamina generates
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Fig.2 Geometry of in-plane force and moment resultants.

a mechanical strain state whose principal (dominant rolling) axes
are signiﬁed by x; and y;. Conversely, mechanical strain in the
x,~y; plane induces an electrical field. Although it is assumed that
the applied electrical field is quasistatically uniform with respect
to the dominant plane of the lamina, the magnitude of electrome-
chanical transduction may be spatially varied by means of doping
the copolymer with PZT powder!* or through repoling.® The mod-
uli of each layer need not be constant throughout the dominant
plane of the plate. A positive poling direction of each layer is de-
fined as outwardly normal to the reference plane of the system.
The reference plane itself may be arbitrarily located, although it
is typically assigned to the structural midplane. In an orthotropic
structure, however, the reference plane is designated as the neutral
plane. The strain displacement relationships for each laminate are
assumed to be governed by the Kirchhoff-Love approximation in
which displacements of the laminae are related to each other linearly
through the thickness direction. Finally, the dominant rolling axis
x; of each piezoelectric laminate may be rotated from the principal
x axis through a skew angle 6, defined in a positive right-hand sense
about the z axis and illustrated in Fig. 1. The introduction of such
rotations induces a torsional effect in piezoelectric film actuators
and leads to the detection of shear strain in compatible sensors.’

B. Equations of Motion
Expressed in terms of resultant forces and moments, the equations
of motion of the general system described in Fig. 1 are!!

phuy — (N1)y — (Ne)y =0
phvy — (N2)y — (Ne)xy =0 1
phwtr - (Ml)xx - Z(M())x_v - (MZ)yy =0

whereu(x, y, t) and v(x, y, t) are the respective axial displacements
of the system reference plane in the x and y principal directions and
w(x, y, t) is the transverse displacement of the reference plane.
Subscripts indicate partial differentiation. The equivalent density p

is defined as
N
A ok
4 mer 2
;: h e

where p; and A, are the mass densities and thicknesses of each
lamina in the composite structure and # is the total thickness. The
mass density and thickness of each layer are assumed to be con-
stant, The m-plane resultant forces (N —[N, N¢ N,1) and mo-
ments (M 2[M; Mg M,)) are defined geometrically in Fig. 2.

In mathematical terms they represent the net difference between
mechanically and piezoelectrically induced force and moment

resultants®
[ ] - I: :| - [ ] @
M M y M P

Introducing the linear homogeneous differential operators D and £
defined as

-

i 0 0 0
dx dy
3 d
D, EE 0 — — 0
{ ) ax 3y 0 0 ’
2 2 2
o 0 o B, 2
dxz dxdy 3y*
0 d 0 0 0 0 /
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ax ay @
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= -
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the mechanically induced force and moment resultants'! may be
restated such that

[N ] K,E: (&)
= —K, X
M),
where
Ay A Ap By By B
Ais Aes Ax Bis Bgs Bas
A A A B B B
K2 12 A An Bz By Bpn ©
By By B Dy D Dn
Bis Bes By Dis Des Do
By By Bn D Dy Dpn
and
2w v wl %)
Ayj, Bij, and Dj; are the constitutive material constants that charac-

terize the mechanical stress—strain behavior of the composite sys-
tem. The piezoelectrically induced force and moment resultants®
may be likewise restated,

N N
Mg e
P k=1

where V¥ = V¥(¢) is the spatially independent driving voltage
applied across the kth lamina, whose piezoelectric behavior is char-
acterized by the vector of piezoelectric constitutive parameters

L k k !
¢ E[en e en ey ey zen) )]

for which z* is the height of the kth piezolamina midplane above the
composite reference plane. The magnitude of these parameters may
be spatially varied by doping the copolymer with PZT powder'* or
subjecting the film to a repoling process.” These processes cause
the piezoelectric strength at a given location on the film to vary
while preserving the relative proportionality between the e3;, e3;,
and ess parameters. Assuming that the piezoelectric effect is con-
stant through the thickness, the doping and repoling processes are
then accounted for through the introduction of a dimensionless, spa-
tially varying piezoelectric field distribution function A*(x, y). The
field function is defined such that the piezoelectric field vector e* is
equivalently expressed in the form

e = efA* (10)
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where ¢} contains the values of e}, e5,, and e at the point of
maximum electromechanical transduction so that A* is normalized,
i.e., the maximum magnitude of A* is unity. For convenience a
vector e is also defined such that

e £ ()l (es)t (ex)t] an

Substituting Eq. (10) into Eq. (8) yields

N N
= ek AFVE 12)
L], =2

k=1

Substitution of Egs. (5) and (12) into Eq. (3) then yields the identity

N N
[M] = —K,Ex— ) ehAV* a3)

k=1

Returning to the equations of motion [Eq. (1)] and applying Eqs.
(), (7), and (6) leads to

1. 1 &
Xu + ED’(Kasx) =—=3P (Zef,A"v") a4

k=1
Defining the mass-normalized stiffness operator K as
K2 (1/ph)D (K,E) (1s)

the equations of motion are then rendered in the attractive form

N
1
=——7 § k ARyk 16
x,,+@ oh (kzle(, ) 16)

Structural damping may be introduced into Eq. (16) through con-
sideration of a (mass normalized) damping operator C, which is
proportional to the operator /K by a positive factor ¢y (Ref. 15),
whereas damping losses due to the mechanical interaction of the
plate with the medium in which it is contained (atmospheric drag,
etc.) are introduced through a constant by,

C=bT+ K amn

where Z is the identity operator. The damping operator is then in-
cluded in the equations of motion such that

N

1

X+ Cx, + Kx = —;}ID'< e{;A"vk) (18)
k=1

Although representative of a fully anisotropic piezolaminated sys-
tem, the equations of motion as stated revert to a general orthotropic
system by setting all B;; to zero. A specially orthotropic system
emerges if, likewise, A6, Az6, D16, and Dy are set to zero. Simi-
larly, the equations of motion for a general isotropic plate emerge
through appropriate choices in the remaining constitutive constants.
Beam equations result when v is set to zero and the displacements
w and u are independent of y.

The preceding system of equations is subject to the boundary
conditions stated in Table 1%!! where the transverse shear force
resultants Q; and Q; are defined as

(@) = [(M)]x + [(Mg)]y 19
(Q2) = [(Me)]x + [(M2)]y (20)

Table 1 Boundary conditions

y=-Lp/2,Lp/2

x=—Laq/2,Ls/2

(Ny)oru (N2)orv
(Ng)orv (Ng)oru
(@norw (Q2)orw
(M) or wy (M3) orwy
(Mg) or wy (Mg) or wy

The force and moment resultants are defined in Eq. (13). The bound-
ary conditions are in a form compatible with Poisson’s derivation. !¢

. Realize, however, that the system described by Eq. (16) can at

most accommodate four boundary conditions per edge.!® Kirchhoff
showed that the twisting moment and shear force boundary condi-
tions are related and, accordingly, two of the boundary conditions on
each edge may be combined into a single condition.'¢ The Poisson
form will nonetheless prove to be extremely useful in the ensuing
analysis.

The domain of definition for the operator K (and thus C) is now
explicitly defined. Let H(A) denote the Hilbert space of all real-
valued piecewise continuous functions whose inner product and
norm are, respectively, defined as

(g.h)= //g'hdA @21
A

gl = (g.8)? ©2)

for any g(x, y), k(x,y) € H(A). Denoting the order of K as n,
let any admissible set of boundary conditions given in Table I be
described in terms of linear spatial differential operators B; of max-
imum order n — 1 such that

and

Bx=0 on r, i=1,...,n (23)

Let S be the set of all functions g for which B;g = 0 on I" and such
that g and all of its » derivatives are in H (A). In the ensuing devel-
opment the admissible set of boundary conditions to be considered
are such that XC is rendered regular on S and has an inverse defined
by a Green’s function. Note that any set of boundary conditions that
does not permit rigid body motions automatically satisfies this cri-
terion. A procedure for explicitly determining the Green’s function
inverse is given in Ref, 17.

C. Sensor Equation
The current accumulated on the surface electrode of the kth lamina
due to the mechanical displacement of the laminates is’

-k k k k k _k
") = /f [e31uxt + €3,V + €36 (Uyr + Vxy) — €3,7 Wiyt
A

~ ehzhw,, — 2ei7" wxyt] dA 24)

where i*(¢) is the current measured through the kth electrode. Ap-
plying the definitions given for the differential operator € [Eq. (4)],
x [Eq. (7)], and e* [Eq. (10)], Eq. (24) collapses to

i) = - / / (Ex)egAF dA (25)
A

III. Selective Modal Actuator Theory

In this section a general theory and design methodology is pre-
sented that allows the designer to selectively excite each and every
mode of a general anisotropic piezolaminated plate typified in Fig. 1
according to a prespecified set of modal participation factors. Con-
sider the following set of SMT construct conditions.

Condition CI: Exactly n transducer layers are located strictly
above the reference plane and exactly n transducers are located
strictly below the reference plane (N = 2n).

Condition C2: There are at least six piezoelectrically active layers.

Condition C3: For each layer above the reference plane there
exists a layer below the reference plane such that {z* = —zk+"}7_ .

Condition C4: Layers located at heights z¥ and z*+" both are
associated with an identical piezoproperty vector e.

Condition CS5: The piezoproperty vectors {e*}; _ , associated with
atleast three layers above (and hence also below) the reference plane
are different. When the same sample of PVDF is used throughout,
€9, (6% = 0 deg) # e3,(6* = 0 deg) and the skew angles of at least
three laminae above (and hence below) the plane must be different
in the range —90 < 6% < 90 deg.
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The following lemma is now introduced.
Lemma 1: Let R € R be the matrix defined as

N
R2) e (eﬁ)' (26)
k=1

Then, if C1-C5 hold, R is invertible. Furthermore, R can be written

as
2 eﬁ(e’;), 0
R=2 , 27
Z[ 0 <zk>2ez:<e':)] =

Proof: Recalling from C1 that N = 2n and substituting Eq. (11)
into Eq. (10), ef = [(¢*)' zF(e*)']’ and, thus,

R i ) - Sal) 28)
- "e’;(e’;), (zk)ze’;(e’;)/

Satisfying C1, C3, and C4 then transforms R into the form of
Eq. (27), which may equivalently be written as

R=2 Tieieale) ° , (29)
0 Y () ()

C2 and C5 are seen to be necessary for the invertibility of the
submatrices located on the diagonal of R based on the following
postulate'®:

Postulate 1. Given a set of column vectors {ry : r, € R™}, the
matrix Ry 2 > . rry isinvertible if and only if there exist at least
m linearly independent vectors in the set {r};_ .

The consequence of Postulate 1 is that the submatrices on the
diagonal of the rightmost expression in Eq. (29) are invertible only
ifn z 3 and at least three elements of each vector subset {e"},_ L
and {z*e*}?_, are unique. C1 ensures that all z* are nonzero, and
the physwal geometry ensures that all z* are different. C2 and the
first part of C5 then cause the elements of each vector subset to be
independent.

The latter part of C5 pertains to the event in which the same
sample of piezoelectric material is to be used throughout in con-
structing each active structural layer. In Appendix A it is shown that
such a case requires that the sample material be piezoelectrically
biaxial [e], (8% = 0 deg) # €3, (8% = 0 deg)] and the skew angles of
laminae above (and 11kew1se below) the plane must be different in
the range —90 < #* < 90 deg. Obeying this constraint causes the
piezoelectric field properties of each of the n piezolaminae above
(and likewise below) the reference plane to be uniquely different
with respect to the principal geometric directions. O

Another lemma is now stated.

Lemma 2. Consider an anisotropic rectangular plate containing
N piezolaminae whose equations of motion are given by Eq. (18).
Let the time bound control input V*(¢) of each piezolamina be
proportional to an identical time-dependent control function V, ()
such that V¥ (r) = gk V,(t). Assume that C1-C5 are satisfied. Then,
if the piezoelectric field distribution functions of each active layer
are given by

R7'K,Eh(x, y) (30)

Af = (1/85) (e(,)

where ¢ is a weighted sum of eigenfunctions ¢ ; and modal partic-
ipation factors «; such that

ID

= i @31n

while R is defined in Eq. (27), and the scaling factor gf is defined
as

gt = max, |(e0) RK.Ed(x, y)| (32)

(x

the equations of motion of the plate reduce to the form
Xy +Cx, + Kx = —V,(0)K (33)

Proof: Recalling the equations of motion [Eq. (18)] and the def-
inition K £ ( 1/ph)D'(K,E), Lemma 2 is proven if the conditions
as stated cause the equality

1 [,
P (;eoA"V") =V ‘D(K EP) (34)

to be true. Letting V¥(¢) = gk V, (1), the left side of Eq. (34) is then
transformed such that

| N
Eﬁ(ZeﬁAkV")=Va(f)— (Zgoeo ) (35

k=1

Substituting Eq. (30) into the right-hand side of Eq. (35) then yields

1 = kA kyrk 1 ’ - — I
p—h’D’(ZeOA V| = Va—D D eb(el) |[RTK.ED

k=1 k=1
(36)

Since C1-C5 are satisfied, Lemma 1 holdssothatR = Z WA G4
is invertible and may be equivalently written in the form of Eq 7).
Substituting Eq. (26) into Eq. (36) then yields Eq. (34). O

The main result is now given.

Theorem 1: Consider an anisotropic rectangular plate containing
N piezolaminae whose equations of motion are given by Eq. (18).
Let the time bound control input V*(#) of each piezolamina be
proportional to an identical time-dependent control function V, (1)
such that V*(r) = gf V,(t). Assume that C1-CS5 are satisfied. Then,
if the piezoelectric field distribution functions of each active layer
are given by Eq. (30) where ¢ is defined in Eq. (31), R is defined in
Eq. (27), and g, is defined in Eq. (32), the equations of motion of
the plate reduce to the form

ijm + (b() + COA')q.m + )\mqm = —Omhnm Vy (t) (37)

for all integers m > 0 where «,,, A,, and g, (¢) are the modal
participation factor, eigenvalue, and generalized modal coordinate
associated with the mth mode, respectively.

Proof: Since the suppositions stated in the theorem satisfy Lemma
2, Eq. (18) may be equivalently expressed in the form of Eq. (33).
The distributed forces acting on the plate are therefore expressed
in the form f = —V,(t)/Kx,. Consider the following proposition,
proven in Appendix B.

Proposition 1: If the distributed forces acting on the plate can be
expressed as f = —V,(t)Kx, for some x, € S, then the operators
C and K are self-adjoint.

Remark: The proposition implies that the self-adjointness of both
operators is contingent upon the choice of f. Realize that self-
adjointness is defined with respect to any two functions x,,x, € S
[see Eq. (B1), Appendix B] that, by definition, satisfy all boundary
conditions. Since the boundary conditions as stated in Table 1 are
directly related to the applied distributed forces as is evidenced by
Eq. (13), the self-adjointness of C and XC is contingent on the form
that f assumes.

Inman'® restated the result of Caughey and O’Kelly® in the fol-
lowing form.

Theorem 2: Let x,, + Cx; + Kx = f(x, v, ¢) be the equations of
motion of a general system excited by a distributed force f. Then,
if C and K commute and are self-adjoint on §, and if each operator
has an inverse defined by a Green’s function, then the solution to
the governing equation may be written as the uniformly convergent
series

X(x 3,0 =) ¢ 1)g;0) (38)

i=1

where the set {¢,;(x, ¥)}7°., are the orthonormal eigenfunctions of
K that are identical to the eigenfunctions of C.
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It has already been presupposed that the boundary conditions
render X (and thus C) such that it has a Green’s function inverse. The
fact that the operators commute, i.e., CKC = KC, follows trivially
from Eq. (17). In view of Proposition 1, the system under discussion
satisfies all conditions contained in the Theorem 2. Orthonormality
is defined in the sense that!”

(@, &) = &; (39

where §;; is the Kronecker delta function. Since KC¢; = A ;¢;, where
Aj is the eigenvalue corresponding to the jth eigenfunction,

(D1, KCty) = ;835 (40)
Substituting Eq. (38) into Eq. (33) then yields

> [y + Bo+cok) g +dig) = —Va(®) D _ @Ky (41)

i=1 j=1

Taking the inner product of the mth eigenfunction ¢,, with each side
of Eq. (41) and applying Egs. (39) and (40) then yields Eq. (37),
thus completing the proof of Theorem 1.

Remark: Equation (37) indicates that any given structural mode
may be excited as long as the modal participation factor belonging
to that mode is nonzero. Since the system response is an infinite sum
of modal responses, the ability to selectively weight the contribution
of any given mode to the total system response implies complete
controllability. Hence, the following corollary is stated.

Corollary 1: When all suppositions of Theorem, 1 are satisfied,
the system is completely controllable.

Theorem 1 represents an anisotropic piezolaminated plate selec-
tive modal actuator (SMA) design methodology. The SMT construct
conditions C1-CS5 are obeyed. Mode shapes belonging to the target
modal subset are determined and then assigned modal participation
factors. Then using Eq. (30) as an algorithm for determining the
piezoelectric field function for each layer and enforcing the condi-
tion V¥(z) = g(’§ V.(#), a modal actuator design is realized that is
capable of exciting each mode according to its relative weighting.

In general, it will be advantageous to use as few layers as is nec-
essary, which is six. Furthermore, in many applications it may be
deemed preferable to use the same sample of PVDF to construct all
active layers in the composite. In Appendix A it is shown that in such
a case, all laminae above (and similarly below) the reference plane
must be skewed at different angles with respect to the principal geo-
metric directions. If the layers are chosen so as to preserve symmetry
with respect to the principal x axis of the plate then any combina-
tion of the angles { —60, 0, 60 deg} maximizes the determinant of
the matrix Eg 2 3" o1 @€Y Ttisalso shown in Appendlx A that
E, is poorly conditioned when the ratio of €3 to €3, is less than 1.3.

IV. Selective Modal Sensor Theory

In this section a general theory and design methodology is pre-
sented that allows for the selective observation of each and every
mode of a general anisotropic piezolaminated plate typified in Fig. 1
according to a prespecified set of modal participation factors. The
design methodology is summarized in the following theorem.

Theorem 3: Consider an anisotropic rectangular plate containing
N piezolaminae whose equations of motion are given by Eq. (18).
Let the measured state i;(¢) be formed from the weighted sum
of the sensed currents of each individual lamina be such that
i,(t) = Zk_l gti*(r). Assume that C1-C5 are satisfied. Then, if
the piezoelectric field distribution functions of each active layer are
given by Eq. (30) such that ¢ is defined in Eq. (31), R is defined in
Eq. (27), and gk is defined as in Eq. (32), the measured state reduces
to the form

() = —ph ) k(1) “2)
j=1

where o, A ;, and ¢; are the modal participation factor, eigenvalue,
and generalized modal velocity associated with the jth eigenfunc-
tion, respectively.

Proof: Letting i, (¢) = Zk | 86i%(¢) as stipulated in the theorem
transforms Eq. (25) into the form

iy (@) = — / f (Ex,) (Z gieh A ) 43)

Substituting Eq. (30) into Eq. (43) and applying Lemma 1 yields
() =— / (Ex,) Ko (E4) dA (44)
A

It is assumed that the system, if excited, obeys all conditions speci-
fied in Theorem 2 so that the system response is specified by Eq. (38)
and Egs. (39) and (40) apply. Substituting Eq. (38) into Eg. (44)
yields

WO ==Y 4 / / (EP)'Ka(E9) dA (45)
A

i=1

Recalling that ¢ £ 3% | a;¢5;, Eq. (45) becomes

==Y f ESYK(ESYA  (46)
A

i=1j=1

In Appendix B [Eq. (B17)] it is shown that for two (comparison)
functions x,, x, € S,

1
(x,, Kxg) = _h_/ (Ex,)Kq(Exp)dA 47)
A

Equations (40) and (47) then allow Eq. (46) to be written as Eq. (42),
completing the proof. O
Remark: Equation (42) implies that the modal velocity corre-
sponding to any given mode or subset of structural modes may be se-
lectively measured, which leads naturally to the following corollary.
Corollary 2: When all suppositions of Theorem 3 are satisfied,
the system is completely observable.

Having established Theorem 3, an anisotropic piezolaminated
selective modal sensor theory has been defined. By obeying those
conditions stipulated in the theorem, a sensor may be developed
whose measurement is a selectively weighted sum of modal veloc-
ities. Moreover, the conditions stipulated in Theorem 3 are iden-
tical to those required by Theorem 1 with the exception that the
modal actuator requires that V() = g(’§V (t) whereas the modal
sensor requires that i, () = Zk . g() i*(1). Note that plezoelectrlc
transducers have already been employed successfully in practice
as self-sensing actuation devices.?!-?? Theorems 1 and 3 may thus
be implemented simultaneously on the same set of piezolaminae,
yielding true SMTs.

V. Orthotropic Plate SMTs

A. System Description

If the composite system is orthotropic (B = 0) so that there is
no inherent mechanical coupling between bending and stretching
motions, then the SMT design constraints thus far specified may be
significantly relaxed. The geometry of the system now under con-
sideration is assumed to be equivalent to that shown in Fig. 1, but the
substrate is orthotropic and the reference plane is now assumed to be
the composite neutral plane. The transverse displacement w, there-
fore, is not related to the axial displacements u and v. Hence, the
equations of motion for the orthotropic system may be written in
the form of two uncoupled equations, the first of which describes
pure membrane stretching and shearing motions and the second of
which describes pure bending and twisting motions

1 (<
G + G0 + Koty = =D ( > eiAkvk> (48)

k=1

1
Wi + Cpw, + Kpw = —713’ (kz:l z"e"A"V") (49)
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where _
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dx dy

The material constant matrices A, D € %> are defined in Eq. (6).
The damping operators C; and C,, are defined in the same manner
as C was defined for the anisotropic plate problem [Eq. (17)].

In the context of general orthotropic plates the term stretching
is assumed to include both axial stretching and in-plane shearing
motions in its usage, whereas bending is assumed to include twisting
motions as well. For future reference bending and stretching modes,
which are explicit functions of w(x, y) and x;,(x, y), respectively,
are referred to as (¢;);, and (¢;),. The following definitions are then
introduced:

CRPAE [ D i@, Zaﬂ%} (53)

=1 =1

B. Orthotropic SMT Theory

Consider the imposition of the following two SMT construct con-
ditions.

Condition C6: There are at least three piezoelectrically active
layers (N > 3).

Condition C7: The piezoproperty vectors {ef}"_, associated with
at least three layers are different. When the same sample of piezo-
stock material is used throughout, €3, (6% = 0 deg) # €3,(6* = 0
deg) and the skew angles of at least three laminae must be different
in the range —90 < 6% < 90 deg.

The following proposition follows directly from Postulate 1.

Proposmon 2: If Conditions C6 and C7 are satisfied, then the
matrix [Z:,‘_I ek (e*)'] is invertible.

The orthotropic plate SMA design methodology is then a direct
consequence of the following theorem.

Theorem 4: Consider an orthotropic plate containing n piezo-
laminae whose equations of motion are given by Eq. (48) for pure
stretching motions and Eq. (49) for pure bending motions. Let the
time bound control input V¥(¢) of each piezolamina be propor-
tional to an identical time-dependent control function V,(¢) such
that V¥(t) = gkV,(r). Assume that Conditions C6 and C7 are sat-
isfied. If the piezoelectric field distribution functions of each active
layer are given by

L@y [Z (eﬁ)Tm.f o4

1
in pure stretching such that g}, is defined as

N —1
[Ze () } A'D_rd}‘.’ (55)

k=1

g()
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or by

-1
Ak = () | DD (56)

in pure bending such that g¢ is deﬁned as
-1

gk = max .—( et) <Z (e’;)’) DD,

(57)
oA |k

then the equations of motion of either system reduce to the form

ijrn + (by + C()Am)qm + AnGm = L Z10)] (58)

for all integers m > 0.

Proof: Returning respectively to Eqs. (48) and (49), assuming
that VA1) = g(’§ V. (1), and applying Eqs. (54) and (56), respectively,
leads to the following expressions:

X5 )ee + Cy (g )y + Ksxg
1 u y J
= -—Vu(t);Z’D;,[Ze J[Ze’;(e’;)] AD P,
: k=1 k=1

(59
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Applying Proposition 2 and recalling Eq. (51), the preceding equa-
tions reduce to the form

k
€,

M=
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(e';)/jl DD,

(60)

x~
lf

1

@) + Co(x5)s + Kyxy = =V, (1)K, b, (61)
wy + Cyw, + ICw = =V, () Kby (62)

Theorem 2 then allows the expressions to be transformed into
Eq. (58). ]

To complete the discussion, a sensor theorem is now presented
whose proof follows that of Theorem 3.

Theorem 5: Consider an orthotropic plate containing n piezo-
laminae whose equations of motion are given by Eq. (48) for pure
stretching motions and Eq. (49) for pure bending motions. Let the
measured state i, (¢) be formed from the weighted sum of the sensed
currents of each individual lamina such that i,(¢) = Zk_l ghi* ().
Assume that Conditions C6 and C7 are satisfied. Then, if the piezo-
electric field distribution functions of each active layer are given by
Egs. (54) and (55) in pure stretching or by Eqs. (56) and (57) in pure
bending, the measured state reduces to the form

() = —ph ) _ o d;(0)

j=1

V1. Conclusions

SMTs are developed for piezolaminated anisotropic plates in
which the contribution of each mode to the sensing or excitation of
the composite anisotropic plate system may be selectively weighted.
SMTs are formed by combining the piezoelectric effect of several
piezolaminae. Anisotropic plate SMTs are shown to require three
coupled piezolaminate pairs. Each coupled pair contains a single
layer located anywhere strictly above the reference plane that is
complemented by a second layer collocated below the reference
plane. Piezoelectric field properties associated with each layer in a
given couple must be identical, although the field properties of all
three couples must be uniquely different. Individual actuator inputs
must be proportional to a common control function or, conversely,
the sensed output must be a weighted sum of the measurements ac-
quired by individual layers. A piezoelectric field function algorithm
was developed to provide a systematic methodology for choosing the
required spatial geometries of each sublayer. SMTs for orthotropic
systems are shown to require three piezolaminate layers rather than
three coupled pairs. The design constraints may be relaxed further
when the system under consideration is isotropic.

In our companion paper, an SMC theory is derived in which SMTs
are optimally utilized to most effectively realize any admissible
performance objective. A numerical example is given that serves to
validate both the SMT and SMC theories.

Appendix A: Piezoelectric Field Matrix Invertibility
A. Skew Angle Influence
Although in principle it is possible to choose from several dif-
ferent samples of PVDF whose field vectors e* are different (so as
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to satisfy Condition C5), in most situations it will more likely be
preferable to use the same random sampling of commercially avail-
able PVDF film for all active layers in the structure. If the same
standard sample of PVDF film is to be used throughout, one must
consider that commercially available PVDF film is normally poled
such that ) is zero.” Thus, the formulation to follow will concern
the common case in which the constitutive properties of all layers
are assumed identical, and eg’ﬁ = 0. The skewing of each lamina
will then be considered so as to cause the piezofield properties of
each layer to differ with respect to the principal geometric frame,
and criteria will be established for the skew angle choices.

The piezoelectric constants of the kth layer are related to the skew
angle 6% of that layer as defined in Fig. 1 through the following
relationship?*:

k
e m?  n? —2mn e
e = n? m? 2mn egz (A1)
e |, mn —mn m?—n? 5

where m = cos6*, n = sin@*, and [}, €3, e%] without the
subscript k are the values of the piezoelectric constants of any layer
when 6% = 0. From Eq. (A1) it is evident that the necessary and
sufficient condition to satisfy Postulate 1, namely, that each of the
vectors in the set {e’;}?c:l are linearly independent, is realized if
and only if all of the skew angles in the set {#*: — 90 < 6* < 90
deg}? _, are different. If the film sample is piezoelectrically unjaxial,
ie., € = e}, then e = O for any skew angle and Postulate 1 can
not be satisfied.

B. Optimal Skew Angle Choices
Although any choice of skew angles in which all 6* are different
yields an invertible form of the matrix E,, where

3
E 2 Z e (e’;)/ (A2)
k=1

it will be useful to know which choice in skew angles maximizes the
determinant of E, such that Ey is the least singular and, also, which
range of skew angle choices will cause E, to be well conditioned
(with respect to inversion). For simplicity, the set of possible choices
for 8% in the analysis to follow will be constrained by the assumption
that the layers are chosen so as to preserve symmetry with respect
to the principal x axis of the plate.

Defining the quantities
e ep) = {%(6(3)1 + 8(3)2)' %(‘3(3)1 - e(s)z)} (A3)
then for an ordinary sample of PVDF for which €} = 0,
(e31)5 = e +€pci (A9)
(e)f = €5 — €pCi (AS)
(e36) = €ps” (A6)

where ¢, = cos26* and s; = sin26*. The matrix E, may then be
expressed in the form

2 2 2_ 2.2
3 (es +epce) €5€ S + €,SiCr e, — L0
E : 2 2.2 2
Ey= esepsy+ €,5kCr e,S; €s€epSy — €, Sk Ck
. 2_ 2.2 2 _ 2
k=1 e —€,0; €sepSy = €,5kCk (es —epcy)

(A7)

Letting {6y, 62, 83} = {0, ¥, —y} and solving for the determinant of
E, then yields

IEoll = 256€je? cos™y siny (A8)

which is maximized at y = 60 deg so as to imply a skew angle
grouping that is any combination of the angles {—60, 0 , 60 deg}.
The ratio N, 2 Amin /Amax (the reciprocal of the condition number)
is plotted in Fig. Al for all integer values of the ratio R = €3, /e3,
between 1 and 10. N, is independent of actual values chosen for
€9, and €}, and is indicative of the sensitivity of Eq. (30) to roundoff

o
n

condition number
=
S

R=1

0 30 60 90
degrees

Fig. A1 Reciprocal condition number N, as a function of the angle v;
plots are given for all integer values of R between 1 and 10.

error or to errors in the estiination of K,£¢. A well-conditioned
matrix is typically defined® as one in which N, > 1072, Numerical
results show that N, > 1072 when R > 1.3. Clearly, the greater
the ratio of e}, to €J,, the more favorably conditioned is the matrix
E,. 1t is evident from the plot that N, is maximized for y = 52
deg. Figure A1 should be referenced when assessing one’s choice
in skew angles.

Appendix B: Operator Self-Adjointness

Proposition 1 is now proven. Recall the proposition.

Proposition 1. If the distributed forces acting on the plate can be
expressed as f = —V,(¢+)Kx, for some x, € §, then the operators
C and K are self-adjoint.

Proof: Since C and K are linear operators, it is evident from
Eq. (17) that the operator C is self-adjoint if and only if the operator
K is self-adjoint. K is self-adjoint if

(xp, Kxp) = (x,, Kx,) B1)

for any arbitrary x,, x, € S.Inintegral form the left side of Eq. (B1)
becomes

x,, Kxg) = f f x),Kx, dA (B2)
A

Recalling the definition for K [Eq. (15)], Eq. (B2) becomes
1
(xp, Kx,y) = p_h // x;,‘D’t(Kaé’xq) dA (B3)
A

Given that f = —V,(t) Kx, and recalling that IC£ (1/ph)
D' (K,E), it is evident from Eq. (34) that

N
D A VE =V, (0K, Ex, (B4)

k=1

The force and moment resuitants as described by Eq. (13) are then
written as

N ,
[ M] = —K,Ex — V,()K,Ex, (B5)

Suppose that the composite plate system under study is subject to a
time-varying displacement field of the form x = x,q (¢) where ¢ ()
represents an arbitrarily chosen time-dependent function. Applying
Eq. (BS), the moment and force resultants due to the displacement
field are then described as

N
[M] £ —[g(t) + VaIK,Ex, (B6)
q

Substituting Eq. (B6) into Eq. (B3) then yields

(x,, Kx,) = ~K (D) ff x’p‘D’[Z] dA (B7)
A q



Downloaded by TECHNION - ISRAEL INST OF TECH on April 14, 2016 | http://arc.aiaa.org | DOI: 10.2514/3.13320

MILLER, OSHMAN, AND ABRAMOVICH 1875

where

1
A
KO= a0 vl B8

Recalling Eq. (4),

’D[Z] -

Expressing x, as

[(Nl)x + (Nﬁ)y]q
[(Ne)x + (N2),], (B9)
[(M)sx + 2(Me)sy + (M2)yy ),

up(x,y)
X, = | vp(x,y) (B10)
wp(x, y)
Eqgs. (B9) and (B10) may be substituted into Eq. (B7) such that

<xpv ’Cxq) = —K(t) /f {up[(Nl)x + (N6)y]q + vp[(N6)x
A

+ (NZ)y]q + wp[(Ml)xx + 2(M6)xy

Integrating the preceding equation by parts yields

+(My,),}dA  (BID)

(xps K:xq) =K@ // {(Nl)q(ux)[z + (N6)q[uy + Ux]p
A

+ (NZ)q(Uy)p - (Ml)q (wxx)p - (Mﬁ)q(zwxy)p

— (M) (wyy)p}dA+ I + I (B12)

where I, and I, are defined as the line integrals

Ly/2
=_K(t)f up(Nl)q+vp(N6)q+wp[(M1)x+(M6)y]q
(Lp/2)

x=Lg4/2

= (W), (M) ~ (W), (Me)g },_ % dy (B13)

La/2
=- K(t)f {up(Ne)g +vp(N2)g + w,p[(Me) + (M), ],
(La/2)

x=Lp/2

— (w)p(Me)g — (), (M)}

Since x,,x, € S and, thus, satisfy all boundary conditions, the
boundary integrals I; and I, are identically zero. Reconstructing
Eq. (B12) in matrix form,

dx (B14)

<xp,xx>——1<<r)/ f [N Ns No My Mg M),(€x,)dA

(B15)
or, identically,

(xp, Kxg) = K(t)/f[ :| (Exp)dA (B16)

Recalling Egs. (B6) and (B8), the preceding expression may be
recast in the form

(xp, Kxy) = L f f (Ex,) K, (Ex,) dA (B17)
ph J J,

The integral in the preceding expression is a scalar quantity so that
its transpose must equal itself. Realizing that K, is a symmetric
matrix, Eq. (B17) implies that

1
. Koxg) = — f / (Ex,) Ko (Ex,) dA = (x,, Kx,)
A

and Proposition 1 is thus proven. a
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