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This work presents several algorithms that use vector
observations in order to estimate the direction cosine matrix
(DCM) as well as three constant biases and three time-varying
drifts in body-mounted gyro output errors. All the algorithms use
the matrix Kalman filter (MKF) paradigm, which preserves the
natural formulation of the DCM state-space model equations.
Focusing on the DCM estimation problem, the assumption of
white noise in the gyro and in the vector observations errors
yields reduced and efficient filter covariance computations.
The orthogonality constraint on the DCM is handled via the
technique of pseudomeasurement, which is naturally embedded
in the MKF. Two additional known “brute-force” procedures are
implemented for the sake of comparison. Extensive Monte-Carlo
simulations illustrate the performances of the different estimators.
When estimating only the DCM, it is shown that all the
proposed orthogonalization procedures accelerate the estimation
convergence. Nevertheless, the pseudomeasurement technique
shows a smoother and shorter transient than the brute-force
procedures, which on the other hand yield more accurate
steady-states. The reduced covariance computations yield a more
accurate steady-state than the full covariance computations but
show a slower transient. When estimating the DCM as well as
the gyro biases and drifts, enforcing orthogonalization seems
to penalize the DCM estimation as long as the biases are not
correctly identified. For the sake of computation savings during
long duration missions, a mixed estimator, switching between long
periods of DCM-only estimation and short periods of DCM-biases
estimation, appears to be a promising strategy.
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INTRODUCTION

In the course of spacecraft operation the spacecraft
spatial orientation with respect to some reference
frame has to be continuously determined. A popular
mathematical representation of the spacecraft
orientation is the matrix of the rotation between a
Cartesian coordinate frame, which is rigidly fixed
in the spacecraft body, and a reference Cartesian
coordinate frame. This matrix, which is denoted by
D, is also known as direction cosine matrix (DCM)
[1, p. 411]. Typical observations that are processed
on-board spacecraft in order to determine D are
vector observations, like the Earth’s magnetic field
or measurements of lines of sight from the spacecraft
to various celestial objects. The DCM is a 3£ 3
matrix, whose nine elements are not independent.
Indeed, like any rotation matrix, D is a proper
orthogonal matrix [1, p. 412], which implies six
constraints connecting the nine elements. In spite
of the redundancy created by the constraints, the
DCM D is a convenient rotation representation. This
is so because the equations that describe the vector
measurement model and the spacecraft kinematical
model are linear in D [1, pp. 411, 512]. The latter
facts enable the development of efficient estimators
of the DCM using vector observations. Notice that
two vector observations are necessary and sufficient to
fully determine D [2].
Optimal DCM estimators which handle more

than two vector observations typically fall into two
categories. The first one has its origin in a constrained
weighted least-squares problem, known as the Wahba
problem [3]. Besides the usual good features of the
solutions to Wahba’s problem1 a particular highlight
is that they are matrix estimators: they preserve the
matrix formulation of the original DCM parameters;
their development and analysis, which involve
standard matrix decompositions, would have been
cumbersome, if not impossible, without maintaining
a matrix notation. Nevertheless, a drawback of
this family of estimators is the suboptimality with
regard to time propagation noises, when estimating
a time-varying DCM, and a lack of clear probabilistic
meaning.2 On the other hand, the second approach,
namely the minimum-variance or Kalman filtering
approach, provides a convenient stochastic framework
for developing approximate Kalman filters (KF) of a
time-varying DCM. But in order to implement the KF,
the usual approach [11] consists in transforming the

1They are closed-form solutions, and thus, they need no a priori
estimate of D [4—10]. Moreover the orthogonality constraint on D is
inherent to the formulation of the problem.
2In general, the weights in Wahba’s cost function are chosen as
scalars equal to the inverse of the variance of the associated vector
measurement. Through this choice, the solution to Wahba’s problem
acquires some statistical ground. Nevertheless, this choice is at most
heuristic.
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DCM into its vectorized representation, by stacking
its columns one under the other. This is done in
order to comply with the conventional state-vector
formulation of model equations. Following that
approach all system equations are vectorized. As
a result, the physical insight in the plant equations
is lost, rendering the analysis of the related KF
cumbersome.
The issue of developing optimal algorithms for

estimation and control that operate on matrix systems,
while preserving the matrix formulation of the original
systems has been given much attention [12—14].
The various solutions to Wahba’s problem are
such examples. When modeling structural systems,
physical parameters are represented as matrices
like the stiffness matrix, the inertia matrix or the
damping matrix. Reference [12] features a matrix
estimator of the stiffness matrix. Matrix calculus tools,
such as the gradient matrix [13], were developed
in order to design optimal control algorithms that
operate on matrix processes. Recently, a generic
matrix Kalman filter (MKF) was introduced [14] that
operates on plants which are naturally described by
matrix equations. Notice that, beyond the notational
advantage, using an MKF instead of the associated
vectorized KF allows savings in computations (see
[14, Table V, Cases A and C for DCM estimation]).
This work is concerned with the development,

via the MKF approach, of estimators of the DCM
and of additional parameters such as constant biases
and time-varying drifts in body-mounted gyro output
errors. The matrix formalism adopted throughout
this work allows straightforward developments of
expressions for the filter noise covariance matrices.
This in turn is helpful in designing simplified filters
based on specific stochastic assumptions. Focusing
on DCM estimation and assuming gyro output, white
noise leads to filter covariance computations that can
be expressed by reduced 3£ 3 equations instead of
the full 9£ 9 equations. The more realistic case of
constant biases and time-varying drifts in the gyro
errors is handled via a state augmentation and the
development of the associated matrix state-space
model. The traditional issue of orthogonalization of
the DCM estimate, which is crucial when it is needed
for axis rotation, e.g. in inertial navigation systems,
is addressed via the technique of orthogonality
pseudomeasurement (OPM). The orthogonality
constraint being a quadratic matrix equation is,
upon some modeling transformations, recast as a
virtual matrix measurement equation of the DCM.
Then, this additional matrix measurement yields
an additional measurement update stage naturally
embedded in the formalism of the MKF. As opposed
to other orthogonalization techniques [11, 17],
the OPM technique provides the designer with a
covariance computation that is associated with the
orthogonalization procedure and, furthermore, allows

him to tune that constraint. Extensive Monte-Carlo
simulations were performed in order to illustrate the
performances of the various filters. In particular, the
relative advantages of four various orthogonalization
schemes are studied, the consequence of using
reduced covariance computations is investigated, and
the performance of the augmented filter for DCM bias
and drift estimation are shown. Furthermore, for long
span simulations, a special augmented filter is tested,
where the bias and drift estimation processes are
turned off from time to time, for filter computational
savings, while the overall DCM estimation accuracy
stays at an acceptable level.
The remainder of the paper is organized as

follows. The next section presents the mathematical
model of the DCM system in the case of white noise
in the gyro output error. This model is already known
in the literature, except for the explicit expression
describing the process noise covariance matrix,
which is presented here. Two MKFs of the DCM
are developed in the following section. The first
filter includes a full (9£9) covariance computation
algorithm. The second one includes a reduced (3£ 3)
covariance computation. Both filters do not include
any orthogonalization procedure. The subsequent
section presents the development of the augmented
state mathematical model, including constant biases
and time-varying drifts in the gyro output error.
Four orthogonalization procedures are proposed in
the following section. Then, the performance of the
various estimators are demonstrated and compared
via extensive Monte-Carlo simulations. Finally,
conclusions are drawn in the last section.

DCM STATE-SPACE MODEL

Process Model

Let the spacecraft body frame and the reference
frame be denoted, respectively, by B and R. Assuming
that B is rotating with respect to R, we denote by
!o the angular velocity vector of this rotation as
expressed in B. It is well known that the dynamics
of the DCM, D, is governed by the following matrix
differential equation [1, p. 512]

d

dt
D =¡[!o£]D: (1)

The matrix [!o£] in (1) is a 3£ 3 skew-symmetric
matrix and is defined according to the identity
[!o£]x= !o£ x, where £ denotes the cross-product
and x is any 3£1 column-matrix. The discrete-time
version of (1) is the difference equation given by

Dk+1 =©
o
kDk (2)

where ©ok is the transition matrix from time tk to time
tk+1. Taking the time increment ¢t= tk+1¡ tk small
enough, we assume that !o is piecewise constant in
the intervals of time length ¢t, so that ©ok in (2) can
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be approximated as

©ok ' e¡[!
o
k
£]¢t: (3)

The true angular velocity !ok being unknown, we
assume here that a triad of body-mounted gyroscopes
measures !ok and that the output of the gyros !k is
corrupted by an additive error ²k, thus

!k = !
o
k + ²k: (4)

Then we substitute !k for !
o
k in (3) and use the

measured transition matrix, denoted by ©k, in (2).
Considering the difference equation (2) and using a
first-order approximation in the time increment ¢t of
the Taylor series expansion of ©ok [1, p. 512], yields
the following process equation:

Dk+1 =©
o
kDk

= (I3¡ [!ok£]¢t)Dk +HOT
= (I3¡ [!k£]¢t+[²k£]¢t)Dk +HOT
= (I3¡ [!k£]¢t)Dk +([²k£]¢t)Dk +HOT
= e(¡[!k£]¢t)Dk +[²k£]Dk¢t+HOT
=©kDk +[²k£]Dk¢t+HOT
=©kDk +Wk (5)

where HOT denotes higher order terms (of order ¢t2

and higher). In (5), the third equality results from (4).
The definition of ©k and Wk is obvious. To summarize,

Dk+1 =©kDk +Wk (6)
where

©k = e
(¡[!k£]¢t) (7)

Wk = [²k£]Dk¢t+HOT: (8)

The gyro error ²k is here assumed to be a zero-mean
white sequence with known covariance matrix
Q²k=¢t, where the factor 1=¢t is consistent with the
assumption that ²k approximates a continuous-time
white noise process. The more realistic case that
includes constant biases and time-varying drifts in
the gyro output error will be handled in a subsequent
section. Notice from (8) that the process noise matrix
Wk is state dependent, and that the first-order term is
linear in the components of ²k. The latter fact will
help at developing an expression for the process
noise covariance matrix. The process model for the
DCM is described by (6)—(8). It can be seen that these
equations feature, in their natural form, a state matrix
Dk and a process noise matrix Wk.

Measurement Model

Assume that a physical vector quantity is observed
at each epoch time tk; namely, we simultaneously
know rk, its decomposition in R, and bk, its measured
decomposition in B. Moreover, without loss of

generality, we assume that the observed physical
vector is of unit length. In general, rk is accurately
known from tables or almanacs while bk is a noisy
measurement acquired on-board by sensing devices.
Modeling the measurement noise as an additive
error term vk yields the classical vector measurement
equation

bk =Dkrk + vk (9)

where vk is assumed to be a zero-mean white
noise sequence with known covariance matrix
Rk. Furthermore, we assume that ²k and vk are
uncorrelated with one another and with the
initial attitude matrix D0. Equation (9) is a linear
measurement equation with respect to the state matrix
Dk. Combining (6)—(9) yields a matrix state-space
model for Dk, on which the MKF can be applied. For
the sake of completeness, the generic MKF [14] is
reviewed in Appendix A.

DCM FILTER DESIGN

In this section we present two MKFs for the
estimation of the DCM. These filters differ by
the computational complexity of the covariance
computations. The first algorithm performs a full
covariance computation, where the estimation error
covariance matrix is of size 9£ 9 while the second
algorithm performs a reduced covariance computation,
where only a 3£ 3 matrix is used in order to represent
the whole estimation error covariance. For the sake
of clarity all the matrices that are involved in the
full covariance computation are denoted by capital
script letters, like P. We use normal fonts, like P, to
denote the matrices involved in the reduced covariance
computation.

Full Covariance Filter

In order to obtain an approximate expression for
the 9£ 9 covariance matrix of Wk, which is denoted
by Q²k, we neglect the HOT and substitute the best
available estimate, D̂k=k, for Dk in (8). This yields

Q²k
¢
=covfWkg
¢
=covfvecWkg

= covf(D̂Tk=k − I3)(vec[²k£])¢tg
= covf(D̂Tk=k − I3)(L²k)¢tg
= (D̂Tk=k − I3)Lcovf²kgLT(D̂k=k − I3)¢t2 (10)

where − denotes the Kronecker product [15, p. 227],
I3 is the three-dimensional identity matrix, L is a 9£ 3
matrix defined as

LT ¢=[[e1£] [e2£] [e3£]] (11)
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and ej , j = 1,2,3, is the jth column of I3. The third
equality in (10) is obtained using [16, Lemma 4.3.1,
p. 254], and the fourth equality stems from the
definition of the cross-product matrix [²£]. Recalling
that the covariance matrix of ²k is given by Q

²
k=¢t

yields

Q²k = (D̂Tk=k − I3)LQ²kLT(D̂k=k − I3)¢t: (12)

The full covariance MKF is summarized as follows.
Given the matrices D̂0=0 and P0=0, compute:
1) Time Update Equations:

©k = e
(¡[!k£]¢t) (13)

D̂k+1=k =©kD̂k=k (14)

ªk = I3−©k (15)

Pk+1=k =ªkPk=kªT
k +Q²k: (16)

2) Measurement Update Equations:

Hk+1 = rTk+1− I3 (17)

Sk+1 =Hk+1Pk+1=kHT
k+1 +Rk+1 (18)

Kk+1 = Pk+1=kHT
k+1S¡1k+1 (19)

D̂k+1=k+1 = D̂k+1=k +[K1k+1 K2k+1 K3k+1]
£ [I3− (bk+1¡ D̂k+1=krk+1)] (20)

Pk+1=k+1 = (I9¡Kk+1Hk+1)Pk+1=k
£ (I9¡Kk+1Hk+1)T+Kk+1Rk+1KTk+1

(21)

where Kjk+1 in (20), j = 1,2,3, are 3£ 3 submatrices
of the 9£ 3 Kalman gain matrix, Kk+1, such that
KT = [(K1)T(K2)T(K3)T]. Note from (14) and (20) that
the full covariance filter, described by (14) to (21),
produces a Kalman filter estimate of the state DCM
D̂k=k using the original matrices of the given plant.

Reduced Covariance Filter

Our purpose is here two-fold: it is, first, to achieve
a reduction in the computational burden of the filter
and, second, to illustrate how the MKF formulation
facilitates mathematical manipulations. We assume
here that the rows of the process noise matrix Wk
are uncorrelated and that they have the same 3£3
covariance matrix Qk where

Qk =Q
²
k¢t: (22)

Therefore, the following expression for Q²k is
assumed:

Q²k =Qk − I3: (23)

We also assume that the elements of the measurement
noise column-matrix vk are uncorrelated and that they

have the same covariance ¹k, that is,

Rk+1 = ¹k+1I3: (24)

Similarly, we assume that P0=0 is given as follows:
P0=0 = P0=0− I3 (25)

where P0=0 is known. Then, using basic properties
of the Kronecker product, one can show that the
nine-dimensional covariance equations can be reduced
to three-dimensional equations (see Appendix B).
In spite of these strong model simplifications, the
reduced estimator performs well as demonstrated
through extensive Monte-Carlo simulations. The
reduced covariance MKF is summarized as follows.
Given the initial estimate D̂0=0, and the 3£3 matrix
P0=0, compute
1) Time Update Equations:

©k = e
(¡[!k£]¢t) (26)

D̂k+1=k =©kD̂k=k (27)

Pk+1=k = Pk=k +Qk: (28)

2) Measurement Update Equations:

sk+1 = r
T
k+1Pk+1=krk+1 +¹k+1 (29)

gk+1 = Pk+1rk+1=sk+1 (30)

D̂k+1=k+1 = D̂k+1=k +(bk+1¡ D̂k+1=krk+1)gTk+1 (31)

Pk+1=k+1 = (I3¡ gk+1rTk+1)Pk+1=k(I3¡ gk+1rTk+1)T

+¹k+1gk+1g
T
k+1: (32)

Notice that the dynamics matrix ©k does not appear in
the covariance time propagation (28). That is a direct
result of the assumed statistical independence among
the rows of Wk and of the orthogonality of ©k (see
Appendix B). The consequence of the assumptions
on the noises is that the three rows of the state matrix
are estimated based on identical covariance equations,
which are of dimension 3. Indeed, all the necessary
information is conveniently represented and processed
by 3£ 3 equations. If the full-scale matrices are
needed, they are readily computed from the reduced
associated matrices as follows (see Appendix B).

Pk+1=k = Pk+1=k − I3 (33)

Pk+1=k+1 = Pk+1=k+1− I3 (34)

Sk+1 = sk+1I3 (35)

Kk+1 = gk+1− I3: (36)

One realizes that the filter computational burden
is thus reduced by a factor of 27 (33). Recall
that the computational burden of a conventional
n-dimensional Kalman filter is dictated by its
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covariance time-propagation stage, which is in O(n3).
In addition and independently of the latter, let us
recall here that the implementation of the general
MKF is computationally less intensive than that of the
corresponding vectorized Kalman filter. As shown in
[14], the computational advantage of an MKF resides
in the time-propagation stage and was evaluated to
be of factor 37 for DCM estimation using vector
observations and orthogonalization, where that factor
was defined as the ratio between the numbers of
FLOP (floating point operation) per cycle.

AUGMENTED MATRIX KALMAN FILTER

Augmented State Matrix Model: In this section we
show how to handle the case of constant biases and
Markov drifts in the gyro outputs using an MKF. It is
assumed that the gyro output is described by

!k = !
o
k + ck +mk + ²k (37)

where !ok is the true angular velocity vector, ck is the
3£ 1 vector of constant biases, mk is the 3£ 1 vector
of the gyro Markov drifts, and ²k is assumed to be
a zero-mean white noise sequence with covariance
matrix Q²k=¢t. In order to estimate ck and mk via a KF
we model their dynamics as follows

ck+1 = ck +¹k (38)

mk+1 = ¤mk +ºk (39)

where
¤
¢
=e(¡T¢t) (40)

and
T
¢
=diagf1=¿x,1=¿y,1=¿zg: (41)

The scalars 1=¿x, 1=¿y, and 1=¿z are known constants.
In (38) and (39), ¹k and ºk are assumed to be
zero-mean white noise sequences with covariance
matrices Q¹k =¢t and Q

º
k=¢t, respectively. The addition

of ¹k is needed for filter stability reasons: it avoids
computations involving a singular process noise
covariance matrix. As it is common practice when
designing KFs, the values of the process noise
covariance matrices, Q²k, Q

¹
k and Q

º
k are used as

tuning parameters with the usual trade-off: increasing
the filter process noise covariance speeds up the
estimation convergence but decreases the steady-state
estimation accuracy. In order to develop the DCM
process equation we only have to substitute the
expression (¡!k + ck +mk) for ¡!k in (7). This yields

Dk+1 =©kDk +Ek (42)

where the matrices ©k and Ek are here defined as

©k
¢
=ef[(¡!k+ck+mk)£]¢tg (43)

Ek
¢
=[²k£]Dk¢t: (44)

To complete the state-space model we recall the vector
measurement equation (9)

bk+1 =Dk+1rk+1 + vk+1 (45)

where vk+1 is zero-mean white noise sequence
with covariance matrix Rk+1. It is assumed that the
sequences ²k, ¹k, ºk, and vk are uncorrelated with
one another and with the initial state variables D0, c0,
and m0. We wish to estimate the DCM, and the gyro
output parameters ck and mk via an MKF. To meet
this end, we generalize the known technique of state
augmentation to the current matrix state-space model
(38)—(45).

PROPOSITION 1 Let Xk denote the augmented 3£ 5
state matrix that is defined as follows:

Xk
¢
=[Dk ck mk]: (46)

The dynamics model equations of Dk, ck, and mk,
(38), (39), and (42) can be written as the following
augmented 3£ 5 matrix difference equation

Xk+1 =
9X
r=1

£rkXkª
r
k +Wk (47)

where

£1k
¢
=e(¡[!k£]¢t), ª1

k

¢
=E11 +E22 +E33

(48a)

£2k
¢
=I3, ª2

k

¢
=E44 (48b)

£3k
¢
=¡[dk,1£]¢t, ª3

k

¢
=E41 (48c)

£4k
¢
=¡[dk,2£]¢t, ª4

k

¢
=E42 (48d)

£5k
¢
=¡[dk,3£]¢t, ª3

k

¢
=E43 (48e)

£6k
¢
=¤, ª6

k

¢
=E55 (48f)

£7k
¢
=¡[dk,1£]¢t, ª7

k

¢
=E51 (48g)

£8k
¢
=¡[dk,2£]¢t, ª8

k

¢
=E52 (48h)

£9k
¢
=¡[dk,3£]¢t, ª9

k

¢
=E53: (48i)

In (48), the vectors dk,j , j = 1,2,3, denote the three
columns of the state matrix Dk and the matrices E

ij

denote 5£5 matrices with 1 at position ij and 0
elsewhere. The augmented noise matrix in (47), Wk, is
defined as

Wk
¢
=[Ek ¹k ºk] (49)

where, to first order in ¢t, Ek is expressed as
Ek = [²k£]Dk¢t: (50)
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PROOF See Appendix C.

Because the sequences Ek, ¹k, and ºk are
uncorrelated, the covariance matrix of the augmented
noise matrix Wk is expressed by the 15£15 diagonal
block matrix Qk as follows

Qk = diagfQ²k,Q¹k¢t,Qºk¢tg (51)

where Q²k is defined as in (12).
The measurement model equation for Dk+1 (see

(45)) is equivalent to the following measurement
equation for the augmented state matrix Xk+1,

bk+1 = Xk+1hk+1 + vk+1 (52)

where the 5£ 1 vector hk+1 is defined as

hk+1
¢
=[rk+1 0 0]T: (53)

This is readily shown by using (53) in (52), which
yields

bk+1 = [Dk+1 ck+1 mk+1]

264rk+10
0

375+ vk+1
=Dk+1rk+1 + vk+1: (54)

Filter Development and Filter Summary: The
augmented process equation (47) is not linear in
the state variables. This is already seen by looking
at (42) and (43) where the matrix ©k is a function
of the vectors ck and mk. The nonlinearity appears
in (47) through the matrices £rk, r = 3,4,5,7,8,9,
which are functions of the elements of Dk (48c)—(48e)
and (48g)—(48i). In order to overcome this difficulty
we substitute for Xk its best available estimate,
X̂k=k. This substitution yields a pseudolinear process
equation. The measurement equation, on the other
hand, is linear in the state. The model equations of
the developed pseudolinear matrix plant, together
with the assumptions on the statistics of the noises,
fit the model assumptions of the generic MKF.
Thus, a pseudolinear MKF can operate on the
developed matrix plant to get an estimate of the
state matrix Xk. This filter is summarized in the
following.
1) Initialization:
Choose X̂0=0 = [D̂0=0ĉ0=0m̂0=0] and P0=0.
2) Time Update Equations:
Given X̂k=k = [D̂k=k ĉk=km̂k=k] and Pk=k, compute

D̂k+1=k = e
f[(¡!k+ĉk=k+m̂k=k )£]¢tgD̂k=k (55)

ĉk+1=k = ĉk=k (56)

m̂k+1=k = ¤m̂k=k (57)

X̂k+1=k = [D̂k+1=k ĉk+1=km̂k+1=k] (58)

ªk =

264I3− e
(¡[!k£]¢t) (D̂Tk=k − I3)L¢t (D̂Tk=k − I3)L¢t
O3£9 I3 O3

O3£9 O3 ¤

375
(59)

Qk = diagfQ²k,Q¹k¢t,Qºk¢tg (60)

Pk+1=k =ªkPk=kªT
k +Qk (61)

where the matrices ¤ and L are defined from (40) and
(11).
3) Measurement Update Equations:
Given X̂k+1=k = [D̂k+1=k ĉk+1=km̂k+1=k] and Pk+1=k,

compute

hTk+1 = [r
T
k+1 0 0] (62)

Hk+1 = h
T
k+1− I3 (63)

Sk+1 =Hk+1Pk+1=kHT
k+1 +Rk+1 (64)

Kk+1 = Pk+1=kHT
k+1S

¡1
k+1 (65)

X̂k+1=k+1 = X̂k+1=k +[K1k+1 K2k+1 K3k+1 K4k+1 K5k+1]

£ (bk+1¡ D̂k+1=krk+1) (66)

Pk+1=k+1 = (I15¡Kk+1Hk+1)Pk+1=k(I15¡Kk+1Hk+1)
T

+Kk+1Rk+1KTk+1 (67)

where Kjk+1, j = 1, : : : ,5, in (66) denote the 3£ 3
submatrices of the 15£ 3 gain matrix Kk+1, such that
KTk+1 = [K1

TK2TK3TK4TK5T].
REMARK 1 As is commonly done in nonlinear
filters the estimate time update equation (see (55))
is a nonlinear equation with respect to the estimated
variables, D̂k+1=k, ĉk+1=k, and m̂k+1=k, and directly
stems from the process equation (see (42) and (43))
prior to the pseudolinear transformation (47) and (48).

REMARK 2 The pseudolinear transformation of the
process equation (47) and (48) is not unique and care
must be taken when choosing that transformation.
Indeed, looking at the vectorized dynamics matrix in
(59), ªk, we realize that the off-diagonal submatrices
at locations 1, 2 and 1, 3 create a coupling between
the dynamics of D̂k=k and the dynamics of ĉk=k and
m̂k=k, respectively. This fact ensures observability
of the augmented system and, thus, enables the
estimation of the gyro biases and drifts although they
are not directly measured. On the other hand, had we
chosen a different pseudolinear transformation of (42)
as follows:

Dk+1 = e
f[(¡!k+ĉk=k+m̂k=k)£]¢tgDk (68)

this would have yield a block-decoupled dynamical
system for the estimate variables with the following
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15£ 15 block-diagonal dynamics matrix ª 0
k:

ª 0
k = diagfef[(¡!k+ĉk=k+m̂k=k)£]¢tg,I3,¤g (69)

and the resulting pseudolinear model would not be
observable.

ORTHOGONALIZATION

The orthogonality property of D is crucial when
the matrix is used to perform vector transformation at
a high computation rate as it is in inertial navigation
[21]. Therefore, a good estimate of D is one that
is nearly orthogonal. The KF is not designed to
preserve any relationship among the components of
the estimated state matrix D̂k=k. Even if the a priori
estimate D̂k+1=k is orthogonal, the measurement
update equation (31) will not necessarily preserve the
orthogonality. In this section, four orthogonalization
procedures are presented. The first two algorithms
use known results whereas the other two are novel
applications of the pseudomeasurement (PM)
technique for constrained Kalman filtering. Recall
that a square matrix, M 2 Rn£n, is orthogonal if it
satisfies the identities MTM =MMT = In, where In
is the identity matrix in Rn£n.

Optimal Brute-Force

The optimal brute-force (OBF) procedure, consists
in solving the following optimization problem. Given
D̂k=k, solve:

min
D
kD¡ D̂k=kk2F

subject to DTD = I3 (70)

where kMkF denotes the Frobenius norm of the matrix

M, that is, kMkF
¢
=
p
tr(MMT). This optimization

problem, which is a variant of the orthogonal
Procrustes problem [17], has a closed-form solution.
The optimal solution D¤k=k is the orthogonal polar

factor of D̂k=k and can be efficiently computed via

the singular value decomposition (SVD) of D̂k=k (see
[18, p. 601]). The orthogonal estimate D¤k=k is then

substituted for D̂k=k in the time propagation equation
(27). This technique is called “brute-force” because
the orthogonalization procedure is performed outside
the filter.

Iterative Brute-Force

The iterative brute-force (IBF) procedure is as
follows [11]

D̂0,k = D̂k=k

D̂n+1,k = D̂n,k(
3
2 I3¡ 1

2 D̂
T
n,kD̂n,k)

(71)

for n= 1,2, : : :, until a specific convergence condition
is satisfied. Then, set

D¤k=k = D̂n,k (72)

and use D¤k=k as the current estimate. This algorithm
is suboptimal but is less computationally intensive
than the OBF procedure, which involves the SVD
of D̂k=k. When applied recursively, this algorithm
produces a sequence of estimates that converges to
the optimal solution of (70) [19]. That technique
was succesfully applied in a previous work on
DCM identification [11]. Moreover, as evidenced by
simulations, orthogonality is normally reached, for all
practical purposes, after one or two iterations of (71).

First Orthogonality Pseudomeasurement (OPM1)

The PM technique is a way of incorporating
constraints into the estimation process. Here we apply
this technique in order to orthogonalize the DCM
estimate. Consider the orthogonality state constraint,
which is expressed through the following matrix
equation:

I3 =D
T
k Dk: (73)

The matrix Dk is invertible since it is orthogonal and
we can write the following identity:

1
2 (Dk +D

¡T
k ) =Dk (74)

where (¢)¡T denotes the composition of the matrix
inversion and the matrix transposition. Then,
substituting D̂k=k for Dk in the left-hand side of (74),
and adding a term Vort in the right-hand side in order
to compensate for the modeling error yields

1
2 (D̂k=k + D̂

¡T
k=k) =Dk +V

ort
k : (75)

As opposed to the true DCM D, the estimated DCM
D̂k=k is in general not orthogonal and thus D̂

¡T
k=k

is different from D̂k=k. This is why the correction
term Vort was added on the right-hand side of (75).
Equation (75) is an orthogonality PM equation,
which is denoted by OPM1, where the left-hand side,
1
2 (D̂k=k + D̂

¡T
k=k), is the measurement and V

ort is the

measurement noise matrix. Notice that D̂¡Tk=k needs to
be numerically computed and that an n£n matrix
inversion involves a number of FLOPS of the order
of n3. The PM equation, (75), is a matrix equation in
Dk on which the MKF can operate in a natural way.
The measurement update stage that is associated with
the measurement equation (75) is written next

Yk =
1
2(D̂k=k + D̂

¡T
k=k) (76)

Hk = [I9 O9£3 O9£3] (77)

Sk =HkPk=kHT
k +Rortk (78)
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Kk = Pk=kHT
k S¡1k (79)

X¤k=k = X̂k=k +
5X
j=1

3X
l=1

Kjlk (Yk ¡ D̂k=k)Elj (80)

P¤k=k = (I15¡KkHk)Pk=k(I15¡KkHk)T+KkRortk KTk :
(81)

The update stage that is described in (76)—(81)
corresponds to the full-covariance filter. Notice that
because of the non-zero cross-correlation between the
estimation errors, the estimates of the gyro biases and
drifts are also updated, which constitutes an essential
difference with the brute-force procedures. Assuming
that the covariance matrix Rortk is of the type ¹ortI9,
the reduced covariance form can be developed,
which yields the following computations instead of
(77)—(81)

Sk = Pk=k +¹
ortI3 (82)

Kk = Pk=kS
¡1
k (83)

D¤k=k = D̂k=k +
1
2(D̂

¡T
k=k ¡ D̂k=k)KTk (84)

P¤k=k = (I3¡Kk)Pk=k(I3¡Kk)T+¹ortKkKTk : (85)

The scalar ¹ort has the role of a tuning parameter.
We choose ¹ort according to the weight given to
the orthogonality constraint (see (75)). Specifically,
if we pick a high value for ¹ort the filter will not
significantly update D̂k=k, and the new estimate D

¤
k=k

will be close to D̂k=k. On the other hand, picking a
low value for ¹ort will yield a value for D¤k=k that is

close to the PM namely to 1
2 (D̂k=k + D̂

¡T
k=k). Extensive

Monte-Carlo simulations are used to properly tune
the value of ¹ort. Notice that not all PM models that
can be derived from (73) are efficient. Consider
for instance D̂¡T =D+Vort and assume that the
parameter ¹ort is very low, then the resulting updated
estimate will be very close to the PM D̂¡T, which is
not guaranteed to be even close to orthogonality. In
other words, the type of PMs chosen in this paper are
such that they ensure orthogonality in the case of very
low variance parameter ¹ort.

Second Orthogonality Pseudo-Measurement (OPM2)

In this section we present an alternate model for
an orthogonality PM, and develop the associated
measurement update equations. Consider (71) from
the IBF procedure and assume the right-hand side of
that equation to be a PM; that is,

D̂k=k(
3
2 I3¡ 1

2 D̂
T
k=kD̂k=k) =Dk +V

ort: (86)

Equation (86), which is denoted OPM2, is a legitimate
OPM equation since, assuming that there is no
estimation error, that is, D̂k=k =Dk, and that V

ort = 0,
then, using the orthogonality of Dk, (86) reduces
to the trivial identity Dk =Dk. The measurement
update stage, which is designed using (86), is
readily formulated using the MKF algorithm.
The measurement update stage of OPM2 in the
full-covariance case is identical to that of OPM1
((76)—(81)) except the expression for Yk which here
becomes

Yk = D̂k=k(
3
2 I3¡ 1

2 D̂
T
k=kD̂k=k): (87)

Notice that D̂k=k is in general nonorthogonal and

thus the measurement Yk is different from D̂k=k. As
compared with OPM1, the computational burden
associated with OPM2 is less important. Choosing
the covariance matrix Rortk to be ¹ortI9, the 3£ 3
simplified covariance filter equations are identical to
(82)—(85), except the estimate update equation, which
is here:

D¤k=k = D̂k=k +
1
2 D̂k=k(I3¡ D̂Tk=kD̂k=k)KTk : (88)

Notice that even when a gain matrix Kk+1 is
close or equal to the identity matrix, the OPM2
orthogonalization procedure is different from a single
step of the IBF procedure (71) because it affects the
covariances computation while the IBF procedure
does not.

REMARK 3 A rotation matrix is a proper orthogonal
matrix. Therefore, including the determinant
constraint, that is, det(D) = 1, in the estimation
process would be mathematically more rigorous.
In practice however, as tested via the extensive
Monte-Carlo simulations that are shown in the next
section, this is less of an issue. This may be explained
by the fact that the unconstrained filter fits the
measurements to the physical model, which involves
rotation. Furthermore, adding orthogonalization
ensures that two eigenvalues of the estimated DCM
are reciprocal (one is the inverse of the other) and that
the third one is real. The latter estimate being close to
1 (corresponding to a rotation) is thus forced to 1.

SIMULATION STUDY

For this simulation study we considered a
spacecraft rotating with respect to an inertial reference
frame with the following angular velocity expressed in
body coordinates:

!(t) = 0:2sin(2¼t=150)[1,¡1,1]T [rad/s]: (89)

It was assumed that a triad of body-mounted gyros
measured this !(t) at a sampling rate of 10 Hz. The
vector observations rate was chosen to be 10 Hz too.
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TABLE I
Filter Labels

DCM-Only
Estimator DCM-Only
Reduced Estimator Full

Orthogonalization Procedure Covariance Covariance

None (nominal) A0 B0
Optimal Brute Force (OBF) A1 B1
Iterative Brute Force (IBF) A2 B2

Orthogonal Pseudomeasurement (OPM) A3 B3

Augmented Augmented
Orthogonalization Estimator Estimator

Procedure Pure Mixed

None (nominal) C0 D0
Optimal Brute Force (OBF) C1 D1
Iterative Brute Force (IBF) C2 D2

Orthogonal Pseudomeasurement (OPM) C3 D3

The measurement noise was a zero-mean Gaussian
white noise. Its equivalent angular standard deviation
was ¾b = 100 arcs (typical of star tracker sensors
accuracy). The tuning parameters for the OPM1 and
the OPM2 were chosen as 6¾2b . Using these data we
ran 100 Monte-Carlo simulation runs until the filters
reached a steady-state.
DCM-Only Estimation with Reduced Covariance:

Comparison of the Various Orthogonalization
Procedures: For simplicity we only consider the
DCM estimation problem where the gyro errors
consist of zero-mean white Gaussian noises with
standard deviations of 0.2 deg/hr, which is a large
value compared with commonly used gyros on-board
spacecrafts. Four orthogonalization procedures
were implemented in the DCM filter with reduced
covariance computation (filter of type A): the
OBF procedure, the IBF procedure, and the two
OPM procedures. A fifth filter, which does not
implement any orthogonalization, was also tested.
(See Table I for the labeling of the various filters.)
The performance of the five estimators were compared
using two figures of merit, which are defined by

Jc(k)
¢
=kDk ¡D¤k=kkF (90)

Jo(k)
¢
=kI3¡ (D¤k=k)TD¤k=kkF (91)

where Dk is the true state matrix and D
¤
k=k is the

estimated matrix after orthogonalization. (When
orthogonalization was not performed D¤k=k was just
D̂k=k.) Clearly, Jc(k) is a DCM-estimation convergence
criterion, while Jo(k) is a DCM-orthogonality
convergence criterion. The results are summarized
in Tables II and III and in Figs. 1 and 2. It turned
out that the two PM techniques yielded very similar
performance and thus they are shown under the
same label (A3). Figs. 1(a) and 1(b) present the

TABLE II
Monte-Carlo Means of (105Jc) and of Jo at Final Time for Filters

of Type A

Filter (105Jc) Jo

A0 6.6 5:10¡4
A1 3.4 10¡30
A2 3.4 10¡15
A3 5.4 10¡4

TABLE III
Comparative Table of Orthogonalization Procedures for Filters of

Type A

Advantages Disadvantages

OBF optimal high computation
closed-form bad transient

IBF low computation bad transient
asympt. optimal

OPM smooth transient suboptimal
(1 and 2) covariance computation needs tuning

time histories of the Monte-Carlo means of Jc for all
the cases. Fig. 1(a) shows the transient phase, and
Fig. 1(b) shows the steady-state phase. Following
transients of around 2 s the Jc indices reach their
steady-states with very small decay rates. As can
be seen in Fig. 1(a), during the transients, filter A3,
which implements the PM technique, achieves a better
performance (smoother, less overshoot) than all other
filters. In particular, filters A1 and A2 show relatively
high overshoots. These picks illustrate the nonsmooth
characteristics of the brute-force orthogonalization
procedures as opposed to the OPM-based procedures,
which were designed to be embedded in the MKF.
From Fig. 1(b), we see that A1 yields the lower bound
of all four solutions while the nominal algorithm, A0,
yields the upper bound. As expected, A2 converges
asymptotically to A1. The performance of A3 remains
on an intermediary steady-state level. Table II shows
the Monte-Carlo means of Jc:10

5 and of Jo for the
five algorithms at the final time. It appears that both
filters A1 and A2 reach numerical accuracy for
the orthogonality property, which seems to be the
reason for which they outperform the filter A3 in
steady-state. Fig. 2 depicts the time variations of
the Monte-Carlo means of Jo during the simulation
time span. The A2 algorithm yields an estimate
that is orthogonal for all practical purpose and is
computationally less cumbersome than the filter A1.
The A3 filters produce a better orthogonal estimate
than the nominal filter, which in return explains
the improvement in the convergence performance
observed in Fig. 1. Although the nominal algorithm
A0 yields an estimate that tends to be orthogonal,
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Fig. 1. Monte-Carlo means of DCM estimation convergence
index Jc. (a) Transient. (b) Steady-state.

Fig. 2. Monte-Carlo means of orthogonality convergence
index Jo.

as it converges to the true DCM, it still remains
outperformed by any other filter that implements any
orthogonalization procedure. A qualitative comparison
between the various orthogonalization procedures is
proposed in Table III.
DCM-Only Estimation: Reduced Covariance versus

Full-Covariance: In order to investigate the trade-off
between the reduction in the dimensions of the
covariance computations and the implementation
of more accurate noise covariance matrices in the
filter, two series of filters were tested: filters A, which
feature reduced-covariance computations, and filters B
with full-covariance computations (see Table I). The
results are summarized in Table IV and Fig. 3.
Table IV shows the ratios between filters A

and filters B of the Monte-Carlo means for the
convergence indices at the final time. It appears that

Fig. 3. Monte-Carlo means of DCM estimation and orthogonality
convergence indices JC (left column) and JO (right column), for

cases of reduced-covariance (A) and full-covariance (B)
computations in filters of type nominal (0), IBF (2), and OPM
(3). (a) Index JC in nominal filters. (b) Index JO in nominal
filters. (c) Index JC in IBF filters. (d) Index JO in IBF filters.
(e) Index JC in OPM filters. (f) Index JO in OPM filters.

TABLE IV
Comparison of Performances Between Filters of Type A (Reduced
Covariance) and Filters of Type B (Full Covariance) for Various

Orthogonalization Procedures

Orthogonalization Procedure JC, filterA
JC, filter B

(tf )
JO, filterA
JO, filter B

(tf)

None (nominal) 0.7 7
Optimal Brute Force (OBF) 0.5 1
Iterative Brute Force (IBF) 0.5 1

Orthogonal Pseudomeasurement (OPM) 0.6 3

Note: Table values are Monte-Carlo means of ratios at final
time.

the final estimation accuracy is always improved
when using the reduced-covariance schemes. On the
other hand, as can be seen in Table IV, using the
full-covariance scheme enhances the orthogonality
of the estimate. Fig. 3 depicts the time-histories of
the Monte-Carlo means of the convergence indices
for the reduced-covariance filters (plain lines) and
the full-covariance filters (dotted lines). Filters
implementing the OBF technique were omitted since
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they can advantageously be replaced by the IBF-based
filters. The first column of Fig. 3 shows that the
filters of type B have steeper transient rates than
their counterparts of type A, independently of the
orthogonalization process. Moreover, as seen from
the second column, the B filters clearly outperform
their counterparts during the transients. The later
facts are the consequences of two causes. The first
one is that the full-covariance expression induces
a better modeling of the noise statistics, which
in turn reflects more accurately the orthogonality
relationships between the DCM components, and
therefore enhances the orthogonalization of the
estimate. The second cause is that implementing a
full-covariance computation yields a higher norm
for the process noise covariance matrix in the filter
(see (12) and (23)). Thus, the filter response becomes
quicker. However, the counter-effect appears through a
poorer steady-state estimation accuracy. To conclude,
the reduced-covariance filters perform advantageously
in steady-state while the full-covariance filters have
quicker responses.
Augmented Pure Filter: Comparison of Various

Orthogonalization Procedures: A series of
Monte-Carlo simulations was run (Series C, see
Table I) in order to investigate the performance of
the augmented filter for various orthogonalization
procedures. For each one of the three gyro outputs,
the augmented model featured constant biases of
1 deg/hr in each axis, as well as three drifts that
converged from initial values of 1 deg/hr at identical
rates. These rates stemmed from ¿x = 1[s

¡1], ¿y =
1[s¡1] and ¿z = 1[s

¡1] (see (41)). The process noises,
¹k and ºk, were Gaussian zero-mean white sequences
with standard deviations equal to 0.05 deg/hr; that is,
¾º=¢t= ¾¹=¢t= 0:05 deg/hr. The performances of the
bias and drift estimation were measured via the two
following indices:

JBIAS(k) = kck ¡ ĉk=kk (92)

JDRIFT(k) = kmk ¡ m̂k=kk: (93)

The comparison simulation tested three filters: filter
C0 (nominal), filter C2 (IBF) and filter C3 (OPM).
Each Monte-Carlo run lasted 10 hr, which is a typical
time for the constant bias estimation to be efficient.
The Monte-Carlo means of the convergence indices Jc
and JBIAS for the three filters are plotted in Figs. 4(a)
and Fig. 4(b), respectively. Fig. 4(a) shows that filter
C0 presents the best transient while C2 and C3 have
similar ones. In steady-state however, after 4.5 hr,
the filters C2 and C3, still performing similarly,
clearly show a better accuracy than C0. Regarding the
performance in the estimation of the biases, Fig. 4(b)
shows that the filter C0 has a better transient than
the two others. However, in steady-state, the C0 plot
blends with that of C2 while C3 becomes the most
accurate estimator. The bias error dropped from an

Fig. 4. Monte-Carlo means of estimation convergence indices Jc
and JBIAS in augmented pure filter (C) for nominal case (C0),

IBF-orthogonalization case (C2), and OPM-orthogonalization case
(C3). (a) DCM convergence index. (b) BIAS convergence index.

initial value of 1.7 deg/hr to a level of 1 mdeg/hr.
It happens that the drift estimation performance
reaches the same level of accuracy after only 20 min,
which is due to the fact that the drifts are modeled as
convergent first-order sequences. Since the results are
identical in all three filters, there is no pertinence in
showing the JDRIFT plots. One may conclude from the
presented results that, as opposed to the DCM-only
estimation scheme, the orthogonalization procedures
in the augmented filter are penalizing the DCM
estimation as long as the biases are not correctly
estimated. Thus, during a transient phase, which
lasts here approximately 4.5 hr, the nominal filter
should be used. Then the estimator should switch
to the OPM-based algorithm if the best accuracy in
the estimated biases is desired, or to the IBF-based
algorithm if the best accuracy in the estimated DCM
is desired. However, since the performance between
these two filters is quite similar, the IBF seems
preferable for computational complexity.
Augmented Mixed Filter: For long duration

missions, it may be feasible for the sake of
computation savings, to implement a mixed filter,
which would switch between the full-blown
augmented version (filter C) and the DCM-only
estimator (filter B). A series of Monte-Carlo
simulations was run to test this type of filter,
referred to as filter D. At the time of switching
from C to B, any variable that is related to the
bias or drift estimation was “frozen”; the relevant
variables for the DCM estimation were extracted
and inserted as initial conditions in the B-filter. At
the switching from B back to C, the DCM-related
variables were inserted back into filter C, and the
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bias and drift estimation resumed from their frozen
values. As an illustration, we considered the 10 hr
span simulation performed previously with the
following profile: filter C was implemented during
the first 5 hr, then filter B was implemented at
t= 7 hr and at t= 9 hr during 6 min each time.
The results are summarized in Figs. 5—7. Fig. 5
shows the Monte-Carlo means of the indices Jc
and JBIAS for three types of filters, D0 (nominal),
D2 (IBF), and D3 (OPM) (see Table I). It can be
seen from Fig. 5(a) that all the filters D converge
and stay at a reasonable level of accuracy after
t= 5 hr. It is interesting to see that both D2 and
D3 outperform D0 and that D3 achieves the best
accuracy among the three filters. The latter happens
despite that the switchings to filter C at t= 7 hr
and t= 9 hr do not necessarily decrease JBIAS (see
Fig. 5(b)). For completeness, Fig. 6 shows the
worst case realizations (out of a sample of 1000
Monte-Carlo runs), the Monte-Carlo means and
the Monte-Carlo 1¾ upper bound for the DCM
index of convergence Jc for each orthogonalization
method (nominal, IBF, and OPM). The lower bound
of the 1¾ envelope being negative is not shown
on the figure since Jc is a nonnegative number.
The worst case realization of Jc is defined as the
maximizer over the 1000-runs-Monte-Carlo sample
of the time maxima of Jc(t) after steady-state
is reached (here, after 5 hr); that is Jworstc =
maxi=1,2,:::,1000[max5·t·10 hr[J

i
c (t)]]. It appears that

the worst cases are yielding acceptable performance
in the convergence of the DCM estimation. As
observed earlier on the Monte-Carlo mean, using
the OPM technique slows down the transient
but ensures better steady-state accuracy when
compared with the nominal or the IBF filters. In
order to quantify the latter, Fig. 7 is drawn that
depicts the Monte-Carlo means ratios, Jc(D)=Jc(C)
and JBIAS(D)=JBIAS(C), for the three types of
orthogonalization. By plotting these variables,
one can compare the performance of the mixed
filters D with their pure versions (C), when the
full-blown augmented filters are implemented all
the time as in the previous subsection. We observe
in Fig. 7(a) that all the ratios are in general greater
than one, as expected. The worst discrepancy
between the performance of filters C and D are in
the IBF-based filters with a time-average of 1.5.
The least discrepancy takes place in the OPM-based
filters with a time-average of 1.1. Clearly, the
switchings to filters C increase the accuracy of the
DCM estimates in the nominal and IBF-based filters,
while the OPM case seems to be less sensitive.
Fig. 7(b) shows that the bias error indices tend to be
bounded along the 10 hr simulation span, but no clear
conclusion can be drawn from this example, which
calls for further investigation with different switching
times.

Fig. 5. Monte-Carlo means of estimation convergence indices Jc
and JBIAS in augmented mixed filter (D) for nominal case (D0),
IBF-orthogonalization case (D2), and OPM-orthogonalization case
(D3). (a) DCM convergence index. (b) BIAS convergence index.

CONCLUSION

This work presented several MKFs for estimation
of the DCM using vector observations, where a
central common feature was the preservation of the
natural matrix notation of the state-space system
model on which they operate. Explicit expressions
for the system’s noise 9£ 9 covariance matrices were
obtained and, under simplifying assumptions on their
structure, a reduced (3£ 3) covariance computation
algorithm was developed without impairing much
of the estimation accuracy. The case of constant
biases and time-varying drifts in the gyro output
was handled via state augmentation yielding an
augmented MKF. Four different procedures were
added to the DCM-only estimators in order to enforce
on-line orthogonalization of the state matrix estimate.
Two of them were known “brute-force” procedures
(IBF and OBF), while the other two featured novel
applications of the OPM technique and could be
readily implemented in an MKF.
Extensive Monte-Carlo simulations illustrated

the performanceã of the various filters. In the case
of DCM-only estimation with reduced covariance,
any orthogonalization procedure enhanced the
estimation process. A good practice would be to start
with the OPM filter in order to produce a smooth
transient and to have consistent filter covariance
computations and, then, to switch to the IBF filter
for better steady-state accuracy. In order to create a
steeper transient in the DCM estimation error and
to enhance the orthogonality of the DCM estimate,
it is recommended to implement a full-covariance
computation during the transient phase before
switching to the reduced-covariance algorithm.
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Fig. 6. Worst case realizations, Monte-Carlo means, and Monte-Carlo §¾ envelopes of estimation convergence index Jc in augmented
mixed filter (D) for nominal case (D0), IBF-orthogonalization case (D2), and OPM-orthogonalization case (D3). (a) Nominal case D0.

(b) IBF case–D2. (c) OPM case–D3.

When high-valued constant biases needed to be
estimated, extensive Monte-carlo simulations of the
augmented filters showed that any orthogonalization
procedure was penalizing the DCM estimation
process until the biases were correctly estimated.
The orthogonalization-free filter should thus be
first implemented during the long transient phase
before activating an orthogonalization procedure.
For long duration simulations, it turned out that
switching off from time to time the biases and drifts
estimation in steady-state still yielded a successful
DCM estimation. In that case, extensive Monte-Carlo

simulations showed that the OPM filter yielded the
best steady-state accuracy for the DCM error, and
bore the least discrepancy with the case where bias
estimates were continuously produced. Nevertheless,
further investigation with respect to the switching
times and periods should be done.

APPENDIX A. REVIEW OF THE MATRIX KALMAN
FILTER

Matrix State-Space Model: Consider a linear
discrete-time stochastic dynamic system governed by
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Fig. 7. Monte-Carlo means of ratios of estimation convergence
indices Jc and JBIAS between augmented mixed filter (D) and

augmented pure filter (C) for nominal case (D0/C0),
IBF-orthogonalization case (D2/C2), and OPM-orthogonalization
case (D3/C3). (a) Ratio of DCM convergence indices. (b) Ratio of

BIAS convergences indices.

the difference equation

Xk+1 =
¹X
r=1

£rkXkª
r
k +Wk (94)

where Xk 2 Rm£n is the matrix state variable at
time tk, £

r
k 2 Rm£m and ªr

k 2 Rn£n are “transition
matrices,” and Wk is an m£ n noise matrix. The matrix
measurement equation of the matrix plant is

Yk+1 =
ºX
s=1

Hs
k+1Xk+1G

s
k+1 +Vk+1 (95)

where Yk+1 2 Rp£q is the matrix measurement of
Xk+1 at time tk+1, H

s
k+1 2 Rp£m, and Gsk+1 2Rn£q are

the observation matrices, and Vk+1 2Rp£q is a noise
matrix. Let W denote any m£ n random matrix with
generic element wij , i= 1, : : : ,m, j = 1, : : : ,n, then
the expectation of W is defined as the matrix of the

expectations of wij; that is EfWg
¢
=[Efwijg]. Let vec

denote the mapping from Rm£n to Rmn which operates
on a rectangular matrix by stacking its columns one
underneath the other to form a single column-matrix
(see [16, p. 244]). The covariance matrix of W is
defined as the covariance of its vec-transform [20];

that is covfWg ¢=covfvecWg. Obviously, if W 2 Rm£n,
then covfWg 2Rmn£mn. The matrix sequences Wk
and Vk are assumed to be zero-mean Gaussian white
noise sequences with covariance matrices Qk 2Rmn£mn
and Rk 2Rpq£pq, respectively. The initial state X0 is
assumed to be Gaussian distributed with mean X̄0 and
mn£mn covariance matrix ¦0. Also, Wk, Vk, and X0
are uncorrelated with one another. The system and

measurement equations of any linear matrix plant are
a special case of (94) and (95) [14].
Estimation Problem: The MKF is the unbiased

minimum variance estimator of the m£n matrix state
Xk at tk, given a sequence of p£ q matrix observations
up to tk, fYlg, l = 1,2, : : : ,k. Let X̂k=k and ¢Xk=k denote,
respectively, the a posteriori state estimate and the

a posteriori estimation error; that is, ¢Xk=k
¢
=Xk ¡ X̂k=k.

Let Pk=k denote the a posteriori estimation error
covariance matrix; that is Pk=k = cov(¢Xk=k). Then,
the filtering problem is equivalent to the following
minimization problem

min
X̂k=k

ftr(Pk=k)g (96)

subject to (94) and (95) and to the stochastic
assumptions on the noises and the initial conditions.
The MKF is summarized next.
Summary of the MKF:
1) Initialization: X̂0=0 = X̄0 and P0=0 =¦0.
2) Time Update Equations:

X̂k+1=k =
¹X
r=1

£rkX̂k=kª
r
k (97)

©k =
¹X
r=1

[(ªr
k )
T−£rk] (98)

Pk+1=k =©kPk=k©
T
k +Qk (99)

where − denotes the Kronecker product [16].
3) Measurement Update Equations:

Ỹk+1 = Yk+1¡
ºX
s=1

Hs
k+1X̂k+1=kG

s
k+1 (100)

Hk+1 =
ºX
s=1

[(Gsk+1)
T−Hs

k+1] (101)

Sk+1 =Hk+1Pk+1=kHT
k+1 +Rk+1 (102)

Kk+1 = Pk+1=kHT
k+1S

¡1
k+1 (103)

X̂k+1=k+1 = X̂k+1=k +
nX
j=1

qX
l=1

Kjlk+1Ỹk+1E
lj (104)

where Kjlk+1 is a m£p submatrix of the mn£pq
matrix Kk+1 defined by

Kk+1 =

26666664
K

11

k+1 ¢ ¢ ¢ K
1l

k+1 ¢ ¢ ¢
...

. . .
...

. . .

K
j1

k+1 ¢ ¢ ¢ K
jl

k+1 ¢ ¢ ¢
...

. . .
...

. . .

37777775
| {z }

q matrices

9>>>>>>=>>>>>>;
n matrices

(105)
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and Elj is a q£ n matrix with 1 at position (lj) and 0
elsewhere. The covariance update equation is

Pk+1=k+1 = (Imn¡Kk+1Hk+1)Pk+1=k(Imn¡Kk+1Hk+1)T

+Kk+1Rk+1K
T
k+1: (106)

The variance and the covariance associated with
¢X[i,j] (the element (ij) in the estimation error
matrix ¢X) are

varf¢X[i,j]g= P[(j¡ 1)m+ i, (j¡ 1)m+ i]
(107a)

covf¢X[i,j],¢X[k, l]g= P[(j¡ 1)m+ i, (l¡ 1)m+ k]
(107b)

where i,k = 1,2, : : : ,m, and j, l = 1,2, : : : ,n. The
variable ¢X denotes either the a posteriori or the
a priori estimation error as applicable, and P is the
associated covariance matrix. The MKF, described
in (97)—(107b), behaves like the conventional linear
KF. It is a time-varying algorithm for optimal
recursive estimation of a matrix state process using
a sequence of matrix measurements. The MKF is a
natural extension of the conventional KF. The two
new dimensions are the number of columns in the
state matrix n and the number of columns in the
measurement matrix q. Conversely, the ordinary
vector KF is a special case of the MKF (by taking
n= q= 1).

APPENDIX B. REDUCED COVARIANCE FILTER

Let − denote the Kronecker product. The model
assumptions are as follows

Q²k =Qk − I3 (108a)

Rk = ¹kI3 (108b)

P0=0 = P0=0− I3: (108c)

Time Update Stage: Assuming that Pk=k = Pk=k −
I3, the 9£ 9 covariance time-update equation is
formulated as (see (16))

Pk+1=k =ªkPk=kªT
k +Q²k

= (I3−©k)(Pk=k − I3)(I3−©k)T+Q²k
= (Pk=k −©k©Tk ) +Q²k
= (Pk=k − I3)+ (Qk − I3)

= (Pk=k +Qk)− I3: (109)

The third equality in (109) results from the
mixed-product property of the Kronecker product
(see [16, p. 244]). The fourth equality is due to the

orthogonality of ©k. The last equality is obtained
using Lemma 4.2.7, [16, p. 213]. Thus, we get (33)
by defining

Pk+1=k
¢
=Pk=k +Qk: (110)

Measurement Update Stage: Using (109) and
(110), the 9£ 3 Kalman gain matrix is computed as
follows (see (19))

Kk+1 = Pk+1=kHT
k+1S¡1k+1

= (Pk+1=k − I3)(rTk+1− I3)T

£ [(rTk+1− I3)(Pk+1=k − I3)£ (rTk+1− I3)T +¹k+1I3]¡1

= (Pk+1=krk+1− I3)[(rTk+1Pk+1=krk+1 +¹k+1)I3]¡1

= [Pk+1=krk+1=(r
T
k+1Pk+1=krk+1 +¹k+1)]− I3 (111)

where the third and fourth equalities stem from the
mixed-product property of the Kronecker product.
Thus, we get (36) by defining

gk+1
¢
=Pk+1=krk+1=sk+1 (112)

where

sk+1
¢
=rTk+1Pk+1=krk+1 +¹k+1: (113)

The measurement update equation for the covariance
matrix is simplified as follows.

Pk+1=k+1 = (I9¡Kk+1Hk+1)Pk+1=k(I9¡Kk+1Hk+1)T

+Kk+1Rk+1KTk+1
= [(I3− I3)¡ (gk+1− I3)(rTk+1− I3)](Pk+1=k − I3)
£ [(I3− I3)¡ (gk+1− I3)(rTk+1− I3)]T

+(gk+1− I3)(¹k+1I3)(gk+1− I3)T

= [(I3¡ gk+1rTk+1)− I3](Pk+1=k − I3)
£ [(I3¡ gk+1rTk+1)− I3]T

+(¹k+1gk+1g
T
k+1)− I3 (114)

= [(I3¡ gk+1rTk+1)Pk+1=k(I3¡ gk+1rTk+1)T

+¹k+1gk+1g
T
k+1]− I3 (115)

where we repeatedly used the mixed-product property
of the Kronecker product to obtain the third and
fourth equalities. We get (34) by defining

Pk+1=k+1
¢
=(I3¡ gk+1rTk+1)Pk+1=k(I3¡ gk+1rTk+1)T

+¹k+1gk+1g
T
k+1: (116)

The measurement update equation for the state
estimate (20) is simplified as follows. Using (36) in
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(20) yields

D̂k+1=k+1 = D̂k+1=k +[K1k+1 K2k+1 K3k+1]

£ [I3− (bk+1¡ D̂k+1=krk+1)]

= D̂k+1=k +[gk+1[1]I3 gk+1[2]I3 gk+1[3]I3]

£ [I3− (bk+1¡ D̂k+1=krk+1)]

= D̂k+1=k +(g
T
k+1− I3)[I3− (bk+1¡ D̂k+1=krk+1)]

= D̂k+1=k +[g
T
k+1− (bk+1¡ D̂k+1=krk+1)]

= D̂k+1=k +(bk+1¡ D̂k+1=krk+1)gTk+1 (117)

where gk+1[j], j = 1,2,3, denotes the jth component
of the 3£ 1 vector gk+1. The passage form the third
to the fourth equality in (117) results from the
mixed-product property and the last equality is a
direct result of the definition of the Kronecker product
for two column-matrices.

APPENDIX C. PROOF OF PROPOSITION 1

PROOF The proof proceeds by direct computation
of the terms in (47). In the development we use
the symbol Oi£j to denote the i£ j matrix of zeros.
Straightforward computations yield to

£1kXkª
1
k = [e

(¡[!k£]¢t)Dk O3£2] (118a)

£2kXkª
2
k = [O3£3 ck 03£1] (118b)

£3kXkª
3
k = [[ck£]dk,1 O3£4]¢t (118c)

£4kXkª
4
k = [03£1 [ck£]dk,2 O3£3]¢t (118d)

£5kXkª
5
k = [O3£2 [ck£]dk,3 O3£2]¢t (118e)

£6kXkª
6
k = [O3£3 03£1 ¤mk] (118f)

£7kXkª
7
k = [[mk£]dk,1 O3£4]¢t (118g)

£8kXkª
8
k = [03£1 [mk£]dk,2 O3£3]¢t (118h)

£9kXkª
9
k = [O3£2 [mk£]dk,3 O3£2]¢t:

(118i)
Summing (118a) and (118i) yields

9X
r=1

£rkXkª
r
k = [(e

(¡[!k£]¢t)Dk +[ck£]Dk¢t
+[mk£]Dk¢t) ck¤mk]: (119)

Recalling that the 3£ 3 submatrix in the right-hand
side of (119) is, to first order in ¢t, equivalent to the

matrix ef[(¡!k+ck+mk)£]¢tgDk, and using the definition
of the noise matrix Wk (see (49)) yields

9X
r=1

£rkXkª
r
k +Wk

= [ef[(¡!k+ck+mk )£]¢tgDk ck ¤mk] + [Ek ¹k ºk]

= [ef[(¡!k+ck+mk )£]¢tgDk + Ek ck +¹k ¤mk +ºk]

= [Dk+1 ck+1 mk+1]

= Xk+1 (120)

where the last two equalities stem from the model
equations (38)—(44).
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