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Novel Adaptive Generalized Likelihood Ratio Detector
with Application to Maneuvering Target Tracking
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A novel adaptive jump-detection algorithm is introduced for scenarios involving abrupt changes in the inputs
to linear systems, such as those that might occur in tracking maneuvering targets. Improving upon the standard
generalized likelihood ratio (GLR) detector, presented over two decades ago, the new algorithm is characterized
by increased robustness with respect to uncertainties in the system input, which frequently arise in the context
of target tracking applications. The performance of the new algorithm is demonstrated in an endgame scenario
involving an interceptor missile and a maneuerable tactical ballistic missile. An extensive Monte Carlo simulation
study is used to demonstrate the superiority of the method over the conventional GLR method in terms of its much
smaller observed false alarm probability, which actually agrees with the theoretical value. The new algorithm also
facilitates a correct isolation of the abrupt change, is consistent in the usual statistical sense, and generally proves
more reliable.

I. Introduction

M ANY stochastic processes encountered in applications such
as maneuvering target tracking, pattern recognition, and fault

detection are characterized by the occurrence of abrupt changes
at unknown time instants. An abrupt change is defined as a rapid
change (a change that occurs over a single sampling interval) in the
probability density function of the process (see Ref. 1, p. 1). Such
abrupt changes are usually diagnosed by employing specialized de-
tector algorithms.2 This diagnosis task is performed in a two-stage
manner (see Ref. 3, p. 218) in the first stage (referred to as detection),
a decision is made whether an abrupt change has indeed occurred;
in the second stage (referred to as isolation), the abrupt change is
confirmed, and its estimated parametric characteristics are accepted
as valid.

There is an inherent delay between the moment at which an abrupt
change occurs and the time instant at which it is detected. This de-
tection delay stems from the need to collect sufficient information
to render a detection with some reliability (usually, with respect to a
prespecified false alarm probability). The minimum average delay of
detection is achieved by Bayesian detectors.4 Unfortunately, optimal
Bayesian detectors are in general not finite dimensional whenever
the value of the system input after the change is unknown, as it is
frequently encountered in target tracking applications (see Ref. 5,
p. 23). A finite dimensional alternative in such systems is provided
by the class of generalized likelihood ratio (GLR) type detectors.
GLR-type detectors have been shown to be asymptotically opti-
mal under several criteria related to quickest detection.6 In previous
studies,7,8 the “standard” GLR detector algorithm9 has been applied
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successfully to maneuver detection. These studies assumed the tar-
get maneuver to be unknown; however, the system inputs before
the maneuver were assumed known. As demonstrated in this paper,
in situations in which the values of the system inputs are unknown
both before and during the target maneuver, the standard GLR de-
tector algorithm9 exhibits a degraded false alarm probability and
often fails to isolate the change correctly.

A new detection algorithm, termed adaptive-H0 GLR detector,
is introduced herein to alleviate the aforementioned phenomenon
whenever the inputs are unknown both before and during the ma-
neuver. The new method can be viewed as a generalization of the
GLR detector to isolate additive abrupt changes in unknown inputs to
linear systems. As the standard GLR detector does, the adaptive-H0

GLR detector assumes a realization for the unknown inputs before
the abrupt change; the latter is referred to as the “reference realiza-
tion.” However, in contrast with the standard GLR algorithm, the
reference realization now belongs to a parametric family of func-
tions whose parameter is estimated online. Hence, the new algorithm
is equipped with the ability to adapt, online, its reference realization
conditioned on the measurements received, thus alleviating the need
for an a priori and exact realization of the unknown inputs before
the abrupt change.

In applications involving a maneuvering target, the ability to
quickly and reliably diagnose target maneuvers permits the improve-
ment of state estimation10 and guidance.11 In an example application
to an endgame scenario involving the interception of a maneuvering
tactical ballistic missile (TBM), the adaptive-H0 algorithm proves to
be more robust with respect to uncertainties in the target maneuvers
than the standard GLR detector. Specifically, it is shown to provide
a false alarm probability, which is four times smaller than that of the
standard GLR detector. Additionally, and contrary to the standard
GLR detector, this false alarm probability matches the correspond-
ing theoretical probability calculated as a function of the threshold
parameter of the GLR test. The new algorithm is also shown to be
more reliable in the isolation of the target maneuvers.

The remainder of this paper is organized as follows. The problem
statement is formulated in the next section. A general description of
the GLR detection procedure is then presented, followed by an out-
line of the standard GLR detector algorithm.9 The main contribution
of this paper, which is the adaptive-H0 GLR detection algorithm,
is presented next. In the next section, the adaptive-H0 detector is
implemented and tested in a missile guidance endgame scenario,
involving the interception of a randomly maneuvering TBM. This
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scenario is used to assess and demonstrate the detection and isola-
tion capabilities of the new detector via an extensive Monte Carlo
simulation, in which the new adaptive-H0 and the standard GLR de-
tectors are compared. Concluding remarks are provided in the final
section.

II. Problem Statement
For simplicity, discrete-time stochastic linear systems are consid-

ered whose models take the following form:

x(k + 1) = F(k)x(k) + G1(k)u(k) + G2(k)z(k) + ε(k)

x ∈ Rn, u ∈ Rr , z ∈ Rs (1)

ym(k) = H(k)x(k) + η(k), ym ∈ Rp (2)

where ε(k) ∼ N [0, Qε(k)] and η(k) ∼ N [0, Qη(k)]. It is assumed
that u is a known input function, z is an unknown input function
subject to additive abrupt changes, ym is a measurement, and w
and η are independent Gaussian sequences representing the process
and measurement noises, respectively. It is further assumed that the
inputs u and z are bounded, so that

|u(k)| ≤ umax, |z(k)| ≤ zmax, a.e. k = 0, 1, . . . (3)

Let k� denote the time instant of the most recent abrupt change. For
practical reasons, it is assumed that the length of the time interval
between successive abrupt changes is bounded from below by w�.

The problem is to diagnose, online, abrupt changes in the system
(1) and (2). The diagnosis task requires minimizing the average
detection delay, the false alarm probability, and the error in the
estimated value of z.

III. Standard GLR Detector
In the context of the problem specified, the task of the detector is

to provide a full diagnosis of the unknown input z. First presented
in Ref. 9, the idea behind the standard GLR detection algorithm
is to test a number of prespecified hypotheses concerning the past
history of z. The GLR test employs ratios of likelihood functions
matched to these hypotheses. The test belongs to the class of se-
quential probability ratio test algorithms. The detection algorithm
calculates the likelihood ratios using the time series of residuals (in-
novations process) generated by a single Kalman filter. This Kalman
filter is designed to act as a whitening filter over time intervals with
no abrupt changes. The GLR detector also yields a maximum likeli-
hood (ML) estimate of the onset time of the abrupt change and a ML
estimate of the realization of the unknown input after the change:
z(l), l ∈ [k�, k].

Fig. 1 Schematic flow diagram of the standard GLR detector.

At any time instant k, the input signals to the GLR detection pro-
cedure are 1) the measurements ym(k), and 2) the set of hypotheses
Sk (defined in Sec. III.A) for k ≥ 0. Let E(k) be a binary indicator
random variable (the detection indicator), such that

E(k)
�=

{
1 An abrupt change has been detected at time k

0 otherwise (4)

Similarly, let E R(k) be a binary indicator random variable (the iso-
lation indicator), such that

E R(k)
�=

{
1 An abrupt change has been detected at time k

0 otherwise (5)

The output signals from the GLR detection procedure are 1) the
estimated onset time of the abrupt change k̂�, 2) the estimated value
ẑML of the unknown input z after the change (this also necessitates
identifying the class of parametric functions to which z belongs),
3) the state of the detection indicator E(k), and 4) the state of the iso-
lation indicator E R(k). Figure 1 depicts a schematic block diagram
of the standard GLR algorithm.

The state of the pair {E(k), E R(k)} describes one of the following
mutually exclusive situations:

1) {E(k), E R(k)} = {0, 0}: in this case no abrupt change has been
detected at t = k. All past detected abrupt changes, if any, have been
isolated.

2) {E(k), E R(k)} = {1, 0}: in this case an abrupt change has been
detected at time k, which has not yet been isolated.

3) {E(k), E R(k)} = {1, 1}: in this case an abrupt change has been
detected and isolated at time k. To allow for the detection of subse-
quent abrupt changes, the states of both indicators are reset to zero
at time instant k + 1, that is, {E(k + 1), E R(k + 1)} = {0, 0} (unless
another abrupt change has been detected at time k + 1, in which
case {E(k + 1), E R(k + 1)} = {1, 0}).

Using the detection and isolation indicators, a false detection
(false alarm) event is defined as the event that results in the se-
quence {E(k − 1) = 1, E R(k − 1) = 0, E(k) = 0, E R(k) = 0}. The
various cases described herein are shown schematically in Fig. 2.
The procedures for determining the values of the binary variables
E, E R are outlined in the sequel.

The GLR algorithm is sequential in nature, as concisely detailed
ins the ensuing, and its computational load increases linearly with
the number of considered hypotheses. For a more complete descrip-
tion, the interested reader is referred to Ref. 9.

A. Set of Hypotheses
A finite set of hypotheses Sk = {H0,H1, . . . ,HN } is first intro-

duced to adequately describe all relevant realizations of the time
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a) Detection and isolation of a single abrupt change

b) False detection

c) Detection and isolation of two close-by abrupt changes

Fig. 2 Detection and isolation indicators’ states: J, jump; D, detection;
I&R, isolation and reset of both indicators.

series z. This set of hypotheses must be updated at each current
time instant k. Each hypothesis Hi ∈ Sk corresponds to an assump-
tion about the absolute onset time of the abrupt change k�

i (k) and
an assumption about the possible class of parametric functions that
adequately characterizes the shape of the change. The hypotheses
describe at most a single hypothetical abrupt change. Hence, the
hypotheses describe the realization of the time series z only in the
time interval [k�

0, k], where k�
0 is the absolute onset time instant of

the last known change in z.
Let { fi (·, k�

i )}N
i = 1 be a set of basis functions, representing all

feasible classes of abrupt change functions at time k. A particular
shape of a change will then be referred to as fi (l, k�

i ), l ∈ [k�
i , k], for

some i ∈ {1, 2, . . . N }, whereas the actual change function would
be νi fi (l, k�

i ), l ∈ [k�
i , k], where νi is the change intensity. The GLR

hypotheses do not require an assumption about the actual value of the
change intensity, as this value will be estimated later on by scaling.
The members of the set of hypotheses Sk are, hence, defined as
follows:

H0 : z(l) = aH0(l), l = k∗
0 , . . . , k (6a)

Hi : z(l) = aH0(l) + 1
(
k∗

i

)
νi fi

(
l, k�

i

)
l = k∗

0 , . . . , k, i = 1, . . . , N (6b)

where 1(·) is the unit step function. The hypothesisH0 is interpreted
as the absence of any recent abrupt changes in the random process z,

and it assumes a specific realization aH0 for the process z, whereas
the hypothesisHi corresponds to the occurrence of an abrupt change,
of shape fi , starting at time instant k�

i . All of the hypotheses imply
that only a single abrupt change can occur in the interval [k�

0, k]. In
this context, it is clear how the parameters k�

i (k) should be chosen at
each k: because the length of the time interval between successive
abrupt changes has been assumed to be bounded from below by
w�, the parameters must be chosen so that (k − w�) < k�

i (k) < k for
all i = 1, . . . , N . It is hence implied that all of the abrupt changes
outside the maximal sliding window [k − w�, k] have been detected
and isolated prior to k.

In situations where w� is large, it can be desirable to employ a slid-
ing window smaller than the maximal sliding window to reduce the

computational load. The resulting effective sliding window (ESW)
has a width w�

eff < w� and contains all of the hypotheses with an
onset time in the interval (k − w�

eff) < k�
i (k) < k. The detector loses

little by employing an ESW provided that w�
eff is sufficiently large

and that some additional hypotheses are sparsely distributed over
the interval (k − w�) < k�

i (k) ≤ (k − w�
eff), as discussed in Ref. 6.

For the purpose of isolating the abrupt change, one of the hypotheses
that previously slid out of the ESW can be included as a member of
the set of additional hypotheses. This additional hypothesis keeps
track of a detected change whenever it slides out of the ESW.

B. Reference Kalman Filter
To evaluate the likelihood of the individual hypotheses, a refer-

ence Kalman filter is implemented for the system (1) and (2), based
on the assumption that hypothesis H0 is true:

x̂(k + 1|k) = F(k)x̂(k|k) + G1(k)u(k) + G2(k)aH0(k) (7)

x̂(k|k) = x̂(k|k − 1) + K (k)γ (k) (8)

where aH0 is the assumed realization for the process z. The mea-
surement residual γ (k) is

γ (k) = ym(k) − H(k)x̂(k|k − 1) (9)

The gain K (k), the state estimation covariance P(k|k), and the
residual covariance V (k) satisfy the Kalman-filter Riccati equation,
solved recursively by

K (k) = P(k|k − 1)H T (k)V −1(k) (10)

P(k + 1|k) = F(k)P(k|k)F T (k) + Qw(k) (11)

P(k|k) = P(k|k − 1) − K (k)H(k)P(k|k − 1) (12)

V (k) = H(k)P(k|k − 1)H T (k) + Qη(k) (13)

To calculate the likelihood ratios, the outputs needed from the ref-
erence Kalman filter are K (k), γ (k), and V (k).

C. Normalized Signatures
As mentioned earlier, the reference Kalman filter is matched to an

hypothesis assuming a realization aH0 for the process z. Whenever
an abrupt change occurs, the difference between the true realization
of z and the one employed by the Kalman filter manifests itself by
a drift in the mean of the residuals (see Ref. 1, pp. 238–240). This
drift is the so-called signature of the abrupt change.

By assuming a normalized magnitude for the abrupt change, that
is, by employing a signature shape fi (k, k�

i ), a normalized signature
ρ(k, i) can be defined. The latter is recursively calculated as the
product9

ρ(k, i) = H(k)	(k, i), i ∈ {1, . . . , N } (14)

where

	(l, i) = G2(k) fi

(
l, k�

i

) + F(l − 1)	(l − 1, i)

l = k�
i + 1, . . . , k (15a)

	
(
k�

i , i
) = 0 (15b)

and

F(l − 1)
�= F(k)[I − K (l − 1)H(k)]

l = k�
i + 1, . . . , k (15c)

The signature of an abrupt change and the normalized signature
are related by a scaling factor. The value of this scaling factor is
calculated as the ratio between the abrupt change and the shape of
this abrupt change, that is, the scaling factor is the change intensity
νi defined earlier.
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Remark 1: For the purpose of change detection, the signature of
a change should be large. Hence, the reference Kalman filter should
be characterized by a low bandwidth, as then the signature will be
more pronounced after a change occurs.

D. Log-Likelihood Ratios
To calculate the log-likelihood ratios, it is required to specify the

realization of the process z after the abrupt change. Because the
latter is unknown, its ML estimate is used instead. The ML estimate
of the process z is obtained under the assumption that hypothesisHi

is true. The generalized log-likelihood ratio l(k, i) corresponding to
hypotheses Hi and H0 is then given by

l(k, i) = 1
2
[d2(k, i)/J (k, i)], i ∈ {1, . . . , N } (16)

where J (k, i) is the Kullback–Leibler divergenc9 and d(k, i) is the
signature correlation of hypothesis Hi ∈Sk . The Kullback–Leibler
divergence is a measure of the “distance” between the hypotheses
Hi and H0 in Sk and is calculated recursively as follows:

J (l, i) = J (l − 1, i) + ρT (l, i)V −1(l)ρ(k, i)

l = k�
i + 1, . . . , k (17a)

J
(
k�

i , i
) = 0 (17b)

The signature correlation is interpreted as a least-squares estimate of
the value of the abrupt change, assuming that Hi is true and that no
prior information about the value of the abrupt change is available.9

It is recursively calculated as follows:

d(l, i) = d(l − 1, i) + ρT (l, i)V −1(l)γ (l)

l = k�
i + 1, . . . , k (18a)

d
(
k�

i , i
) = 0 (18b)

E. GLR Test
The GLR test establishes the validity of the hypotheses. The test

is performed in two stages. First, the index i �
k of the hypothesis

maximizing the log-likelihood ratios is determined:

i �
k = arg max

i ∈ {1,...,N }
{l(k, i)} (19)

Next, the validity of the most likely hypothesis Hi� is assessed by
comparing the maximized log-likelihood ratio with the value of a
preselected threshold h:

l
(
k, i �

k

)H0≤
>
Hi∗

k

h (20)

and the detection indicator E(k) is set accordingly:

E(k) =
{

0 H0 is true

1 Hi�
k

is true (21)

The value of h is selected as a function of the predefined proba-
bility of false alarm α. It can be shown that this probability can be
computed from a χ 2 distribution with one degree of freedom,9 so
that the value of h satisfies

α =
∫ ∞

h

χ2(u) du (22)

When an upper bound in the magnitude of the abrupt change is
known a priori, the GLR test can incorporate this additional infor-
mation by modifying Eq. (19) as follows (see Ref. 1, p. 53):

i �
k = arg max

i ∈ {1,...,N }

{
l(k, i)||ẑ(k, i)| < zmax

ML

}
(23)

where ẑ(k, i) is the hypothesis-matched estimate of the abrupt
change and zmax

ML is an upper bound on the magnitude of this es-
timate. The value of zmax

ML should be larger than the a priori known
upper bound, to allow for the presence of estimation errors in ẑ(k, i).
The estimate ẑ(k, i) is given by

ẑ(k, i)
�= aH0(k) + ν̂(k, i) fi

(
k, k�

i

)
(24)

In Eq. (24), the scaling factor ν̂(k, i) matches the shape employed
by hypothesis Hi with the estimate of z and is calculated by

ν̂(k, i) = d(k, i)/J (k, i) (25)

F. ML Estimates
The GLR detector provides the ML estimate k̂� of the onset time

of the abrupt change and the ML estimate ẑML of the value of the

abrupt change. The ML estimate k̂� is given by

k̂�(k) =
{

k̂�
0(k) E(k) = 0

k�
i� (k) E(k) = 1 (26)

where k̂�
0 and k̂�

i� are the time instants of the last confirmed abrupt
change and of the hypothesis of index i �

k , respectively.

k̂�
0(k) = k̂�

0(k − 1), k̂�
0(0) = 0 (27)

The value of k̂�
0(k − 1) is updated by the reinitialization module

described in the next subsection. The ML estimate ẑML is given by

ẑML(k) =
{

aH0(k) E(k) = 0

aH0(k) + ν̂
(
k, i �

k

)
fi�

(
k, k�

i�

)
E(k) = 1 (28)

G. Reinitialization Procedure
The purpose of the reinitialization of the detector is to allow for

the detection of more than one abrupt change. The time instant of this
reinitialization is application dependent. In fault detection applica-
tions, for which no accurate isolation of the change is required, the
reinitialization is usually carried out immediately after the detection
of an abrupt change. In target tracking applications, the reinitializa-
tion is delayed to allow for a more accurate isolation of the target
maneuver characteristics. Hence, in this work a reinitialization of
the standard GLR detector, indicated by E R(k) = 1, is performed
whenever both an abrupt change is detected, and the ML estimate
of the time instant of the change is located at the lower end of the
maximal sliding window, that is,

E R(k) =
{

1 {E(k) = 1} ∧ {k̂� = k − w�}
0 otherwise (29)

The reinitialization is carried out by modifying the hypothesisH0

so that it encapsulates the history of the process z prior to the lower
end of the effective sliding window and by discarding the previously
collected measurements. Such a reinitialization can be performed
as follows 7.9:

1) The reference Kalman filter is matched to the hypothesis Hi�

by setting

aH0
new(l) = aH0

old (l) + ν̂
(
k, i �

k

)
fi�

(
l, k�

i�

)
, l = k, . . . (30)

x̂(k|k)H0
new = x̂(k|k)

H0
old + ν̂

(
k, i �

k

)
ϒ

(
k, i �

k

)
(31)

P(k|k)H0
new = P(k|k)

H0
old + ϒ

(
k, i �

k

)
J −1

(
k, i �

k

)
ϒT

(
k, i �

k

)
(32)

where

ϒ
(
k, i �

k

) �= [I − K (k)H(k)]	
(
k, i �

k

)
(33)
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and the subscripts old and new denote variables before and after
reinitialization, respectively, and the superscript H0 denotes vari-
ables employed by the reference Kalman filter.

2) The likelihood ratios are reset to zero by discarding the already
collected information:

	(k, i) = 0, d(k, i) = 0, J (k, i) = 0

i ∈ {1, . . . , N } (34)

3) The information about the time instant of the confirmed abrupt

change is preserved within k̂�
0:

k̂�
0(k) = k�(k) (35)

IV. Adaptive-H0 GLR Detector
The standard GLR algorithm of the preceding section is based

on the underlying assumption that the chosen realization aH0 is in-
deed the true realization of the process z before the onset of the
abrupt change. In many realistic detection scenarios, this is, how-
ever, seldom the case. To remedy this situation, an improved and ex-
tended version of the standard GLR detector is developed herein by
enabling the reference acceleration for hypothesis H0 to be adapted
online. The flowchart of the adaptive-H0 GLR detector is shown
in Fig. 3. Compared to the standard GLR detector, the adaptive-H0

GLR detector has one more component termed “H0-adaptation.”
Four other components of the standard GLR detector are also mod-
ified or augmented: the set of hypotheses Sk

a , the GLR test, the ML
estimates, and the reinitialization procedure. The calculations of the
normalized signatures and of the log-likelihood ratios are similar to
those of the standard GLR detector; however, in the new algorithm
they employ the augmented set of hypotheses.

A. Augmented Set of Hypotheses
The original set of hypotheses [Eqs. (6)] is now augmented with

hypotheses whose purpose is to describe admissible shapes for a
mismatch between the true realization of the process z and the re-

alization assumed for aH0 . These additional hypotheses are anal-
ogous to H0 in the sense that they assume the absence of abrupt
changes within the maximal sliding window. For simplicity in the
exposition, only a single such additional hypothesis is considered
here. Let ( )N + 1 designate quantities associated with this additional
hypothesis HN + 1, defined as

HN + 1 : z(l) = aH0(l) + νN + 1 fN + 1

(
l, k�

0

)
, l = k�

0, . . . , k
(36)

where fN + 1(, k�
0) is the shape assumed for the mismatch and νN + 1

is the intensity of the mismatch. The augmented set of hypotheses
then becomes Sk

a = {H0,H1, . . . ,HN ,HN + 1}.

Fig. 3 Schematic flow diagram of the adaptive-H0 GLR detector.

B. Modified GLR Test
The GLR test now has the double task of 1) establishing the

validity of the hypotheses, as before and 2) distinguishing between
the event of an abrupt change in the process z and the event of a

mismatch in the realization aH0 . The task of establishing the validity
of the hypotheses is carried out as in the standard GLR detector, but
the index i � is now determined according to

i �
k = arg max

i ∈ {1,...,N ,N + 1}

{
β(i)l(k, i)‖ẑ(k, i)| < zmax

ML

}
(37)

where the factor β is selected such that β(i) = 1 for i ∈ {1, . . . , N }
and β(N + 1) ≥ 1. The purpose of the factor β is to enable the algo-
rithm to favor the selection of the hypothesis HN + 1 whenever the
available information is not sufficient for the task of distinguishing
between the onset of an abrupt change and a mismatch in aH0 . The
validity of the most likely hypothesis Hi� is assessed by comparing
the maximized log-likelihood ratio with the value of a preselected
threshold h:

l
(
k, i �

k

)H0≤
>
Hi∗

k

h (38)

and the value of the detection indicator E(k) is set by Eq. (21),
similarly to the standard GLR detector.

The additional task, of deciding about the type of the event, is car-
ried out by introducing a complementary binary variable E0 whose
value is set according to the rule:

E0(k) =
{

0
{
Hi�

k
is true

} ∧ {i �
k �= N + 1}

1
{
Hi�

k
is true

} ∧ {i �
k = N + 1} (39)

In Eq. (39), E0(k) = 0 indicates the event of an abrupt change in the
process z, whereas E0(k) = 1 indicates the event of a mismatch in

the reference realization aH0 .

C. Modified ML Estimates
The interpretation of the ML estimates provided by the detector

depends on the type of event detected in the earlier stage. In the
event of an abrupt change [E0(k) = 0], there are two ML estimates,
and they concern the onset time instant and the realization of the
abrupt change. These two ML estimates are calculated as in the
standard GLR detector using Eqs. (26) and (28), respectively. In
the event of a mismatch [E0(k) = 1], there is only one ML estimate,
which is the value of the mismatch. There is no estimate of the onset
time of the mismatch in this case because the onset time instant of
the realization aH0 is already known. The ML estimate âH0 of the
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reference realization is given by

âH0(l) = aH0(l) + ν̂(k, N + 1) fN + 1

(
l, k�

0

)
l = k�

0, . . . (40)

D. Adaptation of Hypothesis H0

An adaptation of hypothesis H0 is performed whenever an error
in the reference realization employed by the hypothesis H0 is de-
tected, that is, whenever E0(k) = 1. For consistency with the newly
adapted reference realization, the likelihood ratios, which were cal-
culated with respect to the erroneous reference realization, must be
corrected.

Proposition 1: The adaptation of the H0 hypothesis involves in-
troducing the following corrections to the reference Kalman filter
and the signature correlations:

aH0
new = âH0 (41)

x̂(k|k)H0
new = x̂(k|k)

H0
old + ν̂(k, N + 1)ϒ(k, N + 1) (42)

P(k|k)H0
new = P(k|k)

H0
old

+ ϒ(k, N + 1)J −1(k, N + 1)ϒT (k, N + 1) (43)

d(k, i)new = d(k, i)old − ν̂(k, N + 1)δd(k, i)

i ∈ {1, . . . , N , N + 1} (44)

where the subscripts old and new denote variables before and after
adaptation and where δd(k, i) is obtained from the recursion:

δd(l, i) = δd(l − 1, i) + ρT (l, i)V −1(l)ρ(l, N + 1)

l = k�
i + 1, . . . , k (45a)

δd

(
k�

i , i
) = 0 (45b)

Proof: Equation (41) corrects the realization aH0 , employed by
the reference Kalman filter, by adopting the ML estimate of the
realization of the process z. This modification of aH0 requires a
corresponding correction of the state estimate and the associated
estimation error covariance (previously calculated by the reference
Kalman filter). These corrections are provided by Eqs. (42) and (43)

(Ref. 12), respectively. The adaptation of the aH0 realization does
not require the correction of the normalized signatures and the

Kullback–Leibler divergences because they are not functions of aH0 .

However, the signature correlations are functions of aH0 , and so they
need to be corrected. The signature correlation correction, stated in
Eq. (44), is proven next.

Let aH0
new be the reference realization, adapted using hypothesis

HN + 1, and let aH0
old be the reference realization before the adap-

tation. Let d(k, i)old be the signature correlation calculated using
aH0

old , and let d(k, i)new be the signature correlation calculated us-
ing aH0

new. These signature correlations are, according to Eq. (18a),

d(k, i)new = d(k − 1, i)new + ρT (k, i)V −1(k)γnew(k) (46)

d(k, i)old = d(k − 1, i)old + ρT (k, i)V −1(k)γold(k) (47)

where γnew and γold are the residuals of reference Kalman filters
employing aH0

new or aH0
old , respectively. The distributions of the resid-

uals γnew and γold are

γ (k)new ∼ N [b(k), V (k)] (48)

γ (k)old ∼ N [b(k) + ν̂(k, N + 1)oldρ(k, N + 1), V (k)] (49)

where b is some bias, ρ(k, N + 1) is the normalized signature of
hypothesis HN + 1 [see Eq. (14)], and ν̂(k, N + 1)old is the scaling
factor associated with HN + 1 when aH0

old is employed [see Eq. (25)].
Whenever the realization aH0

new matches the true realization of the
process z, the bias b is identically zero (see Ref. 1, p. 240). Whenever
the realization aH0

new does not match the true realization of the process

z, the bias b is nonzero, and, by virtue of linearity, it is the same in
both Eqs. (48) and (49). Hence, using Eqs. (48) and (49) in Eqs. (46)
and (47), the following key relation is obtained:

d(k, i)new − d(k, i)old = d(k − 1, i)new − d(k − 1, i)old

− ν̂(k, N + 1)oldρ
T (k, i)V −1(k)ρ(k, N + 1) (50)

From the preceding relation and by observing that
d(k�

i , i)new = d(k�
i , i)old = 0, it follows that the relation between the

signature correlations can be rewritten as

d(k, i)new = d(k, i)old − ν̂(k, N + 1)oldδd(k, i) (51)

where

δd(k, i)
�=

k∑
j = k�

i

ρT ( j, i)V −1( j)ρ( j, N + 1) (52)

The normalized correction term δd(k, i) can be interpreted as a cor-
relation between the normalized signatures of the hypotheses Hi

and HN + 1. Rewriting Eq. (52) in a recursive form finally yields
Eqs. (45). �

Finally, the reinitialization procedure is carried out similarly to
the reinitialization in the standard GLR detector, with the addition
that the H0 adaptation module must also be reinitialized, whenever
E R(k) = 1, by setting

δd(k, i) = 0, i ∈ {1, . . . , N , N + 1} (53)

V. Application to Pursuit-Evasion Endgame
The effectiveness of the adaptive-H0 GLR detector is demon-

strated via an application to a pursuit-evasion endgame between
an interceptor missile (the pursuer) and a maneuvering TBM (the
evader). Only the detection and identification performance of the
new algorithm is examined; the resulting performance of the entire
homing loop (incorporating the new detector) in a similar example
is examined in a companion paper.13

The strategy of the evader consists of a bang-bang maneuver
with a single switch over the time interval of the engagement. The
linearized system is represented by Eqs. (1) and (2). The known input
u is the acceleration command of the pursuer, and the unknown input
subject to additive abrupt changes z is interpreted as the evader’s
acceleration command. The engagement’s mathematical model is
described next, where the notation ( )E and ( )P is used to denote
evader- and pursuer-related variables, respectively.

A. Endgame Mathematical Model
The interception endgame is a short-horizon terminal control

problem describing the pursuit of a maneuverable target by a guided
missile. The information structure in such a scenario is generally
imperfect. It is characterized by noise-corrupted measurements, ac-
quired by the guided missile (pursuer), of the relative position of the
target (evader). The evader has no information on the pursuer, but,
being aware that an interception can occur, it can perform evasive
maneuvers. Optimal control and differential game formulations of
the problem,14,15 as well as extensive simulation studies (see Ref. 16,
p. 104), indicate that the most effective evasion maneuver is a judi-
ciously timed direction reversal of the maximum maneuver. Because
of its lack of information about the state of the pursuer, the evader
cannot accurately time the required direction reversal. Because no
maneuvering, or maneuvering in a fixed direction, might lead to
a certain interception, the evasive strategy of the evader has to be
random.

The stochastic dynamical model is expressed in the form:

dx

dt
= f

(
x, ac

P , ac
E

)
(54)

where x is the state of the system, ac
P is the interceptor’s con-

trol input, and ac
E is the target’s acceleration command. The three-

dimensional nonlinear model (54) can be linearized about a nominal



DIONNE ET AL. 471

Fig. 4 Planar engagement geometry.

collision trajectory, determined by the initial line of sight and by the
initial velocity vector of the evader. The pursuer heading angle φP col,
required for collision, is determined by

sin(φP col) = (VE/VP) sin[φE (0)] (55)

where VP and VE are the pursuer and evader velocities, respectively,
andφE is the heading angle of the evader. The linearization facilitates
the decoupling of the three-dimensional model into two identical
sets of planar equations in two perpendicular planes17; thus, a single
model of linearized planar motion can be considered.

A schematic view of the planar endgame geometry is displayed in
Fig. 4. An inertial coordinate system is used, whose X axis is aligned
along the initial line of sight. Note that the respective velocity vectors
are generally not aligned with the reference line of sight, but they
remain close to the direction of the nominal collision course (55).

It is assumed that both the pursuer and the evader move with con-
stant speeds and have bounded lateral accelerations |ac

j | < (ac
j )

max,
j = {E, P}, that are perpendicular to the respective velocity vectors.
Moreover, the maneuvering dynamics of both opponents can be ap-
proximated by first-order transfer functions with time constants τP

and τE , respectively.
The (deterministic) nonlinear equations of the planar interception

scenario are

ẋP = VP cos(φP), ẋE = VE cos(φE ) (56a)

ẏP = VP sin(φP), ẏE = VE sin(φE ) (56b)

φ̇P = aP/VP , φ̇E = aE/VE (56c)

ȧP = (
ac

P − aP

)/
τP , ȧE = (

ac
E − aE

)/
τE (56d)

where xP and yP are the positions of the pursuer along the X and
Y axes, respectively; xE and yE are the positions of the evader
along the X and Y axes, respectively; and aP and aE are the lateral
accelerations of the pursuer and evader, respectively.

To facilitate linearization, it is assumed that the heading angles
φP and φE are close to the directions of the nominal collision course
(55). Let

x = [x1 x2 x3 x4]T �=
[

y
dy

dt
aE aP

]T

(57)

be the state vector of the linearized problem, where y
�= yE − yP is

the lateral separation between the evader and the pursuer, and dy/dt
is the relative lateral velocity. The corresponding linearized differ-
ential equations of relative planar motion normal to the reference
line and the respective initial conditions are

ẋ1 = x2, x1(0) = 0 (58a)

ẋ2 = x3 − x4, x2(0) = dy

dt

∣∣∣∣
t = 0

(58b)

ẋ3 = ac
E − x3

τE
, x3(0) = 0 (58c)

ẋ4 = ac
P − x4

τP
, x4(0) = 0 (58d)

The nonzero initial condition represents the difference between the
respective initial velocity components that are not aligned with the
initial (reference) line of sight. Because of the assumption of small
deviations from the collision geometry, this difference is small com-
pared with the components along the line of sight. The linearization
also yields a constant closing velocity Vc:

Vc = VP cos(φP col) + VE cos[φE (0)] (59)

allowing the computation of the final time of the interception t f for
a given initial distance X0 as

t f = X0/Vc (60)

Based on Eqs. (58), the matrices A, B1, and B2 of the continuous
time-invariant system are

A =

⎡⎢⎢⎣
0 1 0 0

0 0 1 −1

0 0 −1/τE 0

0 0 0 −1/τP

⎤⎥⎥⎦ , B1 =

⎡⎢⎢⎣
0

0

0

1/τP

⎤⎥⎥⎦

B2 =

⎡⎢⎢⎣
0

0

1/τE

0

⎤⎥⎥⎦ (61)

Thus, the matrices F , G1, and G2 of the discrete-time representation
of the linear system over a sampling time interval � are (see Ref. 18,
p. 192)

F = �(�) = L−1(s I − A)−1|�

=

⎡⎢⎢⎣
1 � τE (� − �E ) −τP(� − �P)

0 1 �E −�P

0 0 e−�/τE 0

0 0 0 e−�/τP

⎤⎥⎥⎦ (62)

G1 =
∫ �

0

�(τ)B1 dτ =

⎡⎢⎢⎣
τP(� − �P) − �2/2

�P − �

0

1 − e−�/τP

⎤⎥⎥⎦ (63)

G2 =
∫ �

0

�(τ)B2 dτ =

⎡⎢⎢⎣
−τE (� − �E ) + �2/2

−�E + �

1 − e−�/τE

0

⎤⎥⎥⎦ (64)

where

�i
�= τi (1 − e−�/τi ), i = {P, E} (65)

Using an onboard sensor, the two measurements available to the pur-
suer are the relative angular position φaz of the evader with respect
to an inertially fixed reference (e.g., the initial line of sight) and the
range r . In the model, the range is measured perfectly, but the mea-
surement of the relative angular position is corrupted by an additive
noise μ with a normal distribution. Using the small-angle approxi-
mation, the linearized measurement of the lateral separation ym is

ym(t) = r(t) sin[φaz(t) + μ(t)]

≈ r(t)φaz(t) + r(t)μ(t)

≈ y(t) + r(t)μ(t) μ(t) ∼ N (0, σ 2) (66)
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Table 1 Simulation parameters

Parameter Value

Pursuer velocity VP = 2300 m/s
Evader velocity VE = 2700 m/s
Pursuer maximal acceleration umax = 30 g
Evader maximal acceleration zmax = 15 g
Pursuer dynamics time constant τP = 0.2 s
Evader dynamics time constant τE = 0.2 s
Initial distance X0 = 20 000 m
Measurement rate f = 100 Hz
False alarm probability α = 0.001
Measurement angular noise standard deviation σ = 0.1 mrad
Maximal magnitude of ẑML zmax

ML
= 100 g

where r(t) denotes the slant range to the evader (assumed to be mea-
sured perfectly by the pursuer) and μ is the angular measurement
noise. Thus, the measurement matrix H and the measurement noise
η in Eq. (2) are given by

H = [1 0 0 0], η(t)
�= r(t)μ ∼ N (0, [r(t)σ ]2) (67)

B. Simulation Description
The simulation parameters are provided in Table 1. The measure-

ment rate f determines the sampling time interval: � = 1/ f . The
initial heading angles are zero, that is, φP(0) = 0 and φE (0) = 0, and
the initial evader’s acceleration command is z(0) = 15 g.

The parameters of the GLR detectors are the following. All of
the hypotheses employ the same normalized shape for the evader’s
maneuver, and this common shape is a constant, that is, fi (·, ·) = 1
for all i . The hypotheses differ only by the onset time instant for the
maneuver. The standard GLR detector employs a maximal sliding
window with a width w� = 70, whereas the adaptive-H0 GLR de-
tector employs a maximal sliding window of width w� = 400 and an
effective sliding window of width w�

eff = 70. For both detectors, the
number of hypotheses in the sliding window is set to N = 70. The
standard GLR detector requires a smaller maximal sliding window
in order to have the ability of distinguishing between two events
during the engagement: one event triggered by a possible mismatch

between the realizations aH0 and z, and another event triggered by
the evader’s maneuver. In the case of the adaptive-H0 GLR detec-
tor, the detection of a mismatch does not prevent the detection of
the evader’s maneuver. As such, the adaptive-H0 GLR detector em-
ploys a larger maximal sliding window to improve the diagnosis of
the evader’s maneuver. To describe a possible mismatch between

the realizations aH0 and z, the adaptive-H0 GLR detector employs
a single hypothesis whose shape is a constant: fN + 1(·, ·) =1. The
initial reference realization employed by the reference Kalman filter

is aH0(·) = 0, that is, aH0 is initially mismatched with respect to z.
The reference Kalman filter uses a nonzero process noise covari-
ance matrix Qk to provide some bandwidth to compensate for the
uncertainties in the isolation of the abrupt change and for possible
nonlinearities. This discrete-time process noise covariance matrix
is computed as

Qk =
∫ �

0

�(τ)Q�T (τ ) dτ, Q = diag{q11, q22, q33, 0} (68)

where the transition matrix � is provided in Eq. (62) and where
q11 = 1 m2, q22 = 10 m2/s2, and q33 = 1 m2/s4. The theoretical false
alarm probability α is used to select the threshold used for the
abrupt change hypotheses in the GLR test, which is computed using
Eq. (22) to be h = 10.83. Using a tuning process, the factor β(N +1),
employed by the GLR test in the adaptive-H0 GLR algorithm, is set
to β(N + 1) = 1.05. The value of the bound zmax

ML , much larger than
zmax, is a soft constraint chosen so as to discard only the few hy-
potheses with an estimate of z obviously wrong, even when taking
into account the worst possible estimation errors.

The detection statistics of the adaptive-H0 GLR detector are com-
pared to those of the standard GLR detector. These statistics are

obtained by performing 40 Monte Carlo simulation studies employ-
ing each of the detectors. Each Monte Carlo simulation study is
characterized by a different value for the onset time of the evader’s
maneuver. For each Monte Carlo simulation study, the engagement
is repeated 1000 times; every repetition employs a different noise
realization. The following criteria were chosen for the comparison:
the observed false alarm probability, the observed missed detection
probability, the average detection delay, the average error in the es-
timation of z during the maneuver, and the standard deviation of this
estimation error.

To present the results, it is useful to define the time to go tgo and
the time to go at the onset of the evader’s maneuver tgosw:

tgo
�= t f − t, t

�= k� (69)

tgosw

�= t f − t�, t� �= k�� (70)

C. Detection Statistics
A decision test (such as the GLR test) involves risks of making

two types of false decisions: rejecting the null hypothesis when it is,
in fact, true (type I error), and accepting the null hypothesis when it
is, in fact, false (type II error) (see Ref. 19, p. 65). Here, the observed
false alarm probability is calculated by dividing the ensemble aver-
age of false alarms before the onset of the evader’s maneuver by the
number of time instants before the onset. The observed false alarm
probability (type I error) is shown in Fig. 5. As seen from Fig. 5, the
adaptive-H0 GLR detector delivers a false alarm probability about
four times smaller than that obtained by the standard GLR detector.
The peak in the false alarm probability, at tgosw ∈ [3.3, 3.8] s, is
interpreted as follows. Whenever the evader performs its maneuver
close to the beginning of the engagement, the standard GLR detector
cannot separate the event caused by a mismatch in aH0 and the event
caused by the evader’s maneuver. Because both events are present
within the sliding window of the detector and because the detector
has no single hypothesis that accounts for both, a larger false alarm
probability results.

In terms of the observed miss detection probability (type II error,
not shown here for conciseness), the standard and the adaptive-
H0 GLR detectors behave almost identically. Both detectors are
able to detect all abrupt changes occurring in the interval tgosw ∈
[0.3, 3.9] s, but are unable to detect changes occurring near the
beginning or the end of the engagement. Near the beginning of
the engagement, there is no sufficient information to reliably dis-
tinguish between the event of a change and an error in the ini-
tial conditions, whereas at the end of the engagement there is
not enough time left to collect sufficient information to deliver a
decision.

Fig. 5 Probabilities of false alarm vs the time instant of the change:
——, adaptive-H0 GLR detector; · · ·, standard GLR detector.
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a) b)

Fig. 6 Average error of the estimate of the evader’s command acceleration for several onset time instant of the bang-bang maneuver: a) adaptive-H0
GLR detector and b) standard GLR detector.

a) b)

Fig. 7 Standard deviation of the estimation error of the evader’s command acceleration for several onset time instant of the bang-bang maneuver:
a) adaptive-H0 GLR detector and b) standard GLR detector.
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Because of the necessity of collecting sufficient information to
deliver a statistically significant decision, there is always a time
delay between the onset time of the evader’s maneuver and the time
instant at which this maneuver is detected. The mean detection delay
depends on the timing of the change (tgosw). The observed value (not
shown here for conciseness) is similar for both the adaptive-H0 and
the standard GLR detectors and is an almost linear function of tgosw,
monotonically increasing from 0.21 s (at tgosw = 0.3 s) to 0.37 s
(at tgosw = 3.6 s). The longer detection time is because the angular
noise is constant, and the displacement noise is proportional to the
range.

The GLR detectors provide an estimate ẑML of the true evader’s
acceleration command z. The mean and standard deviation of the
estimation error, e(k) = ẑML(k) − z(k), are shown in Figs. 6 and 7,
respectively. The results are presented for six different onset times
of the evader’s maneuver. In all cases, the initial mismatch in aH0 is
detected and first corrected at tgo ≈ 3.6 s. At that point, the average
error in the estimate from the standard GLR detector demonstrates a
much larger overshoot than the one from the adaptive-H0 GLR de-
tector. Also, the pulse-like feature in the plots of Fig. 6 is generated
by the evader’s maneuver: the birth of the pulse happens at the onset
of a maneuver, and its left slope corresponds to the actual detection
of the maneuver. The width of the pulse is associated with the detec-
tion delay. Following the detection of the maneuver, both detectors
exhibit an overshoot in the average error of the estimate. This over-
shoot is clearly much larger using the standard GLR detector and
is particularly pronounced for tgosw = 3.5 s. This is attributed to a

mismatch in the employed aH0 during the evader’s maneuver. The
adaptive-H0 GLR detector avoids this pitfall because of its ability
to separate the event of a mismatch and the event of the onset of the
evader’s maneuver. Additionally, the standard GLR detector deliv-
ers many false alarms (manifested as spikes in the average error),
compared to a negligible number of false alarms in the case of the
adaptive-H0 GLR detector (no visible spikes in the average error).

The standard deviation of the estimation error ẑML from the
adaptive-H0 GLR detector is demonstrated to be much smaller than
the one from the standard GLR detector (see Fig. 7). Moreover, the
standard GLR detector fails to provide a consistent estimate of the
evader’s acceleration command; note the nonzero bias in the stan-
dard deviation plots in Fig. 7b. In contrast, the adaptive-H0 GLR
detector can serve as a consistent filter.

VI. Conclusions
A novel GLR-type detector that employs an adaptive formulation

of one of its key ingredient hypotheses (the H0 hypotheses) has
been presented. The development of the new algorithm is motivated
by the absence of sufficiently fast and reliable sequential detection
schemes that are capable of detecting and identifying abrupt changes
in unknown input processes, such as the acceleration commands of
randomly maneuvering targets.

The novel adaptive-H0 GLR detector employs parametric fami-
lies of input functions; the latter translate into parametric families of
distributions for the observations. The distributions of the observa-
tions before and after the onset of a maneuver are estimated online as
members of these families of distributions. Based on the estimated
distributions, a decision concerning the occurrence (or absence) of
a maneuver is made, and the characteristics of the maneuver are
derived.

The new detector is implemented in the difficult case of track-
ing a randomly maneuvering tactical ballistic missile. Both the new
scheme and the standard GLR detector are employed for the sake
of comparing their performance. An extensive Monte Carlo simula-
tion study is used to evaluate the main statistical properties of both
detectors. The adaptive-H0 GLR detector is shown to outperform
the standard GLR detector in that it achieves a lower observed false

alarm probability (about four times smaller than that achieved by the
standard GLR), a more consistent detection delay, characterized by
a smaller standard deviation, and a more consistent input estimate,
characterized by a smaller average error and a smaller standard de-
viation. Also, in contradistinction with the standard GLR detector,
the observed false alarm probability of the novel detector matches
its theoretical prediction (the prespecified false alarm probability).

Based on the demonstrated superiority of the adaptive detector, it
is concluded that the new scheme constitutes a powerful tool for the
maneuver detection and identification of fast moving targets. The use
of the adaptive detector in combination with advanced guidance laws
in interception scenarios involving randomly maneuvering ballistic
missiles is presented in a companion paper.

References
1Basseville, M., and Nikiforov, I., Detection of Abrupt Changes—Theory

and Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.
2Lai, T. L., “Sequential Changepoint Detection in Quality Control and Dy-

namical Systems,” Journal of the Royal Statistical Society, Series B, Vol. 57,
No. 4, 1995, pp. 613–658.

3Gustafsson, F., Adaptive Filtering and Change Detection, Wiley,
New York, 2000, p. 218.

4Shiryaev, A. N., “The Problem of the Most Rapid Detection of a Distur-
bance in a Stationary Process,” Soviet Mathematical Doklady, Vol. 1, No. 2,
1961, pp. 795–799.

5Vellekoop, M. L., “Rapid Detection, and Estimation of Abrupt Changes
by Nonlinear Filtering,” Ph.D. Dissertation, Imperial College of Science,
Technology and Medicine, Dept. of Electrical and Electronic Engineering,
London, Oct. 1997.

6Lai, T. L., and Shan, Z., “Efficient Recursive Algorithms for Detection of
Abrupt Changes in Signals and Systems,” IEEE Transactions on Automatic
Control, Vol. 44, No. 5, 1999, pp. 952–966.

7Dowdle, J. R., Willsky, A. S., and Gully, S. W., “Nonlinear General-
ized Likelihood Ratio Algorithms for Maneuver Detection and Estimation,”
Proceedings of the American Control Conference, IEEE Publications, Pis-
cataway, NJ, 1982, pp. 985–987.

8Korn, J., Gully, S. W., and Willsky, A. S., “Application of the General-
ized Likelihood Ratio Algorithm to Maneuver Detection and Estimation,”
Proceedings of the American Control Conference, IEEE Publications, Pis-
cataway, NJ, 1982, pp. 792–798.

9Willsky, A. S., and Johns, H. L., “A Generalized Likelihood Ratio Ap-
proach to the Detection and Estimation of Jumps in Linear Systems,” IEEE
Transactions on Automatic Control, Vol. AC-21, No. 1, 1976, pp. 108–112.

10McAulay, R. J., and Denlinger, E., “A Decision-Directed Adaptive
Tracker,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 9,
No. 2, 1973, pp. 229–236.

11Dionne, D., Michalska, H., and Oshman, Y., “Terminal Missile Guid-
ance Using a Semi-Markov Target Model,” Proceedings of the 16th IFAC
Symposium on Automatic Control in Aerospace, Vol. 2, Elsevier Science
Ltd., Oxford, England, U.K., 2004, pp. 56–61.

12Caglayan, A., and Lancraft, R., “Reinitialization Issues in Fault Tol-
erant Systems,” Proceedings of the American Control Conference, IEEE
Publications, Piscataway, NJ, 1983, pp. 952–955.

13Dionne, D., Michalska, H., Shinar, J., and Oshman, Y., Decision-
Directed Adaptive Estimation and Guidance for an Interception Endgame,”
Journal of Guidance, Control, and Dynamics (submitted for publication).

14Shinar, J., and Steinberg, D., “Analysis of Optimal Evasive Maneu-
vers Based on a Linearized Two-Dimensional Model,” Journal of Aircraft,
Vol. 14, Aug. 1977, pp. 795–802.

15Shinar, J., and Glizer, V. Y., “Solution of a Delayed Information Linear
Pursuit-Evasion Game with Bounded Controls, International Game Theory
Review, Vol. 1, No. 3–4, 1999, pp. 197–217.

16Zarchan, P., Tactical and Strategic Missile Guidance, 4th ed., Progress
in Astronautics and Aeronautics, Vol. 199, AIAA, Reston, VA, 2002, p. 104.

17Adler, F. P., “Missile Guidance by Three-Dimensional Proportional
Navigation,” Journal of Applied Physics, Vol. 27, No. 3, 1956, pp. 500–507.

18Bar-Shalom, Y., and Li, X.-R., Estimation and Tracking: Principles,
Techniques and Software, Artech House, Inc., Boston, 1993, p. 192.

19Kay, S., Fundamental of Statistical Signal Processing, Vol. 2: Detection
Theory, Prentice–Hall, Upper Saddle River, NJ, 1998, p. 65.


