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Optimal-REQUEST Algorithm for Attitude Determination

D. Choukroun,¤ I. Y. Bar-Itzhack,† and Y. Oshman‡

Technion—Israel Institute of Technology, Haifa 32000, Israel

REQUEST is a recursive algorithm for least-squares estimation of the attitude quaternion of a rigid body using
vector measurements. It uses a constant, empirically chosen gain and is, therefore, suboptimal when � ltering
propagation noises. The algorithm presented here is an optimized REQUEST procedure, which optimally � lters
measurement as well as propagation noises. The special case of zero-mean white noises is considered. The solution
approach is based on state-space modeling of the K-matrix system and uses Kalman-� ltering techniques to estimate
the optimal K matrix. Then, the attitude quaternion is extracted from the estimated K matrix. A simulation study
is used to demonstrate the performance of the algorithm.

Introduction

A TTITUDE determination(AD) is a major componentof space-
craft operation. The fundamental AD problem is to specify

the orientation of the rigid-body spacecraft axes, expressed by a
Cartesian coordinate frame B with respect to a given reference
Cartesian coordinate system R. When a physical vector, say the
Earth magnetic � eld x is observed, a useful measurement model
equation is

b D bo C ±b D Ar C ±b (1)

where A is the attitude matrix [also called the DCM matrix (see
Ref. 1, p. 411)]; bo and r are the projections of x on B and R,
respectively; and ±b is the measurement error. Given two obser-
vations, it is possible to estimate A by means of a deterministic
algorithm,2 whereas a single observationis not suf� cient to yield an
unambiguous attitude matrix (see Ref. 3, p. 23).

In 1965, Wahba formulated the AD problem from vector obser-
vations as a least-squares estimation problem4:

Given the two sets of n vectors fr1; r2; : : : ; rng and
fb1; b2; : : : ; bng, where n ¸ 2, � nd the proper orthogonal matrix A,
which brings the � rst set into the best least-squarescoincidencewith
the second. That is, � nd A, which minimizes

nX

i D 1

kbi ¡ Ari k2 (2)

subject to the constraints AT A D I3 and det.A/ D 1.
This problem, known as the Wahba problem, is a single-frame

attitude determination problem; that is, it assumes that all vector
measurements that are processed to estimate the attitude have been
obtained at the same attitude. One family of solutions is concerned
with the determinationof that optimal matrix A itself (see Refs. 5–9
for earlier solutions and Refs. 10–13 for more recent methods),
whereas another family is concerned with the determination of the
correspondingoptimal quaternion. In this paper we treat the latter.

Presented as Paper 2001-4153 at the AIAA 41st Guidance, Navigation,
and Control Conference, Montreal, 6–9 August 2001; received 23 Decem-
ber 2002; revision received 1 November 2003; accepted for publication 12
November 2003.Copyright c° 2004 by the authors. Publishedby the Ameri-
can Institute of Aeronautics and Astronautics, Inc., with permission. Copies
of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/04
$10.00 in correspondence with the CCC.

¤Graduate Student,Faculty ofAerospace Engineering,currently Assistant
Researcher Associate, University of California at Los Angeles, Department
ofMechanical and Aerospace Engineering;dach@ucla.edu.Member AIAA.

†Sophie and William Shamban Professor, Member, Technion’s Asher
Space Research Institute, Faculty of Aerospace Engineering.Fellow AIAA.

‡Associate Professor, Member, Technion’s Asher Space Research Insti-
tute, Faculty of Aerospace Engineering. Associate Fellow AIAA.

The quaternion of rotation q is another popular attitude repre-
sentation (see Ref. 1, pp. 758 and 759 and Refs. 14 and 15 for
extensive surveys of attitude parameterizations). It is a unit vector
in R4 , related to A by

A.q/ D .q2 ¡ eT e/I3 C 2eeT ¡ 2q[e£] (3)

(see Ref. 1, p. 414) where e and q are the vector and the scalar
part, respectively,of q; I3 is the 3 £ 3 identitymatrix; and the cross-
product matrix [e£] is de� ned by

[e£]
1D

2

4
0 ¡e3 e2

e3 0 ¡e1

¡e2 e1 0

3

5 (4)

In 1968, Davenport deviseda method, known in the literature as the
q method, for computingthe optimal single-framequaternionq, that
is, the quaternion which corresponds to the optimal A of Wahba’s
problem. As reported in Ref. 16, pp. A.1–A.11, the method is based
on the following identity:

1

2

nX

i D 1

ai kbi ¡ Ari k2 D 1 ¡ qT K q (5)

where the K matrix in the right-hand side of Eq. (5) is ob-
tained as follows. Consider a batch of n simultaneous observations
bi ; ri ; i D 1; 2; : : : ; n, and thecorrespondingweightsai , whose sum,
with no loss of generality, equals one, that is,

nX

i D 1

ai D 1

De� ne the 3 £ 3 matrices B and S, the 3 £ 1 column matrix z, and
the scalar ¾ as

B
1D

nX

i D 1

ai bi rT
i ; S

1D B C BT

z
1D

nX

i D 1

ai bi £ ri ; ¾
1D tr.B/ (6)

where tr.¢/ denotes the trace operator. Then, the 4 £ 4 symmetric
matrix K of Eq. (5) is

K D
µ

S ¡ ¾ I3 z

zT ¾

¶
(7)

Note that the trace of K equals zero. It is clear from Eq. (5) that
the constrained minimization of Wahba’s cost function is equiv-
alent to the constrained maximization of a quadratic form of q.
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It is known that the problem of determining the stationary values
of a quadratic form on the unit sphere leads to the solution of an
eigenvalue problem.17 As a result, the optimal quaternion estimate
is the eigenvector of K that belongs to its largest positive eigen-
value. The highlights of the q method are that it optimally � lters
the measurement noises and that it requires neither linearizationof
some equation model nor an initial quaternion. This method has
become a very popular AD technique and has inspired numerous
algorithms.Keat (Ref. 16, pp. A.15–A.34)presenteda modi� ed ver-
sion of the power method18 for computing the sought eigenvector.
Shuster and Oh19 developed the QUEST (quaternionestimator) for
this problem. QUEST is a very popularalgorithmfor a single-frame
(SF) estimation of attitude quaternion. Mortari proposed two new
SF algorithms, ESOQ20 (estimator of the optimal quaternion) and
ESOQ2.21 However, these algorithms, as any SF attitude estimator,
are memory-less algorithms, that is, the information contained in
measurements of past attitudes is lost.

Methods have been devised in order to relax the requirement for
the measurementsto be acquiredsimultaneously.These methods re-
quireknowingtheangularvelocityofB with respectto R.Markley22

developeda batch algorithm using the body kinematics equation in
terms of the attitude matrix A.t/. The highlights of this algorithm
are that it providesan optimalpredictorof A.t/ and that, in addition,
it can estimatea set of constantdisturbanceparameters,such as gyro
biases. Recursive estimators, which are more convenient than batch
algorithms,havebeendeveloped,that performsequentialestimation
of time-varying attitude,23;24 as well as other parameters.25

In 1996, a discrete recursive algorithm named REQUEST that
propagates and updates the K matrix was introduced.24 This algo-
rithm is summarized next. It is known (Ref. 1, p. 564) that the body
angular motion can be described in terms of the attitude quaternion
by the following difference equation:

qk C 1 D 8kqk (8)

where the transition matrix is computed as follows. Assume that
!k is constant during the time increment 1t, then the matrix 8k is
expressed by (Ref. 1, pp. 511, 512)

8k D exp.Äk 1t/ (9)

where Äk is the following skew-symmetric matrix:

Äk
1D 1

2

µ
¡[!k £] !k

¡!T
k 0

¶
(10)

The matrix 8k is a 4 £ 4 orthogonal matrix function of the angular
velocity vector of the rotation of B with respect to R, !k . Denote
by Ki=j the K matrix at time ti , which is constructed from the mea-
surements up to time t j . According to the REQUEST algorithm, the
propagation of the K matrix from tk to tk C 1 is given by

Kk C 1=k D 8k Kk=k 8T
k (11)

Given a single observationat time tk C 1, that is, rk C 1 and bk C 1, one
can construct the corresponding incremental K matrix, denoted by
±Kk C 1 , as follows. First de� ne

Bk C 1
1D ak C 1bk C 1r

T
k C 1; Sk C 1

1D Bk C 1 C BT
k C 1

zk C 1
1D ak C 1bk C 1 £ rk C 1; ¾k C 1

1D tr.Bk C 1/ (12)

then compute ±Kk C 1 as

±Kk C 1 D 1
ak C 1

µ
Sk C 1 ¡ ¾k C 1I3 zk C 1

zT
k C 1 ¾k C 1

¶
(13)

where ak C 1 is the scalar weighting coef� cient of the .k C 1/ obser-
vation. The update stage of REQUEST is of the form

K k C 1=k C 1 D .½k mk =mk C 1/Kk C 1=k C .ak C 1=m k C 1/±Kk C 1 (14)

where mk and mk C 1 are scalar coef� cients that keep the largest
eigenvalueof Kk C 1=k C 1 close to one24; that is, mk C 1 D ½km k Cak C 1 ,
for k D 0; 1; : : : ; and m0 D a0 . The coef� cient½k is a fadingmemory
factor (Ref. 26, pp. 285–288), which is equal to 1 if 8k is error free,
and is otherwise set between 0 and 1 according to the propagation
noise. (Although REQUEST can handle a batch of new measure-
ments, for our purpose we consider only one new measurement.)
Treating the propagation noise using the fading memory concept
makes REQUEST suboptimal. The aim of the present paper is to
introduce an algorithm, called Optimal-REQUEST, which is based
on REQUEST and is able to optimally � lter the propagation noise.

The remainder of this paper is organized as follows: The problem
that is solved in the presentwork is stated in the next section.Then,
we lay the foundation necessary for the development of an opti-
mized REQUEST algorithm. The Optimal-REQUEST algorithm is
presented in the following section. The � lter performance is then
illustrated through a numerical example. Finally, we present our
conclusions.

Problem Statement
The choice of ½k is heuristic, making the � lter REQUEST sub-

optimal. Moreover ½k is determined by considering the accuracy of
the propagation stage only, disregarding the accuracy of the mea-
surement.

We wish to optimizeREQUEST bycomputinganoptimalvalueof
theparameter½k in theupdatestageofREQUEST. The optimalvalue
of ½k is that which yieldsan optimalblendingof the a priori estimate
of the K matrix Kk C 1=k and its new observation±Kk C 1 . Optimality
is achievedby minimizing a proxy measure of the uncertaintyin the
a posteriori estimate of the K matrix. [An exact expression of the
cost function to be minimized is de� ned later in Eqs. (57) and (58).]

Mathematical Model
Solution Approach

The approach to computing an optimal gain ½¤
k consists of em-

beddingREQUEST in the framework of Kalman � ltering.With this
purpose in mind, we modify the formulation of the attitude estima-
tion problem. The central idea is that we would know the value of
the true attitude quaternion at any time had we known the value of
the true K matrix at any time. The true K matrix is the K matrix
that does not contain any error, neither from vector measurement
noise, nor frompropagationnoise.Becausewe cannotknow the true
K matrix, we propose to estimate it in some optimal way.

A notation that is consistentwith that of REQUEST is used here.
Denote by K o

i=j the true K matrix related to the attitude at ti , which is
based on the ideal noise-freevector measurements up to t j . The es-
timate of this matrix is denotedby K i=j . Similarly, the true K matrix
that is based on the noise-freevector measurements acquired at ti is
denotedby ±K o

i . The measured K matrix, computedusing the noisy
vector measurements acquired at ti , is denoted by ±K i .

We consider the true K matrix as a state-matrix variable and de-
rive the dynamicsand measurementequationsthat describe the state
K -matrix system. The conventionalmodel of a state-space system,
which includes the dynamics and measurement equations, is aug-
mented by an additionalequation that models a deterministic linear
combination of the noise-free K matrices K o

k C 1=k and ±K o
k C 1 at

time tk C 1. As will be shown in the sequel, this combination yields
another noise-free K matrix K o

k C 1=k C 1 , which is the K matrix re-
lated to the true attitude at tk C 1 and is computed using all the vir-
tual noise-free vector measurements up to tk C 1. (We refer to these
vectors as imaginary vectors because in reality only the noisy mea-
surements are available to us.) Note that the structure of the compu-
tation of K o

k C 1=k C 1 � ts the structure of the update stage equation in
REQUEST [Eq. (14)].The reason for this computationwill become
clear when de� ning the estimation errors and deriving their recur-
sive equations.As will be shown later, the updated estimation error
is used to de� ne a special cost function. This cost function will be
minimized with respect to the scalar gain ½k , yielding the sought
optimal gain ½¤

k . This gain will be used in the update stage of the
K -matrix estimationprocess,and, � nally, an estimate of the attitude
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quaternion will be computed as the eigenvector that belongs to the
largest eigenvalue of the updated K -matrix estimate.

Measurement Equation
The measurement equation of the K matrix is derived as follows:

Consider the measurement equation for a single vector observation
at time tk C 1 , and assume that the referenceunit vectorrk C 1 is known
exactly. Denoting by Ak C 1 the attitude matrix at tk C 1 and by ±bk C 1

the noise vector that corrupts the measurement bk C 1 , we have

bk C 1 D Ak C 1rk C 1 C ±bk C 1 (15)

De� ne the following quantities:

Bb
1D ak C 1±bk C 1rT

k C 1; Sb
1D Bb

T C Bb

zb
1D ak C 1±bk C 1 £ rk C 1; ·b

1D tr.Bb/ (16)

Then, using these quantities, we can de� ne a 4 £ 4 symmetric ma-
trix, denoted by Vk C 1 , as follows:

Vk C 1 D 1
ak C 1

µ
Sb ¡ ·bI3 zb

zT
b ·b

¶
(17)

The matrix Vk C 1 is the error in the ±K measurement [see Eqs. (12)
and (13)] at tk C 1 because

±Kk C 1 D ±K o
k C 1 C Vk C 1 (18)

where, as mentioned before, ±Kk C 1 and ±K o
k C 1 are, respectively,

the noisy and the noise-free K matrices of the new vector avail-
able at tk C 1. Thus, ±K k C 1 is computed using the noisy observa-
tion, bk C 1; rk C 1 [see Eqs. (12) and (13)], while ±K o

k C 1 contains the
imaginarynoise-freevector measurementsat tk C 1; that is, ±K o

k C 1 is
expressed using Eqs. (12) and (13) for the noise-free observations
(i.e., ±b D 0). Note that Vk C 1 is a linear functionof ±bk C 1 and rk C 1,
and, because ±bk C 1 is random, Vk C 1 is also random. The linearity
of Vk C 1 in ±bk C 1 will be used to derive a stochasticmodel for Vk C 1

from the stochastic model of ±bk C 1.

Process Equation
Let us denote by Bk and R, respectively, the body frame at time

tk and the constant reference frame. Let the 3 £ 1 vector !o
k denote

the body axes angular rate vector of Bk with respect to R expressed
in Bk , and let K o

0=0 denote the noise-free(true) K matrix at time t0. If
K o

0=0 and !o
k are known, the true K matrix can be propagated using

K o
k C 1=k D 8o

k K o
k=k 8o

k
T (19)

where K o
k=k is related to the true attitude at tk and contains all of the

noise-freeobservationsup to tk , K o
k C 1=k is related to the true attitude

at tk C 1 and contains all of the noise-free observations up to tk , and
8o

k is the 4 £ 4 transition matrix corresponding to !o
k [see Eqs. (9)

and (10)]. In practice !o
k is not known but is, rather, measured (or

estimated). The transition matrix 8k , which is computed from the
measured angular rate !k , contains an error term 18k , that is,

8o
k D 8k ¡ 18k (20)

Using Eq. (20) in Eq. (19) yields

K o
k C 1=k D 8k K o

k=k8
T
k C W o

k (21)

where

W o
k

1D ¡8k K o
k=k 18T

k ¡ 18T
k K o

k=k 8T
k C 18k K o

k=k 18T
k (22)

The expression for W o
k in Eq. (22) is exact but not useful because

we cannot infer from it any statistical propertyof W o
k . To determine

a useful approximation to W o
k , we assume that the error in !k is

additive. Denoting this error by ²k , we have

!k D !o
k C ²k (23)

Based on this model we expand the expression for W o
k in a Taylor

series about !o
k , and, assuming that k²kk is small enough, retain

only the � rst-order term in ²k . Let Bo
k=k denote the true B matrix

at time tk [see Eq. (6)], that is, Bo
k=k corresponds to the error-free

vector observationsup to tk . De� ning B² , S² , ·² , and z² as

B²

1D [²k £]Bo
k=k; S²

1D B² C BT
²

[z² £]
1D BT

² ¡ B²; ·²

1D tr.B²/ (24)

the � rst-order approximation in ²k for W o
k is

Wk D
µ

S² ¡ ·²I3 z²

zT
² ·²

¶
1t (25)

where 1t D tk C 1 ¡ tk . The proof of Eq. (25) is detailed in Ref. 27
(pp. 233–235). To summarize, we have derived an approximate
propagation equation of the true K matrix, which is

K o
k C 1=k D 8k K o

k=k 8T
k C Wk (26)

where 8k correspondsto !k and Wk is an additivematrix noise.The
initial true K matrix is denoted by K o

0=0 . The expression for Wk is
provided in Eqs. (24) and (25). From these equations it is realized
that Wk contains the noise vector ²k as well as all of the noise-free
vector pairs .bo; r/ up to tk . Note that Wk is random because ²k is
random.Also note that Wk is linear in the error²k . This propertywill
become useful when deriving a stochasticmodel for Wk . Extensive
simulations show that the propagationmodel described by Eq. (26)
is a good approximation to the exact propagation model described
by Eq. (21) when Wk is used instead of W o

k .

Pseudoprocess Equation
As mentioned earlier, a supplementary equation is added to the

K -matrix model given in Eqs. (18) and (26). Motivated by the
REQUEST algorithm [see Eq. (14)], we de� ne a pseudoprocess
as follows:

Lo
kC1

1D .1 ¡ ®k C 1/.mk=mk C 1/K o
k C 1=k

C ®k C 1.±mk C 1=mk C 1/±K o
k C 1 (27)

where ®k C 1 is any real number in the interval [0; 1/, the scalars
mk C 1 are recursively computed by

mk C 1 D .1 ¡ ®k C 1/m k C ®k C 1±mk C 1; m0 D ±m0 (28)

fork D 0; 1 : : : ; and±mk C 1 is thepositiveweightassignedto ±Kk C 1 ,
the pseudo K measurement at time k C 1. Because the pseudo K
measurementis constructedfroma singleb measurement,we choose
±mk C 1 D ak C 1 . Note that Eq. (27), which we call pseudoprocess
equation,has a structure that is similar to that of the update stage of
REQUEST, given in Eq. (14). The pseudoprocess equation will be
central in the development of Optimal-REQUEST. Next we show
that Lo

k C 1, an element of the pseudoprocess de� ned in Eq. (27), is
a legitimate K matrix.

Proposition: For anyvalueof®k C 1 in the interval[0; 1/, thematrix
Lo

k C 1 given in Eq. (27) is a K matrix related to the true attitude at
time tk C 1 .

Proof: By assumption, the two matrices K o
k C 1=k and ±K o

k C 1 con-
tain error-free vector observations; therefore, one of their eigen-
vectors is the true attitude quaternion qk C 1, and it belongs to their
maximal eigenvalue, which can be made equal to one by proper
scaling. Thus,

K o
k C 1=k qk C 1 D qk C 1 (29)

±K o
k C 1qk C 1 D qk C 1 (30)



CHOUKROUN, BAR-ITZHACK, AND OSHMAN 421

Using Eqs. (27–30), we � nd that

Lo
k C 1qk C 1 D

£
.1 ¡ ®k C 1/.m k=mk C 1/K o

k C 1=k

C ®k C 1.±mk C 1=m k C 1/±K o
k C 1

¤
qk C 1

D .1 ¡ ®k C 1/.mk =m k C 1/qk C 1 C ®k C 1.±mk C 1=mk C 1/qk C 1

D f[.1 ¡ ®k C 1/mk C ®k C 1±mk C 1]=mk C 1gqk C 1 D qk C 1 (31)

From Eq. (31) we conclude that qk C 1 is an eigenvector of Lo
k C 1

associated with the eigenvalue 1. Consequently, the matrix Lo
kC1 is

a legitimate K matrix.
As stated in the proposition,the matrix Lo

k C 1 is related to the true
attitude at time tk C 1; this matrix is indeed a correct K matrix at
time tk C 1 containing all of the noise-free vector measurements up
to time tk C 1. Adopting a consistent notation, we denote this matrix
by K o

k C 1=k C 1 . The pseudoprocessequation is thus rewritten as

K o
k C 1=k C 1 D .1 ¡ ®k C 1/.mk =mk C 1/K o

k C 1=k

C ®k C 1.±mk C 1=m k C 1/±K o
k C 1 (32)

It should be emphasized that Eq. (32) was developed to match the
structureof the updatestageof REQUEST. As will be seen later, this
matching is crucial for de� ning the estimation errors, designing a
cost functionand, � nally,minimizing this cost functionwith respect
to the gain. The pseudoprocess of Eq. (32), and the process and
measurement equations [Eqs. (26) and (18)], which are

K o
k C 1=k D 8k K o

k=k 8T
k C Wk (33)

±Kk C 1 D ±K o
k C 1 C Vk C 1 (34)

(with an initial condition K o
0=0), form the model for the K -matrix

system.

Stochastic Models
The purposeof this subsectionis to describethe stochasticmodels

of the system noise matrices Wk and Vk . To derive the stochastic
models for Wk and Vk , we need the stochastic models for ²k and
±bk . As mentioned earlier, only basic models are considered in this
work; thus, the vector process ²k is modeled as a zero-mean white-
noise vector process whose components are identically distributed
with variance ´k , that is,

E[²k] D 0; E
£
²k ²T

k C i

¤
D ´k I3±k;k C i (35)

for k D 1; 2; : : : ; and ±k;k C i is the Kronecker delta function. As-
suming that the unit vector measurements bk are axisymmetrically
distributed about their true value, we employ a unit vector error
model19 that provides approximate but quite accurate expressions
for the mean and the covariance of ±bk . The � rst and second mo-
ments of this model are

E[±bk ] D 0; E
£
±bk ±bT

k C i

¤
D ¹k

¡
I3 ¡ bkbT

k C i

¢
±k;k C i (36)

for k D 1; 2; : : : ; where ¹k is the variance of the component of bk

along a direction normal to E[bk ]. Furthermore, it is assumed that
±bk and ²k are mutually uncorrelated.The exact expressions for the
two moments can be found in the appendix of Ref. 11.

Measure of Uncertainty
The goal of the following analysis is to present a model for the

uncertainty that Wk and Vk introduce into the K -matrix system of
Eqs. (33) and (34), respectively. For scalar and vector processes,
the covariance is a measure of the uncertainty associated with the
process error. In the case of a matrix process, like the one presented
in Eqs. (33) and (34), we introducea special measure of uncertainty
as follows.

De� nition 1: For the zero-meangeneralmatrix process X , a mea-
sure of uncertainty PX X is de� ned as

PX X
1D E[X X T ] (37)

As an example, consider the real 2 £ 2 symmetric matrix of zero-
mean processes x11, x12 , and x22, given by

X D
µ

x11 x12

x12 x22

¶
(38)

The corresponding PX X matrix has the following form:

PX X D

"
E

£
x2

11

¤
C E

£
x2

12

¤
E[x11x12] C E[x12x22]

E[x11x12] C E[x12x22] E
£
x2

12

¤
C E

£
x2

22

¤
#

(39)

Discussion
PX X is a symmetric positive semide� nite matrix. The variances

of each element of X are on the main diagonal of PX X , whereas the
off-diagonal elements of PX X contain only cross-covarianceterms.

Consider the 4 £ 1 zero-mean vector vecX , de� ned as

vecX
1D [x11 x12 x12 x22]T (40)

and construct its 4 £ 4 covariance matrix

cov.vecX /
1D E[vecX .vecX /T ] (41)

Then, the trace of the matrix PX X is identical to the trace of the
covariance matrix in Eq. (41), that is

tr.PX X / ´ tr[cov.vecX/] (42)

We realize that although the matrix PX X is not a covariancematrix,
it has a desired feature in a compact convenient form. Thus, it will
be used as a measure of uncertainty for the matrix error processes
that are considered in this paper.

Using the expressions for Wk and Vk in Eqs. (25) and (17), re-
spectively, it can be shown that these processes are zero-mean un-
correlated white-noise processes.Thus,

E
£
Wk W T

k C i

¤
D O4; E

£
Vk V T

k C i

¤
D O4; E

£
Wk V T

k C i

¤
D O4

(43)

for i 6D 0. Denote by Qk and Rk , respectively, the P matrices of Wk

and Vk , that is,

Qk
1D E

£
Wk W T

k

¤
; Rk

1D E
£
Vk V T

k

¤
(44)

then, explicit expressions for Qk and Rk can be derived using the
assumptions we made on ²k and ±bk . In the computation of Qk ,
one must address the issue of the dependence of the process noise
matrix Wk on thenoise-freematrix Bo

k=k [Eqs. (24) and (25)],which
is unknown.To overcomethis dif� culty, Bo

k=k is replacedby its best
available estimate Bk=k . The latter is computed from the estimated
K matrix Kk=k using the de� nition of the K matrix given in Eqs. (6)
and (7). The detailed computation of Qk and Rk is provided in
Ref. 27 (pp. 235–240).

Optimal-REQUEST
The algorithm derivation in this section follows an approach that

was used in a direct derivationof theKalman–Bucy � lter for the case
of vector processes.28 A similar derivation of the discrete Kalman
� lter can be found in the literature (e.g., see Ref. 26, pp. 105–110).
The approach consists of three steps:

1)The updateof theestimateis formulatedas a linearcombination
of the predicted estimate and the new observation.

2)The a posteriorianda priori estimatesare forcedto beunbiased.
3) The optimal � lter gain is computedby minimizing the variance

of the a posteriori estimation error.
In the third step, instead of the variance, we will use the proxy

measure of uncertainty introduced in the preceding section.
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Measurement Update Stage
The proposed update stage is a slightly modi� ed version of

REQUEST, namely, unlike the REQUEST update formula of
Eq. (14), here the updated estimate Kk C 1=k C 1 is chosen to be a
convex combination of the predicted estimate Kk C 1=k and the new
observation ±Kk C 1 , that is,

Kk C 1=k C 1 D .1 ¡ ½k C 1/.mk =mk C 1/Kk C 1=k

C ½k C 1.±mk C 1=m k C 1/±Kk C 1 (45)

where ±mk C 1 is a positive scalar weight and mk C 1 is computed
recursively by

m k C 1 D .1 ¡ ½k C 1/mk C ½k C 1±mk C 1 (46)

for k D 0; 1 : : : ; and m0 D ±m0 . The scalar½k C 1 2 [0; 1/ has the role
of a gain in Eq. (45). (We exclude the case where ½k C 1 D 1 for
practical reasons because, in that case, the � lter would be memory-
less.) Because of the linearity of Eq. (45) and the fact that ½k C 1 is a
scalar, the propertiesof symmetry and of zero trace of the estimated
K matrix are preserved.This is a matter of importance because the
computation of the attitude quaternion, which uses the q method,
depends on these properties.

The estimation errors of the � lter are de� ned by

1Kk C 1=k
1D K o

k C 1=k ¡ Kk C 1=k (47a)

1Kk C 1=k C 1
1D K o

k C 1=k C 1 ¡ Kk C 1=k C 1 (47b)

where 1Kk C 1=k and 1Kk C 1=k C 1 denote, respectively, the a priori
and the a posteriori estimation errors. It is assumed that the a priori
estimate Kk C 1=k is unbiased,that is, E[1Kk C 1=k] D 0. This assump-
tion will be justi� ed when developing the prediction stage.

The expression for K o
k C 1=k C 1 is known from Eq. (32), where

®k C 1 is arbitrary in [0; 1/. For a reason that will become clear in
the ensuing,we choose ®k C 1 D ½k C 1, where ½k C 1 is that which was
introduced in Eq. (45). Consequently, Eq. (32) becomes

K o
k C 1=k C 1 D .1 ¡ ½k C 1/.mk =m k C 1/K o

k C 1=k

C ½k C 1.±mk C 1=m k C 1/±K o
k C 1 (48)

SubtractingEq. (45) from Eq. (48) and making use of the de� nitions
in Eqs. (47) yields the following relation between the a priori and
the a posteriori errors:

1K k C 1=k C 1 D .1 ¡ ½k C 1/.mk =mk C 1/1Kk C 1=k

C ½k C 1.±mk C 1=m k C 1/Vk C 1 (49)

where Vk C 1 is the measurement error de� ned in Eq. (17). Note
that the expression in Eq. (49) is based on the choice ®k C 1 D ½k C 1.
Taking the expectation of both sides of Eq. (49) yields

E[1Kk C 1=k C 1] D .1 ¡ ½k C 1/.mk =mk C 1/E[1Kk C 1=k]

C ½k C 1.±mk C 1=m k C 1/E[Vk C 1] (50)

Using the assumptions that the measurement error Vk C 1 and the
a priori estimation error 1Kk C 1=k are zero mean, one � nds that
the a posteriori estimation error 1Kk C 1=k C 1 is zero mean too, as
required.

The P matrices corresponding to both estimation errors are de-
� ned as follows:

Pk C 1=k
1D E

£
1Kk C 1=k 1K T

k C 1=k

¤
(51)

Pk C 1=k C 1
1D E

£
1Kk C 1=k C 11K T

k C 1=k C 1

¤
(52)

Using Eq. (49), we compute the following product:

1K k C 1=k C 11K T
k C 1=k C 1 D [.1 ¡ ½k C 1/.mk =mk C 1/]2

£ 1Kk C 1=k 1K T
k C 1=k ¡ .1 ¡ ½k C 1/½k C 1

¡
mk±mk C 1

¯
m2

k C 1

¢

£
¡
1Kk C 1=k V T

k C 1 C Vk C 11K T
k C 1=k

¢

C [½k C 1.±m k C 1=mk C 1/]2Vk C 1V T
k C 1 (53)

Before computing the expectations of the expressions in Eq. (53),
we consider the following expectation, E[1Kk C 1=k V T

k C 1]. From
Eq. (36) ±b is a zero-mean white-noise process; therefore [see
Eqs. (15–17)], V is a zero-mean white-noise process too. More-
over, the random variable 1Kk C 1=k depends on the sequences fWi g
and fVi g, where i takes the integervalues from1 to k only.Therefore
1Kk C 1=k and Vk C 1 are uncorrelated; thus,

E
£
1Kk C 1=k V T

k C 1

¤
D O4 (54)

Taking the transpose of Eq. (54) yields a similar result. Taking the
expectationof both sides of Eq. (53), and only retaining the nonzero
terms, yields

Pk C 1=k C 1 D [.1 ¡ ½k C 1/.mk =mk C 1/]
2 E

£
1Kk C 1=k 1K T

k C 1=k

¤

C [½k C 1.±mk C 1=mk C 1/]2 E
£
Vk C 1V T

k C 1

¤
(55)

One identi� es the matrices Pk C 1=k and Rk C 1 in the � rst and second
terms of the right-hand side of Eq. (55); thus, we can write

Pk C 1=k C 1 D [.1 ¡ ½k C 1/.m k=mk C 1/]2 Pk C 1=k

C [½k C 1.±mk C 1=mk C 1/]2Rk C 1 (56)

Equation (56) expressesthe uncertaintyupdate in the K -matrix esti-
mation process for any ½k C 1, when a new measurement is acquired.

Optimal Gain
When a new observation is processed,we would like the estima-

tion uncertainty to decrease as much as possible. From the earlier
discussionof the propertiesof the P matrix,we saw that its tracewas
a suitable measure of the uncertainty.Thus, we de� ne the following
cost function:

Jk C 1
1D tr

¡
E

£
1Kk C 1=k C 11K T

k C 1=k C 1

¤¢
D tr.Pk C 1=k C 1/ (57)

Then, the design problem of the � lter gain ½k C 1 reduces to solving
the following minimization problem with respect to ½k C 1:

min
½k C 1 2 [0;1/

Jk C 1 (58a)

where

Jk C 1
1D tr.Pk C 1=k C 1/ (58b)

Inserting Eq. (56) into the expression for Jk C 1 in Eq. (57) yields,
after some manipulation,

Jk C 1.½k C 1/ D [.1 ¡ ½k C 1/.mk =m k C 1/]
2tr.Pk C 1=k /

C [½k C 1.±mk C 1=mk C 1/]2tr.Rk C 1/ (59)

The � rst-order necessary condition for an extremum of Jk C 1 is

dJk C 1

d½k C 1
D 2

"³
mk

mk C 1

´2

tr.Pk C 1=k/ C
³

±mk C 1

mk C 1

´2

tr.Rk C 1/

#

½k C 1

¡ 2

³
mk

mk C 1

´2

tr.Pk C 1=k/ D 0 (60)

resulting in the following condition for ½¤
k C 1 to yield a stationary

point for Jk C 1

½¤
k C 1 D

m2
k tr.Pk C 1=k /

m2
k tr.Pk C 1=k/ C ±m2

k C 1tr.Rk C 1/
(61)

Using the suf� ciencyconditionfor this point to be a minimum, it can
be veri� ed that the cost function Jk C 1 indeed reaches a minimum
at ½¤

k C 1 . Note that, in the case of a scalar process, Eq. (61) yields
the exact expression for the Kalman-� lter gain. Even in the gen-
eral case the � lter gain ½¤

k C 1 still has the feature of a Kalman-� lter
gain; namely, for a high uncertainty in the a priori estimate, relative
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to the uncertainty in the measurement, the gain is close to 1 and
weighs more favorably the new measurement in the update stage
described in Eq. (45). On the other hand, for a high uncertainty in
the measurement, relative to the uncertainty in the a priori estimate,
the gain is close to 0, and the � lter assigns a low weight to the new
measurement.

Prediction Stage
We require that the predicted Kk C 1=k be linear in Kk=k and that it

produces an unbiased predicted estimate. These requirements yield
the prediction formula of the REQUEST algorithm [Eq. (11)]

Kk C 1=k D 8k Kk=k 8T
k (62)

Using the K -matrix process of Eq. (26), the prediction in Eq. (62),
and the de� nitions of the estimation errors given in Eqs. (47) yields
the error propagation equation

1Kk C 1=k D 8k1Kk=k 8T
k C Wk (63)

It is easy to see that E[1Kk C 1=k] D 0, which justi� es our initial
assumption that the a priori estimate of Kk C 1=k is unbiased. Using
the latterexpressionfor1Kk C 1=k , the stochasticmodelsof thenoise,
and the orthogonality property of the 8k matrix, the propagation
equation for the P matrix is obtained as follows:

Pk C 1=k D 8k Pk=k 8T
k C Qk (64)

Equation (64) is similar to the covariance propagation equation in
the Kalman-� lter algorithm.

To conclude, similarly to the Kalman � lter, the algorithm com-
prises two parallel channels. One channel is for the computation
of the signal estimate, which here is the K -matrix estimate, and
the other one is for the uncertainty propagation of the estimation
process, which in the Kalman � lter is expressed by the covariance
matrix, and is needed for the computationof the optimal � lter gain.

Algorithm Summary
The Optimal-REQUEST algorithm presented in this section can

be summarized as follows:
Initialization:

K0=0 D ±K0 (65)

where±K0 is computedusingthe � rst vectormeasurementaccording
to Eqs. (12) and (13).

P0=0 D R0 (66)

m0 D ±m0 (67)

where ±m0 is a positive weighting factor.
Time update:

Kk C 1=k D 8k Kk=k 8T
k (68)

Pk C 1=k D 8k Pk=k 8T
k C Qk (69)

where the matrix Qk is computed according to Eqs. (24), (25), and
(44).

Measurement update:

½¤
k C 1 D

m2
k tr.Pk C 1=k /

m2
k tr.Pk C 1=k/ C ±m2

k C 1tr.Rk C 1/
(70)

mk C 1 D
¡
1 ¡ ½¤

k C 1

¢
mk C ½¤

k C 1±mk C 1 (71)

Kk C 1=k C 1 D
¡
1 ¡ ½¤

k C 1

¢ m k

m k C 1
Kk C 1=k C ½¤

k C 1

±m k C 1

mk C 1
±Kk C 1

(72)

Pk C 1=k C 1 D
µ¡

1 ¡ ½¤
k C 1

¢ mk

mk C 1

¶2

Pk C 1=k C
³

½¤
k C 1

±mk C 1

mk C 1

´2

Rk C 1

(73)

where the matrix Rk C 1 is computed according to Eqs. (16), (17),
and (44). The optimal quaternion Oqk C 1=k C 1 is the eigenvector of
Kk C 1=k C 1 , which belongs to its maximal eigenvalue.

Simulation Study
An extensiveMonte Carlo (MC) simulation study was performed

in order to test the attitude estimator in the presence of process and
measurement noises. Different single vector observationswere ac-
quired at each sampling time. The body coordinate system B was
assumed to be � xed with respect to an inertial coordinatesystem R.
The vector observationnoise was a zero-meanGaussian white noise
with an angular standard deviation of one degree, which is a typi-
cal accuracy obtained using magnetometers. Three body-mounted
gyroscopes measured the angular velocity of B with respect to R.
Because the system B did not rotate with respect to system R, the
nominal body rates were zero; hence, the gyro measurements con-
tained only gyro noises. The gyro noises were Gaussian zero-mean
white noises with a standard deviation of 0:2 deg/h in each axis.
The noise models in the system and in the � lter were identical. The
sample rate was 10 Hz, both in the measured directions and in the
gyro measurements.Each simulation lasted 6000 s. We ran 100 runs
with different seeds and averaged the results at each time point to
obtain the ensemble averages.

The resultsare summarized in Figs. 1 and 2 and Table 1. Figure 1a
presents the time history of ±Á, the MC mean of ±Á, the angular es-
timation error.The angle ±Á is de� ned as the angle of the small rota-
tion that brings the estimatedbody frame OB onto the true body frame
B. This angle is obtained as follows: First, the quaternion of the ro-
tation from OB to B, denoted by ±q, is evaluated, then the rotation
angle ±Á is computedfrom ±q, the scalarcomponentof ±q, using the
known relation(Ref. 1, p. 414) ±Á D 2 arccos.±q/. The error reaches
a steady state of approximately 0:06 deg. Figure 1b shows the time
history of the MC mean of ½¤, the optimal � lter gain. The average
gain decreases exponentiallyfrom 0:5 down to 0:001. As expected,
the Optimal-REQUEST algorithm behaves like a Kalman � lter; it
initially weighs more the new observations in the estimate, and,
as the number of processed measurements grows, it progressively
turns to be a pure predictor of the estimate, that is, it weighs less
the incoming measurements.The attitude estimated by the Optimal-
REQUEST � lter converges successfully to the true attitude.

Figure 2 shows the performance of Optimal-REQUEST com-
pared to that of various cases of REQUEST where the gain ½ is
chosen as a constant.We chose three differentvalues for ½ , namely,
0:1, 0:01, and 0:001, which, as seen in Fig. 1b are typical values
in the span of the optimal gain ½¤. In this simulation the sampling
frequency Fs was chosen equal to 0:5 Hz. Figure 2 depicts the vari-
ations of the MC mean of ±Á for each case. For ½ D 0:1, the � lter
weighs relativelymuch the measurements, so that after a quick tran-
sient the error remains on a relatively high steady state (0:45deg)
and shows random variations. On the other hand, a very low gain
(½ D 0:001) yields a smooth but very slow convergenceof the error,
which reaches the valueof 0:05 deg in steadystate.As seen in Fig. 2,
the optimal gain ½¤ of Optimal-REQUEST yieldsa lower bound for
the variousMC means of ±Á. This is true during the transientas well
as in the steady state where Optimal-REQUEST yields an error of
0:03 deg.

Optimal-REQUEST was also tested using various sampling rates
Fs , standarddeviationsof the vector observations

p
¹, and standard

deviationsof the gyro output
p

´. Table 1 presents the Monte Carlo
meansof±Á at the � nal time ±Á.t f / for thevariouscases.For the sake
of comparison, the same number of observations—here, 2000—are

Table 1 Monte Carlo means of ±Á at � nal time

±Á at t f ±Á at t f ±Á at t f
Fs , Hz

p
¹, deg

p
´ D 0:01, deg/h

p
´ D 360, deg/h

p
´ D 3600, deg/h

10 1 0.03 0.15 0.78
10 5 0.15 0.55 1.99
0.5 1 0.04 0.39 3.25
0.5 5 0.24 1.18 7.79
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a) Time history of the MC-mean of ±Á

b) Time history of the MC-mean of ½¤

Fig. 1 Performance of Optimal-REQUEST averaged over 100-runs Monte Carlo simulation.

Fig. 2 Comparison of Optimal-REQUEST and REQUEST.
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processed in each case. As seen in Table 1, the values of ±Á.t f /
are consistent with those of the � lter parameters, that is, ±Á.t f /
increases with 1=Fs ,

p
¹, and

p
´. Notice that ±Á.t f / converges to

some � nal value even in the worst simulated case.

Conclusions
In this paper a new recursive optimal estimator for estimating

the quaternion of rotation from vector measurements is presented.
Named Optimal-REQUEST, this algorithm is an extension of the
REQUEST algorithm, which is based on the q method.

The proposed � lter is derived using a unique variance-like
performance criterion, which gives a stochastic basis to the esti-
mation process. Like a Kalman � lter, the proposed algorithm opti-
mally � lters both measurement and process noises; thus, it covers
a de� ciency of REQUEST, where the process noise is � ltered in
an empirical manner. The cost to achieve that performance is that
the computation of the optimal gain involves 4 £ 4 matrix equa-
tions, which increases the computational burden of the � lter. The
special case of a zero-mean white-noise process is consideredhere.
When severe modeling errors, like unknown constant gyro biases,
are present, adaptive � ltering theory can be used to adapt online the
covarianceof the � lter process noise to the bias level, rendering the
overall estimation scheme robust to the modeling uncertainty.

Optimal-REQUEST also retainsall of the featuresof REQUEST;
that is, it is a time-varying recursive attitude quaternion estimator,
the quaternion unit-norm property is preserved, and the attitude
is updated even when a single vector observation is processed at
each sampling time. The ef� ciency of the new � lter is demonstrated
throughMonte Carlo simulations.A comparisontest was performed
onOptimal-REQUEST andseveralversionsofREQUEST where,as
the algorithm is set, for each version, the fading memory factor was
held constant during the whole simulation period. The simulation
results show thatOptimal-REQUEST yields the lowest MonteCarlo
mean of the angular estimation error during the transient period as
well as at steady state, clearly demonstrating the superiority of the
new algorithm over the old one.
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