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A novel two-stage quaternion estimator from vector
observations that is a synthesis between Wahba’s approach
and the Kalman filtering approach is presented. The first stage
features an optimal denoising procedure of the elements of
a time-varying noisy K-matrix. The second stage produces
a quaternion estimate from the filtered K-matrix via any
eigenvalue-eigenvector solver. This work’s contribution consists
in performing the denoising via Kalman filtering. For that
purpose, a matrix Kalman filter (MKF) is developed, which has
the advantage of preserving the natural formulation of the matrix
plant equations. As a result, two aspects of a previous algorithm,
called Optimal-REQUEST (OPREQ), are improved: the K-matrix
update estimation stage uses a matrix gain rather than a scalar
gain, and that gain is optimized with respect to the classical
minimum-variance cost. This work assumes that the sensed lines
of sight (LOS) are time invariant as seen in the chosen reference
frame. This assumption fits in various operational mission
architectures. An exact Kalman filter is developed that accounts
for the state-multiplicative noise in the process equation. A
reduced estimator is also developed assuming simple expressions
for the filter covariance matrices. A constrained estimator, which
enforces the symmetry and null-trace of the estimated matrix,
is designed using the pseudomeasurement (PM) technique.
Extensive Monte-Carlo simulations illustrate the performance
of the novel filters with a spinning and nutating spacecraft (SC)
as a case study. Extensive Monte-Carlo simulations show that
the proposed estimator outperforms OPREQ. As illustrated
by additional Monte-Carlo simulations, the constrained MKF
exhibits a better transient and a better steady-state accuracy
than the unconstrained filter for large initial disturbances in the
symmetry and null-trace properties.
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INTRODUCTION

The problem of spacecraft (SC) attitude

determination (AD) from vector observations

has been investigated for the last 40 years, and

has given rise to numerous algorithms. A widely

used class of these algorithms is concerned

with the estimation of the four Euler symmetric

parameters [1, pp. 414—416], which form the 4£ 1
quaternion-of-rotation [1, p. 758—759]. Although a

three-axis attitude representation requires a minimum

of three parameters, the quaternion q has become very

popular because it is the minimal nonsingular set for

global attitude description [1, p. 415], and because

the rigid-body kinematics are described by means of a

linear differential equation in q.

An optimal estimator of the quaternion typically

falls into two categories. The first category has

its origin in a constrained least-squares problem

introduced by Wahba in 1965 [2]. Wahba’s problem

was formulated and solved in terms of the quaternion

of rotation by Davenport who introduced the

celebrated q-method [1, pp. 426—428]. In that method,

the optimal quaternion is computed as the eigenvector

of a special matrix, the so-called K-matrix, that is

associated with the maximal positive eigenvalue. The

highlights of the q-method are that it is a closed-form

nonlinear optimal estimator of the quaternion, where

no a priori estimate is needed, the whole quaternion

is estimated rather than some correction, and the

unit-norm constraint on the quaternion estimate

is explicitly and optimally preserved. Besides

these features, other attributes were added to the

original q-method along a rich list of AD algorithms:

numerical simplicity [3, 4], approximate covariance

analysis of the quaternion estimation error [3],

estimates of parameters other than the quaternion

[5, 6], ability of processing the data recursively [7, 8],

and stochastic optimal filtering of time-propagation

noises [9]. It is, however, difficult to combine all these

enhancements in a single algorithm.

On the other hand, the second category of

optimal quaternion estimators, which belongs

to the general class of extended Kalman filters,

benefits by design from desired properties such as

approximate minimum-variance estimation errors,

and the straightforward ability of estimating additional

states, other than the quaternion, by means of the state

augmentation technique [10, p. 350]. The drawbacks

of that approach, however, are the well-known

linearization effects and the suboptimal procedures

that are applied in order to preserve the quaternion’s

unit-norm constraint [11, 12].

In the present work a novel quaternion optimal

estimator is proposed as a synthesis of the approaches

mentioned above. Similarly to any q-method-based

quaternion estimator, the proposed estimator consists

of two stages. The first stage features an optimal
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denoising procedure of the elements of a time-varying

noisy K-matrix. Then, the second stage produces

a quaternion estimate from the filtered K-matrix

via any eigenvalue-eigenvector solver. This work’s

contribution resides in a novel and enhanced design

of the first stage, i.e., in performing the denoising

via Kalman filtering. Therefore, two aspects of the

approach introduced in [9] are improved: the K-matrix

update estimation stage uses a matrix gain rather than

a scalar gain, and that gain is optimized with respect

to the classical minimum-variance cost (in [9] the

scalar gain is selected nonoptimally). As a result,

the first stage computes a more accurate K-matrix.

The rational for focusing on enhancing the K-matrix

estimation stage is manyfold. First, it is clear that

a better knowledge on the K-matrix yields a more

accurate extracted quaternion estimate. Second, the

K-matrix system equations are linear, which allows

a straightforward development of a Kalman filter.

Third, the proposed approach circumvents one serious

drawback of previous q-method-based estimators,
which is the difficulty of easily estimating, in a

probabilistic framework, other parameters than the

quaternion, such as gyro biases. Indeed, using state

augmentation techniques [10, p. 350] renders this

task straightforward in a Kalman filtering framework.

In this work, however, we restrict the scope to

quaternion-only estimation. Casting the K-matrix

in a state-space framework requires a specific but

important type of information pattern; we consider

the case where the sensed lines of sight (LOS)

remain constant in time along the axes of the chosen

reference frame. This assumption is clarified in the

next section and several examples of the mission’s

architectures are provided, showing that the proposed

approach can be successfully implemented in practice.

Another original contribution of this work consists

of estimating the K-matrix using a matrix Kalman

filter (MKF) [13], where the matrix structure of

the original K-matrix plant is preserved. Analytical

expressions for the covariance matrices of that

matrix system’s noises are developed. Due to the

additive gyro noises, the K-matrix process noise

is bilinear with respect to the state and the gyro

white noise. Hinging on previous results about

Kalman filtering with state-multiplicative noises

(e.g. [14—16]), an exact Kalman filter is developed,

along with approximate, computationally simpler,

versions. Furthermore, the linear constraints of

symmetry and zero-trace of the K-matrix are easily

incorporated in the MKF paradigm using the

pseudomeasurement (PM) approach. That approach,

which essentially accounts for substituting soft

constraints to hard constraints in the underlying

optimization problem, presents conceptual as well

as practical advantages. It was successfully applied

to quaternion normalization [17] and to direction

cosine matrix orthogonalization [18]. Reference [19]

presents a comprehensive survey on constrained

Kalman filtering via PM (a.k.a pseudo-observations)

and projections, it elaborates a successful combination

of these approaches and illustrates it in a constrained

quaternion estimation problem. Extensive Monte-Carlo

simulations illustrate the improvement in the attitude

estimation performances of the proposed novel filter

when compared with the estimator of [9]. A simple

analysis is also provided that validates the quantitative

improvement.

The remainder of this paper is organized as

follows. The next section is a preliminary section

presenting the general linear matrix dynamical model,

for which the general MKF is developed. Then

the mathematical model for the K-matrix system

is developed. The following section contains the

development of the MKF of the K-matrix. The issue

of constrained estimation is treated afterwards. The

comparative numerical study is then presented.

Finally, conclusions are drawn in the last section.

THE GENERAL LINEAR MATRIX PLANT

The state MKF [13] can handle linear discrete-time

plants that are described by the following matrix

equations

Xk+1 =

¹X
r=1

£rkXkª
r
k +Wk (1)

Yk+1 =

ºX
s=1

Hs
k+1Xk+1G

s
k+1 +Vk+1 (2)

where Xk 2Rm£n is the state matrix, £rk 2 Rm£m, and
ªr
k 2Rn£n, r = 1,2, : : : ,¹, are transition matrices,

Wk 2 Rm£n is the process noise; the matrix Yk+1 2 Rp£q
is the measurement, Hs

k+1 2Rp£m, and Gsk+1 2 Rn£q,
s= 1,2, : : : ,º, are measurement matrices, and Vk+1 2
Rp£q is the measurement noise. The scalars ¹ and
º are problem dependent. The usual assumptions

concerning the noise stochastic models are adopted.

That is, the system noises, Wk and Vk, are zero-mean

white Gaussian sequences; they are uncorrelated with

one another, and uncorrelated with the initial state

X0. Also, the covariances of the noises are known.

The covariance of a matrix sequence, say Uk, is

defined here as the covariance of its vec-transform,

denoted by vec(Uk), where vec is the vec-operator

[23]. The vec-operator operates on an arbitrary

matrix, M 2Rm£n, by stacking the columns of M
one over the other, and returning the mn-dimensional

column-vector, vec(M). The MKF combines the

statistical properties of an ordinary Kalman filter with

the advantage of a compact notation. It produces a

Kalman filter matrix estimate in terms of the original

plant matrices. The algorithm, its proof, and examples

of its use are presented in [13]. It is summarized next

for convenience.
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State Matrix Kalman Filter

The symbol − used thereafter denotes the
Kronecker product [24, p. 243].

1) Initialization:

X̂0=0 = X̄0, P0=0 =¦0: (3)

2) Time Update equations:

X̂k+1=k =

¹X
r=1

£rkX̂k=kª
r
k (4)

Fk =
¹X
r=1

[(ªr
k )
T−£rk] (5)

Pk+1=k = FkPk=kFTk +Qk: (6)

3) Measurement Update equations:

Ỹk+1 = Yk+1¡
ºX
s=1

Hs
k+1X̂k+1=kG

s
k+1 (7)

Hk+1 =
ºX
s=1

[(Gsk+1)
T−Hs

k+1] (8)

Sk+1 =Hk+1Pk+1=kHT
k+1 +Rk+1 (9)

Kk+1 = Pk+1=kHT
k+1S

¡1
k+1 (10)

X̂k+1=k+1 = X̂k+1=k +

nX
j=1

qX
l=1

K
jl
k+1Ỹk+1E

lj (11)

where K
jl
k+1 is a m£p submatrix of the mn£pq

matrix Kk+1 defined by

Kk+1 =

26666664

K11k+1 ¢ ¢ ¢ K1lk+1 ¢ ¢ ¢
...

. . .
...

. . .

K
j1
k+1 ¢ ¢ ¢ K

jl
k+1 ¢ ¢ ¢

...
. . .

...
. . .

37777775
| {z }

q matrices

9>>>=>>>; n matrices

(12)

and Elj is a q£ n matrix with 1 at position (lj) and 0
elsewhere.

Pk+1=k+1 = (Imn¡Kk+1Hk+1)Pk+1=k(Imn¡Kk+1Hk+1)T

+Kk+1Rk+1K
T
k+1 (13)

where Imn is the mn£mn identity matrix.
The variance and the covariance associated with

¢X[i,j] (the element (ij) in the matrix ¢X) are

varf¢X[i,j]g= P[(j¡ 1)m+ i, (j¡ 1)m+ i]
(14a)

covf¢X[i,j],¢X[k, l]g= P[(j¡ 1)m+ i, (l¡ 1)m+ k]
(14b)

where i,k = 1 : : :m, and j, l = 1 : : :n. The variable

¢X denotes either the a posteriori or the a priori

estimation error as applicable, and P is the associated

covariance matrix.

THE MATHEMATICAL MODEL

In this section the state-space model equations

of the K-matrix system are formulated, and explicit

expressions for the system noise covariance matrices

are provided.

Preliminaries

The State K-Matrix: We consider: 1) two

Cartesian coordinate frames, R and B, which are the
reference frame and the SC body frame, respectively,

2) batches of N(k); k = 1,2 : : : physical vectors

fv̄i(k)gN(k)i=1 , e.g. LOS vectors, which are observed

at each sampling time tk, 3) two sets of projections

for each LOS vector v̄i, onto the frames R and B,
denoted as fri(k)gN(k)i=1 and fbi(k)gN(k)i=1 , respectively,

4) the matrices K(k), which are known functions of

the sets fri(k),bi(k)gN(k)i=1 , and are defined as follows:

K(k) =

·
S¡¾I3 z

zT ¾

¸
(15)

where

S = B+BT (16)

B =

N(k)X
i=1

aibir
T
i (17)

z=

N(k)X
i=1

aibi£ rTi (18)

¾ = tr(B) (19)

and ai are positive scalar weights. The cornerstone

of the proposed approach is that the elements of the

matrix K(k) define a set of state variables, which

we aim at estimating using a sequence of noisy

measurements of the bis. This idea of working with
an (albeit redundant) representation of the attitude

implies that it should not take two different numerical

values when describing the same attitude. From this

premise stems the need to use the same batch of LOS

vectors in order to define the (ideal) K-matrix. In

other words, every sampled LOS vector should have

its projection on the reference frame remain identical,

i.e., the vectors ri(k) should remain identical at each
tk. We now clarify and expand on this assumption.

1) Assume, for simplicity (the assumption will

be relaxed later on), that B and R coincide at each

tk and notice that both frames can themselves be

rotating with respect to an inertial frame. The relative

attitude of B with respect to R is thus constantly

zero. Assume that, at t0, two LOS vectors v̄1, v̄2 are
available and that they coincide with the axes Rx and
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Fig. 1. Sun-pointing/nadir-pointing LEO satellite. Attitude with respect to trajectory frame. (a) Zero attitude. (b) 45± attitude.

Ry . Clearly, we have
b1 = r1 = [1,0,0]

T, b2 = r2 = [0,1,0]
T:

From (15), the K-matrix that is computed using these

LOS vectors is then (with unit weighting coefficients):

K(t0) =

26664
¢ ¢ ¢ ¢
¢ ¢ ¢ ¢
¢ ¢ ¡2 ¢
¢ ¢ ¢ 2

37775 (20)

where the dots in (20) represent zeros. Equation (20)

shows the true values of the 16 state variables at t0.

Next, assume that at t1, the second LOS vector is

not available and that a third LOS vector v̄3 can be

acquired, which lies along the axis Rz , such that
b3 = r3 = [0,0,1]

T:

Then, using (r1,r3) in (15) yields the following

K-matrix:

K(t1) =

26664
¢ ¢ ¢ ¢
¢ ¡2 ¢ ¢
¢ ¢ ¢ ¢
¢ ¢ ¢ 2

37775 : (21)

Equation (21) shows the values of the state variables

at t1. Clearly, (20) and (21) are inconsistent: although

the attitude has not changed from t0 to t1, the state

variables assume different numerical values, which

depend on the values of the rs used. Thus, choosing

the rs to be identical at t0 and t1 allows for the

K-matrix to consistently define a representation of the

attitude of B with respect to R.
2) Although the rs are required to be constant,

the observed LOS vectors are not constrained to

be the same physical directions at all times. This is

illustrated by the following example. Consider the

case of a Sun-pointing and Earth-pointing (nadir)

low Earth orbit (LEO) satellite. The reference frame is

defined as the trajectory frame, i.e., with Rx pointing
normal to the orbit plane, Ry coinciding with the local
nadir, and Rz pointing forward along the in-track
orbit tangent. These LEO satellites orbits are usually

Sun-synchronous, with inclinations close or equal to

90±, which avoids Sun eclipses. See the illustration
in Fig. 1 for a 90± inclination. Due to the very high
ratio between the Sun—SC and the Earth—SC distances

(around 104), the axis Rx can be identified with the
Sun—SC LOS vector, for all practical purposes. This

first LOS vector can be observed via Sun sensors.

The nadir (the Ry axis) provides a second LOS vector
and can be observed by Earth sensors. Thus, thanks to

this choice of the reference frame, we are in the case

discussed in 2 above, where:

r1 = [1,0,0]
T, r2 = [0,1,0]

T:

In the case of a zero attitude, the body frame

coincides with the reference frame (see Fig. 1(a)), and

the time-invariant state matrix is thus obtained from

(20), i.e.,

X =

26664
¢ ¢ ¢ ¢
¢ ¢ ¢ ¢
¢ ¢ ¡2 ¢
¢ ¢ ¢ 2

37775 : (22)

The above example illustrates an operational

configuration where the two observed LOS vectors

keep the same projections in the reference frame at

all sampling times. Nonetheless, the nadir-LOS vector

is continuously changing with respect to the inertial

frame.

3) We now show how to relax the requirement

for the body frame to be fixed with respect to the

reference frame. Assume that B(k) rotates with respect
to the reference frame R with an angular velocity !k
and that !k is known along the axes of B(k). For the
sake of illustration, consider a roll-only motion, i.e., B
rotates around its axis Bz, the in-track orbit tangential
axis, with a magnitude of ¼=4 rad/s, such that:

!k = [0,0,¼=4]
T: (23)

This may arise from a requirement of scanning or

tracking of a body-mounted camera. Assume that

at t0, B and R coincide, such that, according to the

previous computations, X(t0) is obtained from (22).

Using !k, the matrix X can be propagated from t0 to
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t1 = t0 +1 [8]. Considering the present example, the

computations are

X(t1) =©X(to)©
T

=

26664
¢ ¢ ¢ ¢
¢ ¢ ¢ ¢
¢ ¢ ¡p2 p

2

¢ ¢ p
2

p
2

37775 (24)

where

©= exp

8>>>>>>>><>>>>>>>>:
1

2

2666666664

¢ ¼

4
¢ ¢

¡¼
4

¢ ¢ ¢

¢ ¢ ¢ ¼

4

¢ ¢ ¡¼
4

¢

3777777775

9>>>>>>>>=>>>>>>>>;
: (25)

Equation (24) provides the true value of the state

matrix that represents the attitude of B(t1) with
respect to R. This can be visualized in Fig. 1(b). The
dynamical model where !k is measured with noises
is described in the next subsection. To conclude, the

proposed approach can handle time-varying attitudes,

provided that a measurement of the angular velocity

of B with respect to R is available.1

Mission Architectures: Following are various and

important examples of real missions architectures

in which the proposed approach can be successfully

implemented.
1) Consider a LEO SC whose attitude is

simultaneously stabilized with respect to the Sun—SC
LOS vector (for power production via the solar
arrays) and to the SC—nadir LOS vector (for Earth
observation). We have already used this architecture
for previous illustration (see Fig. 1). The knowledge
of the relative position of the SC with respect to the
Sun/Earth in some reference frame (from navigation
computations) and in the body frame (from on-board
measurements) allows for AD and this fits the
framework proposed in this work. In the NASA
LANDSAT [20] mission, the Landsat 7 satellite is
designed for a Sun-synchronous, Earth mapping orbit.
Its payload is a single nadir-pointing instrument and
power is provided by a single Sun-tracking solar
array. The satellite attitude control must maintain the
SC platform within 0.015 deg of Earth pointing. In
the NASA SAMPEX [21] mission, SAMPEX is a
momentum-biased, Sun-pointing SC that maintains the
experiment-view axis in a zenith direction as much as
possible. It points its solar array at the Sun by aiming
the momentum vector toward the Sun and rotating
the SC one revolution per orbit about the Sun—SC
axis. A two-axis digital Sun sensor and a set of five

1Notice that body-mounted gyros provide the inertial angular

velocity of B. However, knowing the inertial angular velocity of R
allows us to compute the sought angular velocity !k .

Fig. 2. LEO satellite. Attitude with respect to trajectory frame.

coarse Sun sensors are used for AD, which provides
the quasi antinadir pointed attitude required by the
science experience.
Consider also another architecture of LEO SC

mission, e.g., a SC monitoring the Earth surface via
some imaging sensor and equipped with an Earth
sensor. Figure 2 illustrates a configuration of three
observed LOS vectors, which are the nadir (aligned
with the Rz-axis), and two additional LOS vectors
inclined by 30± with respect to the nadir in the
in-track plane and in the off-track plane, respectively.
The corresponding values of the rs that appear in
Fig. 2 are given in the trajectory frame (Rx,Ry,Rz).
Therefore, the proposed approach can be successfully
applied provided that the Earth imaging sensor is
continuously observing these three LOS vectors.
2) Consider the case of a geostationary SC. Once

stabilized along the nadir, the SC is able to observe
the same locations on the Earth surface all the time.
Not only two of them but as many as the field of view
allows for. On a geosynchronous orbit (approximately
36000 km), the SC sees the Earth with an angle of
about 22 deg (assuming an Earth radius of 6400 km).
Within that field of view, any digital camera can track
many locations on Earth. The NASA GOES mission
features a range of geostationary satellites. Figure 3
visualizes the configuration of three sensed LOS
vectors, namely, the nadir, and two additional LOS
vectors inclined by 10± with respect to the nadir in
the in-track plane. The values of the LOS vectors’
projections in the reference frame are given in Fig. 3
for this specific configuration.

3) Consider an SC whose attitude is inertially

stabilized with respect to some celestial coordinate

frame. Although rotating about some equilibrium

position, the SC is assumed to be stabilized enough

such that the same physical directions can be observed

at any time. These can be directions to stars and in

that case their inertial projections are close to be

time-invariant. Notice that 3-D stabilization is not

needed but that even spin stabilized SC are adequate,

provided that their sensors are oriented along the
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Fig. 3. Geostationary satellite. Attitude with respect to trajectory

frame.

Fig. 4. WMAP-Wilkison maximum anisotropy probe at L2
Lagrangian point. Attitude with respect to Sun rotating frame.

directions of the inertially stabilized axes. In the

NASA MAP [22] mission, the MAP SC is stabilized

about the L2 Lagrange point, scanning the celestial

sphere around the anti Sun—nadir direction. MAP

spins every 2 min and its spin axis maintains a

fixed angle of 22.5 deg to the Sun—Earth line. The

spin axis moves around the Sun—Earth line. The

SC uses Sun sensors, star trackers, and gyroscopes

for AD. Figure 4 illustrates the case for two sensed

LOS vectors, e.g., the Sun—SC LOS vector and the

direction to a star perpendicular to it, and provides the

values of the rs.

Process Equation

As shown in [9] the dynamics of the true K-matrix

can be modeled by the following first-order stochastic

linear matrix equation

Xk+1 =©kXk©
T
k +Wk (26)

where Xk denotes the ideal noise-free K-matrix at

time tk and ©k is computed using the angular velocity

vector !k (as measured by a triad of body-mounted
gyroscopes during a small time increment ¢t), i.e.,

−k =
1

2

·¡[!k£] !k

¡!Tk 0

¸
(27)

©k = expf−k¢tg (28)

where, in (27), [!k£] denotes the cross-product matrix
which is defined by the identity !k £u= [!k£]u for
any vector u 2 R3. One can see that (26) is a special
case of the general process equation described in

(1), and is, therefore, implementable in an MKF. As

shown in Appendix I, the matrix Wk can be expressed

as follows

Wk = (XkEk ¡EkXk)¢t (29)

where Xk is the state matrix at tk, the time increment

is denoted by ¢t, and Ek is the following 4£ 4
skew-symmetric matrix

Ek =
1

2

·¡[²k£] ²k

¡²Tk 0

¸
(30)

The 3£ 1 vector ²k denotes the additive error in
the measured value of the body angular velocity. In

this work we consider the special case where ²k is a

zero-mean white noise process with covariance matrix

Q²k=¢t. Moreover, it is assumed that ²k is uncorrelated

with the initial state, X0. Using these assumptions

it can easily be shown that the matrix noise Wk is a

zero-mean process.

State-Dependent Process Noise: Taking advantage

of the bilinear structure of Wk with respect to ²k and to

Xk, we seek an analytic expression for its covariance

matrix Qk. Previous works on Kalman filtering with

this type of noise state-dependence can be found in

[14]—[16].

PROPOSITION 1 Let fe1,e2,e3g denote the three
columns of the identity matrix I3 in R3. Let M and ¡k
denote the following 16£ 3 and 16£ 16 matrices:

MT = [¡[e1£] ¡ e1 ¡ [e2£] ¡ e2
¡ [e3£] ¡ e3 I3 0] (31)

¡k =
1
2
[(I4−Xk)¡ (XTk − I4)]M: (32)

Then,

i) The 16£ 16 covariance matrix of Wk, denoted by
Qk, satisfies:

Qk = Ef¡k²k²Tk ¡Tk g¢t2: (33)

ii) If, furthermore, the components of ²k are

independent and identically distributed with covariance

parameter ¾2=¢t, and Nk denotes the second-order

moment of the state Xk, then Qk is computed as

follows:

Qk =

3X
i=1

¨iNk¨
T
i ¾

2¢t (34)

where for i= 1,2,3

¨i =
1
2
(Ai©Ai) (35)

3138 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



with © denoting the Kronecker sum [24] and

A1 =

·
0 ¡e3 e2 e1

¡1 0 0 0

¸
A2 =

·
e3 ¡0 ¡e1 e2

0 ¡1 0 0

¸
A3 =

·¡e2 e1 0 e3

0 0 ¡1 0

¸
:

(36)

The proof is provided in Appendix II. The usefulness

and implementation of both results from Proposition 1

is discussed in the next section.

Measurement Equation

The measurement model equation is the following

simple matrix equation [9]

Yk+1 = Xk+1 +Vk+1 (37)

where Yk+1 is the measured K-matrix constructed

using the noisy vector observations acquired at

time tk+1, and Vk+1 denotes the measurement noise.

Looking at the general measurement model described

in (2) one realizes that (37) is a particular case of

(2) where Hs
k+1 =G

s
k+1 = I4 and º = 1. Thus (37) is

readily implementable in the MKF.

Given a batch of vector observations, bi, ri, i=

1,2, : : : ,m (m> 1), acquired at tk+1, the expression for

the noise matrix Vk+1 in the measurement equation

(37) is

Vk+1 =

mX
i=1

®iV
i
k+1 (38)

where ®i
¢
=ai=

PM
i=1 ai, and the ais are positive

weighting scalars associated with each vector

measurement. Each matrix Vik+1 in (38) is expressed

using a pair, ±bi(tk+1),ri(tk+1) as follows,

Vk+1 =

·Sb¡·bI3 zb

zTb ·b

¸
(39)

where

Bb = ±bk+1r
T
k+1, Sb = Bb+BTb

zb = ±bk+1£ rk+1, ·b = tr(Bb)
(40)

and where the 3£1 vector ±bi(tk+1) is the error in the
ith vector observation. It is assumed that the sequence

±bi(tk+1), k = 1, : : : ,m, is a zero-mean, white sequence

with a known covariance matrix, Rbik+1. Moreover,

the vector observations acquired at the same time are

assumed to be uncorrelated with one another. That is,

Ef±bi(tk+1)g= 0 (41a)

Ef±bi(tk+1)±bi(tl)Tg= Rbik+1±k+1,l (41b)

Ef±bi(tk+1)±bj(tk+1)Tg= Rbik+1±ij (41c)

where i,j = 1,2, : : :m, k, l = 1,2 : : : and ±k+1,l,±ij denote

Kronecker deltas. In addition, it is assumed that

the vector observations are uncorrelated with the

process noise ²k and with the initial state X0. From
(39) and (40) it appears that the elements of Vik+1
are linear combinations of the elements of ±bi(tk+1).
Since ±bi(tk+1) is zero-mean, then the sequence V

i
k+1

is also zero-mean. Since Vk+1 is a weighted sum of

zero-mean sequences Vik+1 (see (38)), then Vk+1 is

also zero-mean. Using (41) an analytic expression

for the covariance matrix of Vk+1, denoted by Rk+1,

can be derived. A summary of the computation of the

16£ 16 matrix Rk+1 is given next. Its proof is lengthy
but straightforward and is provided in Appendix III.

For the sake of clarity the symbol tk+1 is dropped

from the following equations; however, it should be

remembered that all the computations carry the time

tag tk+1. Given ri, R
bi , and ai, i= 1,2, : : :m, compute

R̃i =

·
[ri£] ri

¡rTi 0

¸
(42a)

¤i = (R̃i− I4)M (42b)

Ri = ¤iR
bi¤i

T (42c)

®i =
aiPm
i=1 ai

(42d)

Rk+1 =

mX
i=1

®2i Ri (42e)

where the matrix M is defined in (31).

FILTER IMPLEMENTATION

State-Dependent Process Noise

1) As mentioned earlier, and as seen from (29),

the process noise Wk is a function of the state Xk.

Fortunately, this dependence is linear which allows

an exact computation of the covariance of Wk provided

that the second-order moment of Xk, Nk, is known.

It is well known that Nk can be propagated via a

Lyapunov difference equation. The computation of

Qk is thus done as follows:

Qk =

3X
i=1

¨iNk¨
T
i ¾

2¢t (43a)

Fk =©k −©k (43b)

Nk+1 = FkNkFTk +Qk (43c)

where the matrices ¨i are defined in (35) and

(36). The above equations are implemented in the

time-propagation stage of the Kalman filter.

2) While the above algorithm for computing

Qk has the merit of being exact, it implies an

additional computational burden in the filter,

which should be weighed against the performance

improvements. On the other hand, the practitioner
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may consider implementing the following approximate

computations. In order to avoid computing the matrix

Nk, Qk can be approximated by simply replacing

the state Xk by its best available estimate, X̂k=k, in

(32), (33). This step is similar to what is done in

an extended Kalman filter (EKF). Then, assuming

independent and identically distributed components

in ²k, a first-order approximation in ¢t for the
covariance matrix of Wk yields

Qk ' 1
4
[(I4− X̂k=k)¡ (X̂Tk=k − I4)]MMT

£ [(I4− X̂k=k)¡ (X̂Tk=k − I4)]T¾2¢t:
3) A third option for approximating Qk is

Qk = Q̄k − I4: (44)

Under additional conditions, (44) provides a drastic

reduction in the covariance computation while

maintaining satisfactory performance. This case is

discussed in the subsection on reduced covariance.

Singularity of the Measurement Noise Covariance
Matrix

The covariance matrices Ri as computed in (42c)

are singular. Indeed, assuming that the covariance

matrix in each vector-measurement error Rbi is of full

rank (rank three), then every 16£ 16 matrix Ri is at
most of rank three, and is, thus, singular. Therefore,

if there is a single vector measurement (m= 1) at

tk+1 the rank of Rk+1 is three and Rk+1 is singular.

Simulations showed that if two noncollinear vector

observations are acquired at tk+1, the rank of Rk+1
increases to six, and, in the case of three or more than

three noncollinear measurements (m¸ 3), the rank
equals nine. This is consistent with the properties of

the error matrix Vk+1 (see (37)). Since Yk+1 and Xk+1
are symmetric matrices with a trace equal to zero,

then Vk+1 has necessarily the same properties. These

properties introduce seven linear constraints among

the elements of Vk+1; namely, six constraints for the

symmetry and one for the trace, which lowers the

rank of Vk+1 from 16 down to 9. There are several

techniques to cope with the issue of a singular

measurement covariance matrix (see e.g. [10, p. 354]).

To circumvent the problem here, we add small values

to the main diagonal of Rk+1, which has a stabilizing

effect on the numerics of the Kalman filter. This is

done by choosing a small ¯ relatively to the assumed

level of the noise, and computing Rk+1 as follows

Rk+1 =

mX
i=1

®2i Ri+¯I16 (45)

where I16 denotes the 16£16 identity matrix.
Algorithm Summary

The MKF of the K-matrix is summarized in the

following.

1) Initialization:

X̂0=0 = Y0, P0=0 = R0: (46)

2) Time Update:

X̂k+1=k =©kX̂k=k©
T
k (47)

Fk =©k −©k (48)

Pk+1=k = FkPk=kFTk +Qk: (49)

3) Measurement Update:

Ỹk+1 = Yk+1¡ X̂k+1=k (50)

Sk+1 = Pk+1=k +Rk+1 (51)

Kk+1 = Pk+1=kS
¡1
k+1 (52)

X̂k+1=k+1 = X̂k+1=k +

4X
j=1

4X
l=1

K
jl
k+1Ỹk+1E

lj (53)

where K
jl
k+1 is a 4£ 4 submatrix of the 16£ 16 matrix

Kk+1 defined by

Kk+1 =

2664
K11k+1 ¢ ¢ ¢ K14k+1

...
. . .

...

K41k+1 ¢ ¢ ¢ K44k+1

3775
| {z }

4 submatrices

9>=>; 4 submatrices

(54)

Pk+1=k+1 = (I16¡Kk+1)Pk+1=k(I16¡Kk+1)T

+Kk+1Rk+1K
T
k+1: (55)

The MKF that is described in (46)—(55) produces a

sequence of K-matrix estimates X̂k=k. This constitutes

the first stage of the attitude estimation process.

The second stage consists of the computation of

the eigenvector of X̂k=k that belongs to the largest

eigenvalue.

Reduced Covariance Filter

In this section we show how to reduce the

computational complexity of the filter by making

further reasonable assumptions on the statistics of

the system’s noises. Namely, we assume that the rows

of Wk are independently identically distributed with

4£ 4 covariance matrix Q̄k. Similar assumptions are
made with respect to the matrix Vk and to the initial

estimation error matrix ¢X0=0. These assumptions are

expressed as

Qk = Q̄k − I4 (56a)

Rk = R̄k − I4 (56b)

P0=0 = P̄0=0− I4: (56c)

As shown in Appendix IV, the use of (56) in the

equations of the filter ((46)—(55)) reduces the
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covariance computation from 16£ 16 to 4£ 4 matrix
equations. Moreover, it enables a more compact

notation in the state measurement update stage. The

reduced covariance filter is summarized next.

1) Initialization:

X̂0=0 = Y0, P̄0=0 = R̄0: (57)

2) Time Update:

X̂k+1=k = ©kX̂k=k©
T
k (58)

P̄k+1=k = ©kP̄k=k©
T
k + Q̄k (59)

where P̄k=k and P̄k+1=k are 4£ 4 matrices.
3) Measurement Update:

Ỹk+1 = Yk+1¡ X̂k+1=k (60)

S̄k+1 = P̄k+1=k + R̄k+1 (61)

K̄k+1 = P̄k+1=k(S̄k+1)
¡1 (62)

X̂k+1=k+1 = X̂k+1=k + Ỹk+1K̄
T
k+1 (63)

P̄k+1=k+1 = (I4¡ K̄k+1)P̄k+1=k(I4¡ K̄k+1)T

+ K̄k+1R̄k+1K̄
T
k+1 (64)

where P̄k+1=k+1, S̄k+1, and K̄k+1 are 4£ 4 matrices.
As a result of assumptions (56) the filter covariance

computations are identical for each 1£4 row of
the estimation error matrix. This is why a single

4£ 4 covariance computation is needed. If the full
covariance matrices are needed they are readily

computed as shown in Appendix IV by

Pk=k = P̄k=k − I4 (65a)

Pk+1=k = P̄k+1=k − I4 (65b)

Sk+1 = S̄k+1− I4 (65c)

Kk+1 = K̄k+1− I4: (65d)

Covariance Matrix of the Quaternion Estimation Error

In this section we use and extend a previous result,

as presented in [3] in order to evaluate the covariance

matrix of the quaternion estimation error. It is shown

how this matrix can be extracted from the covariance

matrix Pk=k, as computed in (55).

Let ±z denote the measurement error in the 3£ 1
vector z of a measured K-matrix, which is constructed
from m vector measurements and let Pzz denote the

covariance matrix of ±z. Let ±q denote the quaternion
multiplicative estimation error; that is

±q= q̂ ?q¡1 (66)

where q is the true quaternion, q̂ is the estimate, ?
and q̂¡1 denote the operations of quaternion product
and quaternion inverse, respectively [1, p. 758]. Thus,

±q itself is a quaternion; it has a vector part ±e and
a scalar part ±q. This error-quaternion is related to

the rotation that brings the true body frame onto the

estimated body frame. Assuming that the angle of this

rotation is small, ±q is approximated by 1, as done

in [3]. The uncertainty is thus concentrated in ±e. It
can be shown [3] that a good approximation Pee to the

covariance matrix of ±e is computed as

Pee =NPzzN (67)

where

N =

(
2

mX
i=1

®i(I3¡ rirTi )
)¡1

(68)

and ri, i= 1,2, : : : ,m, is the batch of observed LOS
vectors, as resolved in the reference frame, which

are acquired at a particular epoch time. In order to

use (67) and (68) in our algorithm, consider ±z as an
estimation error rather than a measurement error. The

3£ 3 covariance matrix of ±z, Pzz, is easily extracted
from the 16£ 16 covariance matrix Pk=k. Since

±z=

264¢X(1,4)¢X(2,4)

¢X(3,4)

375 (69)

then, using (14) with m= 4 and n= 1, yields

Pzz =

264P(13,13) P(13,14) P(13,15)

P(14,13) P(14,14) P(14,15)

P(15,13) P(15,14) P(15,15)

375 (70)

where P(13,13) denotes the element of Pk=k at location

(13,13). Thus, one can evaluate the covariance

matrix Pee by first computing Pk=k from (55), then by

extracting the submatrix Pzz (70) and finally by using

(67) and (68). Notice that the matrix N in (68) only

depends on the chosen reference directions. If the

reference frame is inertial, N is computed only once at

the start of the algorithm. Otherwise N is propagated

using the dynamics of the reference frame, which is

assumed to be accurately known.

CONSTRAINED ESTIMATION

In this section a constrained estimation algorithm

is developed which enforces the properties of

symmetry and zero-trace on the K-matrix estimate.

For this purpose, one possible approach is to develop

a reduced-order model according to the number of

constraints among the state variables. This would

however destroy the matrix formulation of the

estimator. In order to preserve the original matrix

formulation, the PM approach for constrained

estimation is adopted. Next, we briefly explain the

main idea of the constrained estimation approach via

PM measurement. Assume that the true state variable

X satisfies the following constraint

f(X) = 0 (71)
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where f(X) may be a scalar, a vector, or a matrix

mapping and assume that an imaginary device

measures f(X) with some small error. The associated

PM equation is thus

f(X) = v (72)

where v is the associated PM noise with appropriate

dimension. In order to fit in the Kalman filtering

framework, this noise is typically modeled as a

zero-mean white noise with a given covariance matrix

Rv. Based on the PM model equation (72), a PM

update stage is developed in the Kalman filtering

framework and sequentially implemented after a

nominal unconstrained update stage. The PM noise

covariance matrix Rv is used as a tuning parameter in

the filter to “strengthen” or “soften” the constraint.

For instance, if the value of Rv is very low, the

constraint will be strongly enforced via the PM

measurement update stage. In the following, PM

model equations are developed for the symmetry and

trace constraints.

Notice that the constrained estimation approach

via PM consists of relaxing a hard constraint in

the underlying optimization problem, and varying

the degree of enforcement of the constraint by

changing some parameter–here the covariance

of a virtual noise. Thus, what matters about v is

only the value given to its covariance, because that

value will impact the PM update stage and will

thus enforce the constraint on the estimate. That

technique was successfully applied, e.g., to quaternion

normalization in [17] and to direction cosine matrix

orthogonalization in [18]. Reference [19] presents

a comprehensive survey on constrained Kalman

filtering via PM (called there pseudoobservations)

and projections, develops a successful combination

of these approaches, and illustrates it in a constrained

quaternion estimation problem.

SYMMETRY CONSTRAINT

Symmetry Pseudomeasurement: Out of the many

formulations of the symmetry constraint on a matrix

X, we consider the following one:

1
2
(X +XT) = X: (73)

It is assumed that an imaginary device is

measuring the 4£4 state matrix Xk+1 with some small
zero-mean white noise, denoted by V

sym
k+1 , and is giving

as output the symmetric part of its best available

estimate X̂k+1=k+1, where X̂k+1=k+1 is obtained from

(53). Thus, the symmetry PM equation is

1
2
(X̂k+1=k+1 + X̂

T
k+1=k+1) = Xk+1 +V

sym
k+1 : (74)

Note that if X̂k+1=k+1 is error free and if we drop the

matrix noise V
sym
k+1 from (73), we recover (73), which

is the desired basic property. Since, as is evident from

(2), (74) has the standard structure of a linear matrix

measurement, it can be incorporated into the system

mathematical model. Let R
sym
k+1 denote the 16£ 16

covariance matrix of V
sym
k+1 . Using (74) and R

sym
k+1, the

symmetry-measurement update stage is formulated as

Ỹk+1 =
1
2
(X̂Tk+1=k+1¡ X̂k+1=k+1) (75a)

Sk+1 = Pk+1=k+1 +R
sym
k+1 (75b)

Kk+1 = Pk+1=k+1S¡1k+1 (75c)

X̂+k+1=k+1 = X̂k+1=k+1 +

4X
j=1

4X
l=1

Kjlk+1Ỹk+1Elj (75d)

P+k+1=k+1 = (I16¡Kk+1)Pk+1=k+1(I16¡Kk+1)T

+Kk+1Rsymk+1KTk+1 (75e)

where the 4£ 4 matrices Kjlk+1 in (75d) are
submatrices of the 16£ 16 matrix Kk+1; they are
defined according to the partition described in (54).

The covariance matrix R
sym
k+1 is a filter tuning matrix

parameter, according to which one can weight the

symmetry constraint in the estimation process. For

example, taking R
sym
k+1 to zero yields a unity gain

matrix, i.e., Kk+1 = I16, which then produces the
following update stage:

X̂+k+1=k+1 =
1
2
(X̂k+1=k+1 + X̂

T
k+1=k+1): (76)

In that case the symmetry update stage (76) produces

the symmetric part of the previous estimate. This

intuitively appealing result can also be drawn from

a deterministic optimization approach; indeed, it

can be shown that the symmetric part of any square

matrix is its closest symmetric matrix (with respect to

the Frobenius norm [25]). More generally, the latter

result can be seen as a particular case of a recursive

least-squares estimate converging to an orthogonal

projection estimate for a vanishingly small variance

parameter (see [19] for a discussion between these

two approaches).

Trace Constraint

The trace constraint is handled using the following

PM model:

0 = trXk+1 + v
tr
k+1 (77)

where “tr” denotes the trace operator, vtrk+1 is a scalar

zero-mean white noise with covariance rtrk+1, and the

value of the PM is 0. Using the definition of the trace

operator

trXk+1 =

4X
i=1

Xk+1(i, i)

=

4X
i=1

ei
TXk+1ei (78)
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where ei, i= 1,2,3,4, are the standard unit vectors in

R4. Equation (78) has the standard form of a linear

matrix measurement model. Using (78) the trace

update stage is formulated as follows

htr =

4X
i=1

(ei− ei) (79a)

sk+1 = h
trTPk+1=k+1h

tr + rtrk+1 (79b)

kk+1 = Pk+1=k+1h
tr=sk+1 (79c)

K̄k+1 =

4X
j=1

k
j
k+1ej

T (79d)

X̂+k+1=k+1 = X̂k+1=k+1¡ (trX̂k+1=k+1)K̄k+1 (79e)

P+k+1=k+1 = (I16¡kk+1htrT)Pk+1=k+1(I16¡kk+1htrT)T

+ rtrk+1kk+1k
T
k+1 (79f)

where each vector k
j
k+1 in the computation of K̄k+1

(79d) is the 4£ 1 column-vector at position j, j =
1,2,3,4, in the 16£ 1 gain column-vector, kk+1.
Equation (79e) is proved as follows:

X̂+k+1=k+1 = X̂k+1=k+1 +

4X
j=1

[(¡trX̂k+1=k+1)(kjk+1ejT)]

= X̂k+1=k+1¡ (trX̂k+1=k+1)
0@ 4X
j=1

k
j
k+1ej

T

1A
= X̂k+1=k+1¡ (trX̂k+1=k+1)K̄k+1: (80)

The first equality in (80) is the general formulation of

the state measurement update stage in an MKF. The

second equality stems from the fact that trX̂k+1=k+1
is independent of j, and the last equality is obtained

by using (79d). Similar to the symmetry constraint

case, the covariance rtrk+1 is used as a tuning parameter

in order to enforce the zero-trace property along

the estimation process. In the limiting case where

rtrk+1 = 0, straightforward computations yield

K̄k+1 =
1
4
I4: (81)

Using (81) into (79e) yields

X̂+k+1=k+1 = X̂k+1=k+1¡ 1
4
(trX̂k+1=k+1)I4: (82)

Computing the trace of X̂k+1=k+1, as given in (82), and

using the fact that trI4 = 4, yields trX̂k+1=k+1 = 0; that

is, the updated X̂k+1=k+1 exactly satisfies the zero-trace

constraint.

The constrained MKF consists of the algorithm

described earlier, (46)—(55), to which the symmetry

and trace update stages are added. Thus, each update

stage operates on the preceding state estimate and

estimation-error covariance. Like in an iterative

Kalman filter, the three stages are performed

sequentially at the same epoch time.

NUMERICAL STUDY

In this section the unconstrained MKF,

the constrained MKF (CMKF) and the

Optimal-REQUEST (OPREQ) filter [9] are tested and

compared via extensive Monte-Carlo simulations. In

the present case study we consider an SC with the

same kinematics model as the Microwave Anisotropy

Probe (MAP) satellite [22], which was launched on

June 30, 2001. The attitude measurement devices

simulated here are composed of a digital Sun sensor

(DSS), an autonomous star-tracker (AST), and a

triad of rate gyroscopes. Two Cartesian coordinate

frames are considered; namely, the Sun frame,

which is assumed to be inertial, and the body frame.

The rotation of the body frame with respect to

the Sun frame is composed of a spin rotation and

of a nutation; the spin and the nutation rates are

0.464 rev/min and 1 rev/hr, respectively; the constant

nutation angle, which is defined between the SC

spinning axis and the anti-Sun LOS vector, is equal

to 22.5 deg.

It is assumed that the AST observes the same

star during the whole simulation. Therefore, two

identical inertial LOS vectors are observed at each

sampling time; namely, the Sun—SC LOS vector,

and the star—SC LOS vector. These LOS vectors are

represented in the Sun frame by the unit vectors r1
and r2, respectively. The Sun frame is assumed to

have its third axis coinciding with the LOS between

the SC and the Sun, thus r1 = [0 0 1]
T. For the sake

of the example, it is assumed that the AST can find a

star along a direction perpendicular to r1, for instance,

r2 = [1 0 0]
T. The unit vector measurements, bi,

i= 1,2, are simulated by adding a small zero-mean

white Gaussian noise to the ideal observed directions,

and by normalizing the result; that is

bi =
Ari+ ±bi
kAri+ ±bik

(83)

where A is the correct transformation matrix from the

Sun to the body coordinates and

±bi »Nf0,¾2i I3g (84)

for i= 1,2. Here, ¾1 equals 1 arc-mn (' 17 mdeg),
and ¾2 equals 10 arc-sec (' 2:8 mdeg). The vector
measurement sampling period is 10 s. The output of a

triad of gyroscopes is contaminated by a zero-mean

Gaussian white noise with a covariance matrix

¾2² I3, where ¾² = 100 mdeg/hr. The gyros sampling

period is 0.5 s. It is assumed that the initial attitude

is completely unknown. Each simulation run lasts

10000 s.
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Comparison between Optimal-REQUEST and
the MKF

The results of the Monte-Carlo simulation (100

runs) are summarized in Figs. 5—8. In each figure

the solid lines are used to plot the variables of the

unconstrained MKF, that is, the full covariance filter

as described in (46)—(55). The dashed lines are

associated with the OPREQ variables. Let ¢X11,

¢X13, and ¢X14 denote the elements (1,1), (1,3),

and (1,4), respectively, of the updated estimation

error matrix ¢Xk=k. Extensive simulations show that

the behavior of these three elements represents the

behavior of all other elements of the matrix ¢Xk=k.

Figure 5 shows the time history of the means and

of the §1¾-envelopes of ¢X11, ¢X13, and ¢X14.
Figure 5(a) shows that the plots of ¢XOPREQ11 and

¢XMKF11 are practically undistinguishable. The means

oscillate around zero with two time periods; namely,

a short period of about 2 min, which corresponds

to the spin rotation of the SC, and a long period of

1 hr, which is due to the SC nutation. The order of

magnitude of the standard deviations is 5£ 10¡6.
Figure 5(b) shows that, similar to ¢X11, the filters

OPREQ and MKF yield very close variations in

¢X13. However, the oscillations in ¢X13 are less

sensitive to the short period than in ¢X11. In Fig. 5(c),

however, we notice that the oscillations in the

mean of ¢X
OPREQ
14 are much less damped than the

oscillations in the mean of ¢XMKF14 , and the ratio

between the amplitudes of those oscillations reaches 8.

Furthermore, the §1¾-envelope of ¢XMKF14 constitutes

a lower-bound for that of ¢X
OPREQ
14 . The dc level

of the oscillations in the standard deviation is about

4£ 10¡7 for the MKF, and twice as large (8£ 10¡7)
for OPREQ. Thus, for X14, MKF clearly outperforms

OPREQ. The advantage of MKF becomes even more

obvious when analyzing the angular and quaternion

estimation errors.

Next, the gains of MKF and OPREQ are

compared. For this purpose we compute the scalar

½MKF as the Euclidean norm of the 16£ 16 gain
matrix Kk+1 of MKF, and plot its Monte-Carlo mean
versus the mean of the gain of OPREQ ½OPREQ.

Figure 6 shows the variations of the Monte-Carlo

means of ½MKF (solid) and of ½OPREQ (dashed).

During the transition phase, the first 1500 s, the two

quantities are very close to one another. Then ½MKF
reaches a steady-state value around 0.015, while

½OPREQ oscillates at the spin and nutation frequencies.

The maxima of ½OPREQ are about 0.025 and the dc

level of the oscillations is around 0.020. This result

gives some insight into the result described earlier in

Fig. 5(c); because of the higher gain, OPREQ filter

weighs the new incoming observations more heavily

than MKF; therefore, the update estimate in OPREQ

is noisier than that in the MKF.

As mentioned earlier the quaternion estimation

error, denoted by ±q, is defined as the quaternion
of the small rotation that brings the estimated

body frame onto the true body frame (see (66)). It

has four components, which are denoted by ±e1,

±e2, ±e3, and ±q. The variations of the means and

§1¾-envelopes of the four components of ±q are
depicted in Fig. 7. As can be seen from Figs. 7(a)

and (b), the errors ±e1 and ±e2 have very similar

variations. The oscillations in the means are less

damped in OPREQ than in the MKF; the ratio

between the oscillation peaks reaches 8. The dc level

of the §1¾-envelopes in OPREQ is twice that of
the MKF (1:2£ 10¡5 as compared with 6£ 10¡6).
The same analysis applies to ±e3 in Fig. 7(c) except

that the variations of ±eOPREQ3 are much noisier. As

opposed to ±eOPREQ3 , the variations of ±eMKF3 have

a regular oscillating pattern, essentially modulated

by the nutation frequency. Instead of plotting the

variations of ±q, we plot those of (1¡ ±q) in Fig. 7(d);
indeed, this quantity is the one that becomes small

when the quaternion estimation error becomes small

(a quaternion expressing a zero-rotation is equal to

[0 0 0 1]T). After a transition phase of about 1500 s,

the plots of OPREQ and the MKF clearly separate.

The variations of 1¡ ±qMKF are smooth, with a mean
of 10¡10 and a standard deviation of 10¡10; on the
other hand, the mean of 1¡ ±qMKF oscillates above
10¡10, and the standard deviation is of the order of
2£ 10¡10.
Let ±Á denote the angle of the small rotation

that is represented by ±q. This angle is extracted
from ±q using the known relation, ±q= cos(±Á=2).

Figure 8 presents the time histories of the mean and

of the §1¾-envelope of ±Á. The mean of the MKF
is stabilized at 1.2 mdeg, while the mean of OPREQ

oscillates above it, around a dc level of 1.7 mdeg, i.e.,

the mean error of OPREQ is about 1.4 times larger

than that of MKF. The standard deviation in the MKF

is about 0.8 mdeg, about 1.5 times smaller than that in

OPREQ, which is 1.2 mdeg.

Overall, we see that MKF outperforms OPREQ.

We also deduce from Fig. 7(d) that there is a small

bias in the estimated quaternion. Considering the

order of magnitude in ±Á, both algorithms perform

well since the estimation angular error is at a level of

1.2 mdeg (in MKF) and of 1.7 mdeg (in OPREQ),

which is less than the measurement angular errors,

i.e., about 3 mdeg in the most accurate measurements,

and about 17 mdeg in the least accurate ones.

Discussion

We saw in Fig. 5(c) that the Monte-Carlo standard

deviation (Monte-Carlo STD) in ¢X14 were twice as

large in OPREQ as in MKF; the same ratio in favor

of MKF appeared in Figs. 7(a) and (b) with respect

to the Monte-Carlo STD in ±e1 and ±e2. Fig.7(c)
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Fig. 5. Monte-Carlo means and §1¾ envelopes of the estimation errors ¢X11, ¢X13 and ¢X14 in MKF (solid) and in the OPREQ
filter (dashed). (a) ¢X11. (b) ¢X13. (c) ¢X14.

features a ratio of 1:5 between the Monte-Carlo STD

of ±e3 in OPREQ and MKF. The ratio between the

Monte-Carlo STD (and means) of ±q in OPREQ

and MKF is also 1.5, according to Fig. 7(d). Finally,

Fig. 8 shows a ratio of 1.4 between the Monte-Carlo

means of ±Á in both filters, and the same holds
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Fig. 6. Monte-Carlo means of the gains ½OPREQ (dashed) and ½MKF (solid).

for the Monte-Carlo STD of ±Á. We can therefore

conclude from these results that the MKF algorithm

outperforms the OPREQ algorithm, and that the

increase in performance can be quantified by ratios

between 1.4 and 2.

The present discussion is concerned with an

analysis of the ratio in the performances increase.

We first derive conditions under which the MKF

algorithm reduces to OPREQ. Assume that Wk, Vk,

and P0=0 have independent identically distributed

rows with 4£ 4 covariance matrices, Q̄k, R̄k, and P̄0=0,
respectively.2 In addition, assume that the gain matrix

in (52), Kk+1, is a scalar matrix, i.e.,
Kk+1 = ½k+1I16 (85)

then the filter update equations (52) and (53) become

X̂k+1=k+1 = (1¡ ½k+1)X̂k+1=k + ½k+1Yk+1 (86a)

P̄k+1=k+1 = (1¡ ½k+1)2P̄k+1=k + ½2k+1R̄k+1 (86b)

where X̂ denotes the estimate of the K-matrix, Yk+1 is

the matrix measurement constructed using the vector

measurement acquired at tk+1, P̄ denotes the 4£ 4
estimation error covariance matrix for each row of the

estimation error matrix, and R̄ denotes the covariance

matrix of the effective measurement noise used in

MKF. Equations (86) are obtained by using (85) in

(63) and (64). The update equations in OPREQ are

2These assumptions lead to to the reduced covariance MKF as given

in (57)—(64).

written here for convenience [9]

Kk+1=k+1 = (1¡ ½¤k+1)Kk+1=k + ½¤k+1±Kk+1 (87a)

Pk+1=k+1 = (1¡ ½¤k+1)2Pk+1=k + ½¤k+12Rk+1 (87b)

where Kk+1=k+1 denotes the updated estimate of

the K-matrix, ±Kk+1 is the matrix measurement at

tk+1, ½
¤
k+1 is the optimized fading memory factor,

Pk+1=k+1 and Rk+1 denote the “uncertainty” matrices
for the updated estimation error and for the effective

measurement noise used in OPREQ, respectively.

Comparing (86) and (87) we realize that they have

similar structures. They differ, however, because the

matrices P̄k+1=k+1 and Pk+1=k+1 are different, and so are

the matrices R̄k+1 and Rk+1. In fact, these matrices are
related as follows

Rk+1 = 4R̄k+1 (88)

Pk+1=k+1 = 4P̄k+1=k+1: (89)

Equation (88) is easily shown by recalling the

definition of Rk+1 [9], which yields

Rk+1
¢
=E[Vk+1V

T
k+1]

= E

"
4X
i=1

vci v
c
i
T

#

=

4X
i=1

E[vci v
c
i
T]

= 4R̄k+1
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Fig. 7. Monte-Carlo means and §1¾ envelopes of the quaternion estimation errors in MKF (solid) and in OPREQ filter (dashed).

(a) ±e1. (b) ±e2. (c) ±e3. (d) 1¡ ±q.

where vci , i= 1,2,3,4, denote the 4£ 1 column-vectors
of the matrix Vk+1. Notice that these vectors are

identical to the rows of Vk+1 since Vk+1 is a symmetric

matrix (see (39) and (40)). The third equality is due

to the linearity of the expectation operator. The last

equality stems from the assumption that the rows of

Vk+1 (and thus also its columns) are independent and

identically distributed, with covariance matrix R̄k+1.

The same argument is readily used for Pk+1=k+1. As a

result, the covariance update equations of the MKF

and of OPREQ are identical, up to a multiplication by

a constant.

While finding the conditions under which the

general MKF algorithm reduces to the OPREQ

algorithm, we have quantified the difference between

the effective measurement noise levels in the filters,

and found that it is four times greater in OPREQ

than in the matrix filter. It is believed that this is the

principal cause of the discrepancy between the filters’

performance. The latter is illustrated by a simple

example. Consider the following scalar state-space

equations

xk+1 = xk +wk (90)

yk+1 = xk+1 + vk+1 (91)

where wk and vk+1 are the process and measurement

noise sequences, respectively, which satisfy the usual

stochastic assumptions of the basic state-space model.

Let q and r denote the covariances of wk and vk,

respectively. The scalar algebraic Riccati equation is
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Fig. 8. Monte-Carlo means and §1¾ envelopes of the angular estimation error ±Á in MKF (solid) and in OPREQ filter (dashed).

readily formulated as follows:

p21+ qp1¡ qr = 0 (92)

where p1 denotes the steady-state estimation error

covariance. Solving for p1 in (92) and assuming3 that

q=r¿ 1 yields the following approximation for p1:

p1 '
p
qr: (93)

It is clear from (93) that multiplying the measurement

noise covariance r by 4 will deteriorate the estimation

error standard deviation
p
p1 by factor of

p
2' 1:4,

which is close to the Monte-Carlo simulations results.

Constrained Matrix Kalman Filter

We test here the performance of the CMKF,

which is the MKF that embeds the symmetry and

trace update stages. We compare the response of the

CMKF and the MKF to an initial perturbation in the

symmetry and trace properties of the estimate matrix.

The initial perturbations in the elements of the initial

estimate are zero-mean uniformly distributed random

variables with standard deviation ¾dst = 0:05. The

covariance matrix of the symmetry PM R
sym
k+1 is chosen

as R
sym
k+1 = (¾dst)

2I16, and the covariance of the trace

PM is rtrk+1 = ¾
2
dst. All the other simulation conditions

are identical to those of the preceding simulation.

The results of a 100-run Monte-Carlo simulation

are presented in Figs. 9 and 10. For both MKF and

CMKF, Fig. 9 shows plots of the MC-means for ±Á

3This assumption is fully justified in the application case where

the process noise comes from gyro outputs and the measurement

noise comes from vector measurement sensing devices. In this case,

q' 10¡14 [rad2=s2] and r ' 10¡10.

and Fig. 10 shows the plots of the MC-means of the

quaternion estimation errors, ±e1, ±e2, ±e3, and 1¡ ±q.
An inspection of Fig. 9 reveals that CMKF performs

better than MKF during the transient phase and the

steady-state phase. Figure 10 further illustrates the fact

that constraining the estimation process speeds up the

error transient response. Furthermore, it appears that

the initial symmetry and trace perturbation yields an

estimation performance degradation, as compared with

the MKF without initial perturbation, by a factor of

about 50.

CONCLUSION

A novel recursive estimator of the

quaternion-of-rotation from sequential vector

observations is presented. The proposed estimation

algorithm is an enhanced OPREQ filter, where

the first step consists of denoising the elements

of a time-varying K-matrix via Kalman filtering

techniques. The K-matrix estimator is developed

using the MKF paradigm. Explicit expressions for the

covariance matrices of the process and measurement

matrix noises are developed. An exact treatment of

the state-multiplicative process noise in the Kalman

filtering framework is provided. A reduced estimator

is developed under special assumptions on the

noise stochastic models. Constraining the symmetry

and zero-trace properties in the matrix estimate is

done in the MKF framework via PM techniques.

Extensive Monte-Carlo simulations are used to

compare the performance of the unconstrained MKF

with that of OPREQ, and to illustrate the advantage

of constraining the estimation process. Although

both algorithms exhibit, in general, similar transition
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Fig. 9. Monte-Carlo mean of the angular estimation error ±Á in the MKF (solid) and in the CMKF (dashed).

phases, the MKF clearly outperforms OPREQ in

steady-state. The Monte-Carlo means of all the

estimation errors in MKF are much more damped, and

the Monte-Carlo estimation error standard deviations

are between 1:4 times and twice as small as those

of OPREQ. The Monte-Carlo results show that the

CMKF achieves a better accuracy in the case of initial

perturbations in the desired estimate properties.

APPENDIX I. DERIVATION OF (29)

We begin by presenting some known matrix

identities. For any vectors u, v in R3 and any general
matrix M in R3£3 the following identities hold:

[u£]v=¡[v£]u (94a)

[u£][v£] = vuT¡ vTuI3 (94b)

[(u£ v)£] = vuT¡uvT (94c)

v= [tr(M)I3¡M]u )
[v£] =MT[u£]+ [u£]M (94d)

[u£] =MT¡M ) uTv= tr([v£]M):
(94e)

All these results arise from the definition of the

cross-product matrix and can be easily established

by direct computation. Equations (94a) to (94d)

correspond to [5, eqs. (A15)—(A18)]. Next, we recall

that Wk can be approximated to first-order in ²k and
¢t by [9]

Wk '
·
S²¡·²I3 z²

zT² ·²

¸
¢t (95)

where

B² = [²k£]Bk, S² = B²+B
T
²

[z²£] = BT² ¡B², ·² = tr(B²):
(96)

This form is valid for both high and low angular

velocities. The expression for Wk, as given in (95),

results from a Taylor expansion of the discrete-time

dynamics matrix ©k in (28) to first-order in the gyro

error ²k, and in the time increment ¢t. The angular
velocity components indeed enter the neglected

second-order terms in the expansion of ©k as follows

(see [26, Appendix B] for the proof):

¢©= E¢t+ 1
2
(−E + E−)¢t2¡ 1

2
E2¢t2 +O(¢t3)

(97)
where − and E are defined in (30) and (27),
respectively. Equation (97) features the second-order

terms of the quaternion transition matrix

approximation presented in [27] (see (43) there),

under the assumption of a zero-hold assumption

on the integrated gyro measured rates and gyro

noises. From (97), the ratio between the norms of

the first-order term in ¢t and the second-order term

in ¢t, which involves −, is of the order (k!k¢t)
where k!k is the angular velocity norm. Even for
a very high velocity of 1 rad/s, a time increment of

1 ms is sufficient to make the ratio of the order of

10¡3, which proves the validity of the first-order
approximation.

The matrix Bk in (96) is associated with the

ideal noise-free matrix Kk. The vector ²k denotes
an additive gyro output white noise and ¢t is the

incremental time between two gyro readings. It

is shown in the following that (95) and (29) are
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Fig. 10. Monte-Carlo means of the quaternion estimation errors in the matrix Kalman filter MKF (solid) and in the Constrained matrix

Kalman filter (CMKF) (dashed). (a) ±e1. (b) ±e2. (c) ±e3. (d) 1¡ ±q.

equivalent. The time subscripts are omitted for the

sake of clarity. Thus Xk and Ek are denoted by X and
E . Since X is symmetric and E is skew-symmetric,

XE ¡EX = XE +(XE)T: (98)

Using (30) and exploiting the structure of X, which

is a K-matrix, the first term on the right-hand side of

(98) can be rewritten as follows

XE = 1
2

·
S¡¾I3 z

zT ¾

¸·¡[²£] ²

¡²T 0

¸
=
1

2

·¡S[²£] +¾[²£]¡ z²T S²¡¾²
¡zT[²£]¡¾²T zT²

¸
: (99)

Using (99) in the right-hand side of (98) yields

XE ¡EX

=
1

2

·
[²£]S¡ S[²£]¡ (z²T+ ²zT) S²+[²£]z¡ 2¾²

²TS¡ zT[²£]¡ 2¾²T 2zT²

¸

=

·
M11 m12

mT
12 m22

¸
(100)

which constitutes an implicit definition of the 3£ 3
submatrix M11, the 3£ 1 vector m12, and the scalar

m22. Using (94b), with u= z and v= ², yields

[z£][²£] = ²zT¡ zT²I3 (101)

3150 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



where we use the fact that ²Tz= zT². Using the fact
that [1, p. 428]

[z£] = BT¡B (102)

in the left-hand side of (101) yields

²zT = (BT¡B)[²£] + zT²I3: (103)

Summing (103) with its transpose, and utilizing the

skew-symmetry of [²£], yields
²zT+ z²T = (BT¡B)[²£]¡ [²£](B¡BT) +2zT²I3:

(104)

Inserting (104) into the expression for M11, using

S = B+BT, yields

M11 =
1
2
f[²£](B+BT)¡ (B+BT)[²£]¡ (BT¡B)[²£]
+ [²£](B¡BT)¡2zT²I3g

= ([²£]B¡BT[²£])¡ zT²I3: (105)

Let the 3£ 3 matrix B² be defined by

B²
¢
=[²£]B: (106)

Using (94e) with u= z, M = B, and v= ², yields

zT²= tr([²£]B): (107)

Define the matrix S² and the scalar ·² by

S²
¢
=B²+B

T
² (108)

·²
¢
=tr(B²): (109)

Using (107), (108), and (109) in (105) yields the

following expression for M11:

M11 = S²¡·²I3: (110)

The expression for m22 immediately stems from (107)

and (108):

m22 = ·²: (111)

In order to express m12, we start from its definition as

given in (100):

m12 =
1
2
(S²+[²£]z¡ 2¾²)

= 1
2
(S²¡ [z£]²¡ 2¾²)

= 1
2
(S¡ [z£]¡2¾I3)²

= 1
2
[(B+BT)¡ (BT¡B)¡2¾I3]²

= (B¡¾I3)² (112)

where the second line stems from (94a) (with u= ²
and v= z), and the fourth line is obtained using

S = B+BT and (102). In order to compute the

cross-product matrix [m12£], we use the fact that
¾ = tr(B), and we apply the proposition (94d), where

v=m12, M =¡B, and u= ²; thus
[m12£] =¡BT[²£] + [²£](¡B)

= ([²£]B)T¡ [²£]B
= BT² ¡B² (113)

where the third equality stems from (106). Therefore,

denoting the vector m12 by z², we can write

[z²£] = BT² ¡B²: (114)

To conclude, using (110), (111), and (114) in (100)

yields

XE ¡EX =
·
S²¡·²I3 z²

zT² ·²

¸
(115)

where
B²

¢
=[²£]B, S²

¢
=B²+B

T
²

[z²£]
¢
=BT² ¡B², ·²

¢
=tr(B²):

(116)

APPENDIX II. PROOF OF PROPOSITION 1

Preliminaries

The process equation (26) is rewritten here for

convenience
Xk+1 = ©kXk©

T
k +Wk (117)

where the noise matrix Wk is expressed as

Wk = (XkEk ¡EkXk)¢t (118)

and Ek is the 4£ 4 skew-symmetric matrix defined as

Ek =
1

2

·¡[²k£] ²k

¡²Tk 0

¸
(119)

with ²k denoting the additive noise error in the gyro
outputs. As mentioned earlier, the covariance matrix

of Wk, denoted by Qk, is defined as the covariance of

vecWk, where vecWk is the 16£ 1 vector obtained by
applying the vec-operator on the 4£ 4 matrix Wk. The
column-vector vecWk is denoted by wk. Thus,

Qk = covfWkg
¢
=covfwkg: (120)

In order to derive the expression for Qk, as given

in (33), the vec-operator is applied to (118), which

yields a linear relation between wk and ²k. Then, the
covariance matrix of wk is expressed as a function of
the covariance matrix of ²k, Q

²
k=¢t. It is assumed that

the matrix Q²k is known.

wk = [vec(XkEk ¡EkXk)]¢t
= [vec(XkEk)¡ vec(EkXk)]¢t
= [(I4−Xk)vecEk ¡ (XTk − I4)vecEk]¢t
= [(I4−Xk)¡ (XTk − I4)]vecEk¢t (121)

where the second equality is obtained using the

linearity property of the vec-operator, the third

equality is derived using a basic property of

the Kronecker product (see [24, p. 255]), and

CHOUKROUN, ET AL.: QUATERNION ESTIMATION FROM VECTOR OBSERVATIONS 3151



the last equality stems from a factorization with

respect to vecEk. Equation (121) shows that wk is a
state-dependent linear function of vecEk.
PROOF OF i. Applying the vec-operator to (119)

yields

(vecEk)T =
½
vec

μ
1

2

·¡[²k£] ²k

¡²Tk 0

¸¶¾T

=
1

2

8>>><>>>:vec
0BBB@
26664
0 ²3 ¡²2 ²1

¡²3 0 ²1 ²2

²2 ¡²1 0 ²3

¡²1 ¡²2 ¡²3 0

37775
1CCCA
9>>>=>>>;
T

=
1

2
[0 ¡ ²3 ²2 ¡ ²1 ²3 0 ¡ ²1 ²2 ¡ ²2 ²1 0 ¡ ²3 ²1 ²2 ²3 0]

=
1

2
[²1 ²2 ²3]

2640 0 0 ¡1 0 0 ¡1 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 ¡1 ¡1 0 0 0 0 1 0 0

0 ¡1 0 0 1 0 0 0 0 0 0 ¡1 0 0 1 0

375
= 1

2
[²1 ²2 ²3][¡[e1£] ¡ e1 ¡ [e2£] ¡ e2 ¡ [e3£] ¡ e3 I3 0]

= 1
2
(M²k)

T (122)

where ²k = [²1 ²2 ²3]
T, and the 16£3 matrix M is

defined in (122). Taking the transpose of (122) yields

vecEk = 1
2
M²k: (123)

Using (123) in (121) yields

wk =
1
2
[(I4−Xk)¡ (XTk − I4)]M²k¢t: (124)

Defining the 16£ 3 matrix ¡k as

¡k
¢
= 1
2
[(I4−Xk)¡ (XTk − I4)]M (125)

and using (125) in (124) yields

wk = ¡k²k¢t: (126)

Squaring (126) and applying the expectation operator

yields the sought result.

PROOF OF ii. Let ¡Ci denote the three 16-dimensional

columns of ¡k, then (126) can be rewritten as follows:

wk =

3X
i=1

¡Ci²i¢t: (127)

Let the three matrices Ai, i= 1,2,3, which are given in

(36), be defined by

Ai
¢
=vec¡1(Mei) (128)

where vec¡1 denotes the inverse of the vec operator.
Then, using basic properties of the Kronecker product

yields the following identities

¡Ci = ¡kei

= 1
2
[(ATi − I4)¡ (I4−Ai)]vecXk

=¨ivecXk: (129)

Substituting (129) into (127) yields

wk =

3X
i=1

¨ivecXk²i¢t: (130)

Finally, squaring (130), applying the expectation

operator, and using the statistical assumptions on ²k
yields the sought result.

APPENDIX III. MEASUREMENT NOISE COVARIANCE
MATRIX Rk+1
In the case of m simultaneous vector observations

at time tk+1, the measurement noise term in (37),

Vk+1, is given by (38), which is rewritten here for

convenience

vk+1 =

mX
i=1

®iV
i
k+1 (131)

where

Vik+1 =

·Sbi ¡·biI3 zbi

zTbi ·bi

¸
(132a)

Bbi = ±bir
T
i , Sbi = BTbi +Bbi (132b)

zbi = ±bi£ ri, ·bi = tr(Bbi ) (132c)

®i = ai

Á mX
i=1

ai (132d)

and ai, i= 1,2 : : : ,m, are positive weights. Let Rk+1
and Rbik+1 denote, respectively, the covariance matrices

3152 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



of Vk+1 and ±bi(tk+1), i= 1,2 : : : ,m. The matrix
Vk+1 is expressed as a linear function of ±bi(tk+1),
i= 1,2 : : : ,m, and the matrix Rk+1 is expressed as a

function of the matrices Rbik+1. Let vk+1 and vi(tk+1)
denote the vec-transforms of Vk+1 and V

i
k+1, i=

1,2 : : : ,m, respectively. Applying the vec-operator to
(131) yields

vk+1 = vec

Ã
mX
i=1

®iV
i
k+1

!

=

mX
i=1

®ivi(tk+1): (133)

PROPOSITION 2 The matrix Vik+1 given in (132) can be
factorized as follows

Vik+1 = R̃
T
i ±Bi (134)

where

R̃i =

·
[ri£] ri

¡rTi 0

¸
(135a)

±Bi =
·¡[±bii£] ±bi

¡±bTi 0

¸
: (135b)

PROOF Proposition 2 is proven by direct
computation, and using (94b), with u= r, and v= ±bi.

Applying the vec-operator on (134) yields

vi(tk+1) = vec(R̃
T
i ±Bi)

= (I4− R̃Ti )vec(±Bi)
=¡(I4− R̃i)vec(±Bi) (136)

where the second equality is obtained using a basic
property of the Kronecker product (see [24, p. 255]),
and the third equality is due to the skew-symmetry of

R̃i (see 135a). The 16£ 1 vector vec(±Bi) is expressed
as a function of the 3£ 1 vector ±bi as follows.

[vec(±Bi)]T =

8>>><>>>:vec
0BBB@
26664

0 ±b3 ¡±b2 ±b1

¡±b3 0 ±b1 ±b2

±b2 ¡±b1 0 ±b3

¡±b1 ¡±b2 ¡±b3 0

37775
1CCCA
9>>>=>>>;
T

= [0 ¡ ±b3 ±b2 ¡ ±b1 ±b3 0 ¡ ±b1 ¡ ±b2 ¡ ±b2 ±b1 0 ¡ ±b3 ±b1 ±b2 ±b3 0]

= [±b1 ±b2 ±b3]

2640 0 0 ¡1 0 0 ¡1 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 ¡1 ¡1 0 0 0 0 1 0 0

0 ¡1 0 0 1 0 0 0 0 0 0 ¡1 0 0 1 0

375
= [±b1 ±b2 ±b3][¡[e1£] ¡ e1 ¡ [e2£] ¡ e2 ¡ [e3£] ¡ e3 I3 0]

= (M±bi)
T (137)

where the 16£ 3 matrix M is defined is defined as in
(31). Taking the transpose of (137) yields

vec(±Bi) =M±bi: (138)

Using (138) in (136) yields

vi(tk+1) =¡(I4− R̃i)M±bi: (139)

Defining the 16£ 16 matrix ¤i as

¤i
¢
=(I4− R̃i)M (140)

and using (140) in (139) yields

vi(tk+1) =¡¤i±bi: (141)

Substituting (141) to vi(tk+1) in (133) yields

vk+1 =¡
mX
i=1

®i¤i±bi: (142)

Since vk+1 is a linear combination of zero-mean
white-noise processes (see (41)), it is a zero-mean

process itself, and its covariance Rk+1 is readily

computed as

Rk+1 =

mX
i=1

®2i ¤iR
bi
k+1¤

T
i (143)

where Rbik+1 is the covariance of the measurement error

in bi, i= 1,2 : : : ,m.

APPENDIX IV. DERIVATION OF THE REDUCED
COVARIANCE FILTER

Time Update

PROOF Assume that Pk=k = P̄k=k − I4 and Qk = Q̄k − I4,
then the covariance time update is formulated as (see

(48) and (49))

Pk+1=k = FkPk=kFTk +Qk
= (©k −©k)(P̄k=k − I4)(©k −©k)T+(Q̄k − I4)
= (©kP̄k=k©

T
k −©k©Tk )+ (Q̄k − I4)

= (©kP̄k=k©
T
k − I4)+ (Q̄k − I4)

= (©kP̄k=k©
T
k + Q̄k)− I4: (144)
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The second equality in (144) is obtained using (48)

and the above assumptions. The third equality is

obtained using the mixed product property of the

Kronecker product [24, Lemma 4.2.10, p. 243] and

[24, Lemma 4.2.4, p. 244]. The fourth equality results

from the orthogonal nature of ©k. The last equality is

obtained using [24, Lemma 4.2.7, p. 243]. Looking at

the last equality in (144) we define the 4£ 4 matrix
P̄k+1=k as

P̄k+1=k
¢
=©kP̄k+1=k©

T
k + Q̄k

which yields
Pk+1=k = P̄k+1=k − I4:

MEASUREMENT UPDATE

PROOF Assume that Pk+1=k = P̄k+1=k − I4 and Rk+1 =
R̄k+1− I4, then the innovation covariance matrix is
computed as follows (see (51))

Sk+1 = Pk+1=k +Rk+1

= (P̄k+1=k − I4))+ (R̄k+1− I4)
= (P̄k+1=k +Rk+1)− I4: (145)

The third equality in (145) is obtained using [24,

Lemma 4.2.7, p. 243]. Let the 4£ 4 matrix S̄k+1 be
defined as follows

S̄k+1
¢
= P̄k+1=k +Rk+1

yields
Sk+1 = S̄k+1− I4:

The 16£16 Kalman gain matrix, Kk+1, is expressed
as given by (52)

Kk+1 = Pk+1=kS¡1k+1
= (P̄k+1=k − I4)(S̄k+1− I4)¡1

= (P̄k+1=k − I4)[(S̄k+1)¡1− I4]
= [P̄k+1=k(S̄k+1)

¡1]− I4: (146)

Lemma 4.2.5 and Lemma 4.2.10 in [24] are used

in order to obtain the third and fourth equalities,

respectively, in (146). Then, defining the 4£4 matrix
K̄k+1 as

K̄k+1
¢
= P̄k+1=k(S̄k+1)

¡1

yields
Kk+1 = K̄k+1− I4: (147)

The estimation error covariance measurement update

is formulated as in (55)

Pk+1=k+1 = (I16¡Kk+1)Pk+1=k(I16¡Kk+1)T +Kk+1Rk+1KTk+1
= [(I4− I4)¡ (K̄k+1− I4)](P̄k+1=k − I4)

£ [(I4− I4)¡ (K̄k+1− I4)]T

+(K̄k+1− I4)(R̄k+1− I4)(K̄k+1− I4)T

= [(I4¡ K̄k+1)− I4](P̄k+1=k − I4)[(I4¡ K̄k+1)− I4]T

+(K̄k+1R̄k+1K̄
T
k+1− I4)

= [(I4¡ K̄k+1)P̄k+1=k(I4¡ K̄k+1)T+ K̄k+1R̄k+1K̄Tk+1− I4]:
(148)

Thus, defining the 4£ 4 matrix P̄k+1=k+1 as

P̄k+1=k+1
¢
=(I4¡ K̄k+1)P̄k+1=k(I4¡ K̄k+1)T+ K̄k+1R̄k+1K̄Tk+1

yields

Pk+1=k+1 = P̄k+1=k+1− I4:
The estimate measurement update, as given in (53), is

rewritten here

X̂k+1=k+1 = X̂k+1=k +

4X
j=1

4X
l=1

Kjlk+1Ỹk+1Elj (149)

where each 4£ 4 block-matrix Kjlk+1 is, in view of
(147), a scalar matrix of the form

Kjlk+1 = K̄k+1[j, l]I4 (150)

and K̄k+1[j, l] denotes the element [j, l] in K̄k+1. Using

(150) in (149) yields

X̂k+1=k+1 = X̂k+1=k +

4X
j=1

4X
l=1

Ỹk+1K̄k+1[j, l]E
lj

= X̂k+1=k + Ỹk+1

0@ 4X
j=1

4X
l=1

K̄k+1[j, l]E
lj

1A
= X̂k+1=k + Ỹk+1K̄

T
k+1: (151)

The first equality in (151) is obtained using the

fact that K̄k+1[j, l] is a scalar. In the second equality

we use the fact that Ỹk+1 is independent from the

summing indices j and l. The third equality comes

from the canonical decomposition of a matrix in R4£4.
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