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Extending and consolidating the recently introduced quaternion particle filter for a spacecraft’s attitude
estimation and its companion, the angular-rate particle filter, this paper presents a novel algorithm for the estimation
of both a spacecraft’s attitude and angular rate from vector observations. Belonging to the class of Monte Carlo
sequential methods, the new estimator is a particle filter that uses approximate numerical representation techniques
for performing the otherwise exact time propagation and measurement update of potentially non-Gaussian
probability density functions in inherently nonlinear systems. The paper develops the filter and its implementation in
the case of a low-Earth-orbit spacecraft, acquiring noisy Geomagnetic field measurements via a three-axis
magnetometer. The new estimator copes with the curse of dimensionality related to the particle filtering technique by
introducing innovative procedures that permit a significant reduction in the number of particles. This renders the
new estimator computationally efficient and enables its implementation with a remarkably small number of particles
(relative to the dimension of the state). The results of a simulation study demonstrate the viability and robustness of

the new filter and its fast convergence rate.

I. Introduction

PACECRAFT attitude is a critical piece of information in any

space mission. In the last four decades, a great number of
research works have been devoted to the problem of estimating the
attitude of a spacecraft based on a sequence of noisy vector
observations, resolved in the body-fixed coordinate system and in a
reference system. The problem was first proposed in 1965 by Wahba
[1] and inspired the development of the earliest so-called single-
frame methods.

The source of body-fixed vector measurements can be a star-
tracker, sun sensor, Earth sensor, and three-axis magnetometer
(TAM). Whereas high-accuracy star-trackers are extremely
expensive and sun sensors are useless during a solar eclipse
[for low-Earth-orbit (LEO) satellites], the TAM is an integrated
part of virtually any spacecraft, and its readings are available at any
time.

The filtering-based methods that were developed in the 1980s
embedded the attitude determination problem in the framework of
stochastic filtering. The highlight of these methods is their ability to
sequentially process vector measurements to yield the attitude at any
time, by using an angular-rate information source as well. It quite
naturally followed that the well-known Kalman filter (KF) was used
as part of many attitude estimation algorithms.

The attitude estimation problem possesses an undesirable strong
nonlinearity and may not be Gaussian either. It may also be subjected
to a constraint related to the attitude mathematical representation.
These distinctive features render conventional filtering algorithms
(such as the KF) suboptimal at best.
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The quaternion is probably the most popular rotation specifier in
space applications. The main advantage of using the quaternion
representation is that it is not singular for any rotation. Moreover, its
kinematic equation is linear and the computation of the associated
attitude matrix involves only algebraic expressions. However, the
quaternion representation is not minimal because it is four
dimensional. This leads to a normalization constraint that has to be
addressed in filtering algorithms.

The quaternion was used in the framework of extended Kalman
filtering (EKF) in [2] (using the so-called multiplicative approach)
and [3] (using the additive approach). In a recent paper [4], an
unscented Kalman filter (UKF) was proposed for the estimation of
the rotation quaternion. The UKF does not require linearization.
However, as a Kalman filter mechanization, it is sensitive to the
statistical distribution of the stochastic processes driving the
dynamic model: non-Gaussian distributions guarantee nonoptimal-
ity of the estimates.

A widely used angular-rate sensor onboard spacecraft is the rate-
gyroscope triad, whose purpose is to provide three-axis rate
information. Long experience has shown that rate gyros are failure
prone. They tend to saturate during high-angular-rate scenarios, such
as tumbling and initial attitude acquisition. Moreover, gyros may not
be suitable for low-cost satellites due to price, power consumption,
weight, and volume considerations. This leads to the requirement of
reliable, gyroless attitude estimation schemes that will provide
backup capability for spacecraft that use rate gyros and affordable
solutions for low-cost gyroless satellites.

Several methods were proposed for combined attitude and
angular-rate filtering in the absence of rate sensors. Most of these
methods adopt the EKF mechanization; therefore, they also suffer
from the same deficiencies imposed by applying linearization and
assuming Gaussianity. Moreover, due to the higher nonlinearity
involved in the augmented models, which now account for the
angular-rate dynamics as well, linearization renders these methods
much more sensitive to initial conditions.

In [5], high-bandwidth star-tracker vector observations were used
by an EKF-based algorithm to estimate both the attitude quaternion
and the angular velocity of the spacecraft in a gyroless attitude
determination and control setting. Challa et al. [6,7] and Natanson
et al. [8] proposed an attitude and attitude-rate estimator, which uses
temporal derivatives of vector measurements and dynamically
propagates the angular velocity estimates using the nonlinear Euler
equation. The technique of Bar-Itzhack et al. [9], on the other hand,
consists of an unusual KF formulation that renders the models used
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by the filter state dependent. This special pseudolinear Kalman filter
(called PSELIKA by its authors ) possesses the advantage that it is
less likely to diverge; however, its estimation accuracy is likely to be
lower than that of the conventional EKF.

Recently, a new method using the particle filtering (PF) technique
has been proposed for a spacecraft’s attitude estimation from vector
observations [10]. The PF technique was further employedin [11] for
the exclusive estimation of angular rate independent of any attitude
information.

Also known as sequential Monte Carlo methods, particle filters
implement recursive Bayesian models using simulation-based
methods [12]. Avoiding the underlying assumptions of the Kalman
filter, namely, that the state space is linear and Gaussian, these rather
general and flexible methods enable solving for the posterior
probability distributions of the unknown variables (on which all
inference on these variables is based) within a Bayesian framework,
exploiting the dramatic recent increase in computing power. It
should be emphasized that PFs are not just smart implementations
of the Kalman filter or its nonlinear variants/extensions; rather,
they are entirely different algorithms that lead to entirely different
solutions to the nonlinear, non-Gaussian filtering problem.
Contrary to the Kalman filter extensions, the solutions obtained
using PF algorithms are approximations to the optimal (in the
Bayesian sense) solutions, which can be made arbitrarily close to
the exact solutions by increasing the number of particles involved
in the computation and thereby increasing the computation
workload.

This paper presents a unification of the quaternion particle filter
(QPF) of [10] with the angular-rate PF of [11]. The new PF is
implemented for an augmented seven-element state vector that
accounts for four quaternion and three angular-rate components. A
straightforward implementation of such PF would require a large
number of particles to work properly. Thus, the main contribution of
this work is in deriving a computationally efficient high-dimensional
PF algorithm for estimating both the attitude quaternion and the
angular rate. The new algorithm implements several innovative
techniques for significantly reducing the number of particles used in
the approximations.

Estimating the attitude quaternion and angular rate using a PF
provides three major advantages relative to existing estimation
methods. First, the estimator works directly with the quaternion (i.e.,
its particles are all attitude quaternions). This inherently renders its
resulting estimate an attitude quaternion, naturally satisfying the
norm constraint (requiring no special procedures for this purpose).
Second, because the PF algorithm assumes nothing about the noise
distributions, the resulting algorithm can work with any noise
distribution associated with the particular sensors involved. In
contradistinction, the UKF assumes Gaussian distributions of the
driving noise processes, which does not always hold true. Finally, the
PF is easy to implement and is insensitive to the initial conditions and
nonlinearities involved.

In general, gyroless setting inevitably requires the use of Euler’s
equation of rigid body motion in filtering algorithms. As was pointed
out by both Carmi et al. [11] and Tortora et al. [13], this renders the
time-propagation stage highly sensitive to a spacecraft’s inertia
modeling imperfections. Consequently, recent tendency is to
estimate the inertia tensor as well. As far as particle filtering is
concerned, simply augmenting the state by the inertia components
results in a substantial increase in the algorithm’s computational
complexity. Nevertheless, on a principle level, this work
demonstrates the feasibility of inertia estimation using an application
of the conventional state-augmentation technique.

The remainder of this paper is organized as follows. The next
section outlines the mathematical model of the quaternion/angular-
rate estimation problem. Section III provides a detailed development
of the computationally efficient attitude and angular-rate particle
filter. As part of the development, techniques for significantly
reducing the computational resources used by the PF are presented.
Section IV presents the results of a simulation study that was carried
out to assess the performance of the new algorithm. Concluding
remarks are offered in the last section.

II. Mathematical Model

In this section, the problem of combined attitude and angular-rate
estimation from vector observations is mathematically defined.

A. Observation Model

Let r;, and y; be a pair of corresponding vector measurements
acquired at time k in the two Cartesian coordinate systems R and B,
respectively. Let A, be the rotation matrix (also known as the attitude
matrix or the direction cosine matrix) that brings the axes of R onto
the axes of B3 at time k. In general, the reference vector r; is known
exactly, whereas the body vector b ;is measured. This results in the
following attitude measurement model:

Yo = At + my (D

where n, is the measurement noise process, with a known probability
density function (PDF), denoted as ny ~ p,,, .

B. Process Model
1. Angular-Rate Process Model

Let {@}52,, @ € R? be the angular velocity process of the body-
frame Cartesian coordinate system B with respect to some inertial
reference frame coordinate system R, resolved in B, at times
k=0,1,2,.... Representing the angular rate of a spacecraft, this
process is the discrete-time equivalent of a continuous-time
stochastic process described via Euler’s equation. Using the common
formal engineering notation, this stochastic equation is written as

o) =J'[—w(t) x Jo()] + v(?) )
where J denotes the spacecraft’s tensor of inertia. Given some initial

distribution @, ~ p,,,, Eq. (2) is driven by the process noise v(¢),
representing the external disturbance torques.

2. Quaternion Process Model

The discrete-time quaternion stochastic process satisfies the
recurrence equation

iy = Prq; 3)

where {q;}%2, denotes the quaternion of rotation from a given
reference frame R onto the body frame B at times k =0, 1,2,...,
with some initial PDF q, ~ pg,. The quaternion process takes its
values on the unit three-sphere S* and is constructed from vector and
scalar parts, respectively:

a=[el a] @

The orthogonal transition matrix @, is expressed using ;.
Assuming that @, is constant during the short sampling time interval

ArEi1,,, — 1, yields

A 1 Al —[wX] @
O, =P(w,) = exp(E\I’(wk)At), ‘I’(")k):[ Ewkr ] Oki|
k
(%)
where [w,x] denotes the cross-product matrix associated with the
vector @y.

The relation between the process and observations is established
by expressing the attitude matrix as a quadratic function of q, that is,

Ay =A(qy) = [(Q4k)2 - Q{Qk]lfix} +200f —2q4[erx]  (6)

III. Fast High-Dimensional Attitude and Angular-Rate
Particle Filtering

The fast quaternion and angular-rate PF is derived in this section.
Initially, the plain PF algorithm is presented, followed by the
incorporation of several techniques for reducing its computational
complexity. In this PF algorithm, each particle is a state vector
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composed of a unit norm quaternion and a three-element angular-rate
vector. The filter is aimed at approximating the joint filtering PDF of
both the attitude and the angular rate conditioned upon the
observation time history. At this stage, it is assumed that the
spacecraft’s inertia tensor is perfectly known. The case of
imperfectly modeled inertia is discussed thereafter.

A. Particle Filters

Particle filters are a set of simulation-based methods using a
Bayesian framework for sequentially approximating the posterior
PDF of arbitrary nonlinear non-Gaussian systems. Fundamentally,
based upon both the strong law of large numbers and a statistical
sampling method known as importance sampling, particle filters
exploit the recent increase in computational resources to yield
superior performance compared with the conventional nonlinear
filtering methods. Using these methods, a discrete representation of
the posterior PDF is maintained up to a normalizing constant via a
finite set of samples (particles). The PDF approximation is
propagated using the Chapman—Kolmogorov equation and updated
using Bayes rule. Practical implementation of a PF algorithm
consistently involves adaptation of particles and their associated
importance weights. The reader is referred to [10,12] for either a brief
or detailed development, respectively, of a generic PF algorithm.

B. Plain Particle Filtering Algorithm

The plain attitude and angular-rate PF borrows its structure and
components from both the QPF and the angular-rate PF (OPF)
algorithms, presented in [10,11], respectively. To maintain
consistency with previous work, the notational conventions of both
these references are adopted. Accordingly, J* = {y,,..., y;} and
Y*={Y,,..., Y.} denote a set of vector observations up to time k
and its realization, respectively. The quaternion and the angular-rate
realizations at time k are denoted as g, and 2, respectively.
Likewise, the ith particle and its associated normalized importance
weight at time k are denoted by [g,(i)7,R,()7]" and w,(i),
respectively. In what follows, the term quaternion/angular-rate part
refers to the corresponding part of the joint state vector.

In the plain PF algorithm, the measurement update stage as well as
the quaternion part filtering and particles’ evolution stages are similar
to those used in [10] (Secs. IV.B, IV.C. and IV E, respectively). The
angular-rate part is propagated and filtered using the approach of [11]
(Secs. IV.C and IV.D, respectively). The algorithmic details of these
stages are not repeated herein for conciseness. The main difference
underlying the plain PF algorithm, when compared with either of the
algorithms of [10,11] lies in its particles’ maintenance stage. As part
of this procedure, a new high-dimensional regularization scheme is
incorporated into the algorithm, taking into account the statistical
dependency between the quaternion and the angular-rate parts. This
two-step procedure is detailed next.

1. Regularization Intensity

The regularization intensity (RI) is a measure of the contaminating
noise used for diversifying the particle set. Considering the unique
case of a partially constrained state vector (the four components of
the quaternion), the computation of the RI differs from the one
introduced in [10]. In this work, the RI measure is computed as the
sample covariance of an equivalent six-dimensional unconstrained
state, taking into account the cross-correlation terms between the
attitude and the angular rate.

During this stage, the four-dimensional quaternion part of the state
is replaced by the corresponding three-dimensional generalized
Rodrigues parameters (GRP) vector. Given a quaternion realization
q,, the associated GRP vector, denoted by &,, is computed as

Pk
a—+qq,

E=f Q)

where p, is the vector part of the quaternion realization (i.e., the
realization of g;), a € [0, 1], and f is a scale factor. In this work, the
values of a = 1, f = 2(1 4+ a) = 4 are chosen, so that &, is equal to

the Euler parameters for small angles. An empirical measure of the
covariance of [q}, @!]" conditioned upon the observation history,
V¥, is then obtained as

P = w]|[6.0) — € 2 - @1
i=1
x[6:0)" & 2.)" - 7]} ®)

where &, (i) denotes the GRP associated with the quaternion part of
the ith particle ¢, (i), and &, denotes the GRP associated with the
filtered quaternion part at time k.

Remark 1. When using Eq. (8), one should note that, although both
quaternions +¢g and —q represent a single unique attitude, the
corresponding modified Rodrigues parameters have two different
values. Thus, one must ensure that all particles are composed of
quaternion parts having the same scalar-part sign.

2. Regularization Scheme

Let {{q: ()7, 2,(i)T]"}', be the stock of N state samples at time k.

The number of offspring for each particle, N, (i), is determined
following the approach of [10]. The particle offspring are then
computed in the following manner.

First, a set of vectors is sampled from a six-dimensional zero-mean
unit covariance Gaussian (or some other) kernel, denoted by /C, to
obtain

(68,(/)". 8%, ()] ~ K(0, Isxs).

where 8§ ,,(j) € R*>!,8R,(j) € R*>*!. When N, (i) is odd, one of the
values of the vector [§&,(j)7, 8, (j)T]" is taken to be Og,, (ensuring
a symmetric set around [g,(i)7, 2 ,(i)7]"). The next step consists of
rescaling and rotating the six-dimensional space according to the
previously obtained RI measure. Thus, each vector is rescaled and
rotated according to

[88.()". 82, (DT = hP"*[88,(j)". 62, ()T (10a)

J=12,....N(i)/2 9

88, + Ne(0)/2)7 . 8R,(j + N (i) /2)TT
=—hP"*[88,(j)T. 592, (j)"T (10b)

for j=1,2,...,N.(i)/2, where h is some predetermined
bandwidth, and P'/? denotes the matrix square root of P. In this
work, the bandwidth £ is set as suggested in [12] (p. 253), that is,

h=1[4/(N(n +2))= (11)

with n =7, corresponding to the state dimension. Notice that
Eq. (10) produces a symmetric set of N,(i) vectors, {[6&,(])7,
82, (DT} The offspring of the ith particle [g; ()", @ ()"]",
denoted as {[g.(1)7, R ()T}, are then computed using the
inverse transformation of Eq. (7) (witha =1, f =4), as

q: () 1 (U4 Gy, (D)[EL (D) + 8E,(D)]
_ = é4k(l)
() Q) +62,(]) (12a)
I=1,...,N.(i)
where
G () = 16 — ||£() + 8& (D I=1... NG) (2b)

16 + [|&.(i) + 8& (D[

The new set of particles thus obtained are assumed to be equally
weighted (i.e., all importance weights are set to 1/N) or,
alternatively, can be reweighted using the likelihood PDF associated
with the last vector measurement (see [10]).

A single iteration of the plain quaternion and angular-rate PF is
illustrated in Fig. 1.
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Fig. 1 Quaternion and angular-rate PF.

C. Computationally Efficient High-Dimensional Particle Filtering

The plain PF processes a seven-element state vector. Practical
implementation of such a filter requires a large number of particles, a
phenomenon known as the curse of dimensionality. In fact,
experience shows that, when applied to the combined attitude and
rate problem, the plain PF requires at least 30,000 particles to attain
an acceptable level of performance.

In this subsection, three techniques are proposed for significantly
reducing the number of particles used by the PF algorithm.
Consisting of an efficient initialization procedure that exploits the
unique characteristics of the problem, the first technique aims at
reducing the PF search space (sample space). The other techniques
deal with another aspect of the dimensionality problem.

1. Particle Filtering Initialization

The size of the PF search space can be easily reduced by
concentrating particles in high-likelihood areas only. Identifying
such areas may consist of using smart initialization procedures, such
as those implemented in [10,11]. In these methods, the initial set of
particles was generated based upon the first measurement. The
rationale behind this type of initialization is simple: instead of
starting with no knowledge at all, namely, with a uniformly
distributed set of particles, say, p,,, the first measurement can be used
to generate a set of particles for approximating pg, w,|y,- Assuming
that the vectors q, and @ are independent and uniformly distributed,
it follows from Bayes theorem that

Pagwolyo (90(D). Ro(D)1Y0) X Py, (Yolq0(i)) Py, (90(0) Par, (R0(0))
mpyo\q(,(Y()'qO(i)) (13)

Equation (13) implies that the first vector measurement Y, can be
used to generate the initial set of quaternions independently of the
angular rate. In much the same way, the initial set of the angular-rate
particles can be generated independently of the attitude. At least two
vector measurements are needed to generate such a set. Detailed
algorithms for producing the initial set of quaternion and angular-rate
particles can be found in [10,11], respectively.

The two aforementioned algorithms are applied to the first two
vector measurements. The angular-rate particle-set-generation
procedure is based on the body-frame vectors of the two consecutive
measurements, whereas the quaternion particles are extracted using
the second vector measurement only. The resulting quaternion and
angular-rate particles populate the more likely regions of p, |, and
P Yo, Tespectively. In the last stage of the initialization, the two sets
of particles, namely, the quaternion and the angular-rate particles, are
combined to yield a joint initial set.

Let {q,()) }721 and {2, (l)}f':”1 be the initial sets of quaternion and
angular-rate vector particles, respectively. Recognizing that the
elements of each of these sets are nearly equally weighted (due to the
fact that a single vector observation determines the rotation up to
1 degree of freedom [10,11]), the initial set of particles for
approximating the joint PDF Pay.o11) is taken as the Cartesian
product {ql(j)}jivil X {Sll(l)}f':“l, resulting in N = NN, particles,
(g (). RO j=1,.. Ny [=1,... N}

Further improvement of the initial particle set is achieved by
applying the angular-rate PF of [11] to a batch of measurements J*1,
and then selecting N, initial angular-rate particles out of its
population. The initial set of quaternion particles, {g, ( j)}?];l, is
produced as before, this time using the vector observation y,, . In this
case, the joint initial particle set is taken as {[g;, (/)" @, (D']", j=
I,....Ng, I=1,....N,}. This procedure is equivalent to

approximating the joint PDF at time &, as

Py 0 IP4 (g, (D), Ry, ()|Y*)
x prkl |qk] (Yk] |qk1 (l’))pwh |ykl (Szkl (l)|Yk]) (14)

where ¢ = Py, (qx, (i))/pyh (Yy,) is a normalization constant
(assuming qy, is uniformly distributed). When using this batch
initialization technique, the plain PF algorithm is executed
subsequent to the acquisition of k; measurements.

Remark 2. As is well known to estimation practitioners, in the EKF
and UKF algorithms, good initialization is vital for the ensuing
filter’s convergence and accuracy, because of the approximations
involved in both algorithms. Thus, both algorithms cannot be used in
“lost in space” applications. In contradistinction, in the PF presented
herein, the main purpose of the batch initialization procedure,
employed on the angular-rate channel, is not to improve the quality of
the initialization (and, thus, the ensuing filter’s performance). Rather,
the purpose of the initialization procedure is to reduce the number of
particles used at the initial stage of the filter to achieve increased
computational efficiency. Whereas in both the EKF and UKF poor
initialization may result in unavoidable divergence, in the PF the
initialization procedure can be skipped altogether without sacrificing
the filter’s estimation performance simply by increasing the number
of particles used during the initial stages. Thus, the smart
initialization procedure effectively reduces the computational load
(related to the number of particles used), but is, by no means, vital to
the filter’s ensuing performance.

2. Search Space Local Traps

The PF algorithm maintains a discrete approximation of the
posterior PDF via a finite number of samples. Because of the
finiteness of the particle set, the actual search space (sample space),
considered by the PF, contains “holes.” These holes are regions of the
search space that are, incorrectly, regarded by the PF to have zero
probabilities. As long as relatively small probability regions of the
search space are considered holes, the PF algorithm works properly.
Unfortunately, the converse situation may occur also. In such cases,
the particles are ultimately trapped in small probability regions of the
space and the PF fails to approximate the posterior PDF.

Intuitively, it can be thought that the size of a hole is related to the
number of particles used for the approximation, their locations in the
search space, and the dimension of the entire space. It easily follows
that state augmentation, which implies a larger search space, results
in a higher probability for the PF algorithm to be trapped in a hole.

To understand this phenomenon, the particle maintenance phase is
examined. As part of this stage, the particle trajectories are
manipulated via resampling and regularization in accordance with
their importance weights.

1) Resampling: This procedure causes a deterioration of the
approximation by damaging the particle set diversity, consequently
creating holes. During resampling, lightly weighted particles are
rapidly discarded, thus driving the entire particle population to the
vicinity of highly weighted locations in the search space but leaving
other regions unpopulated.

2) Regularization: As opposed to resampling, this procedure is
aimed at diversifying the particle set by deliberate contamination;
hence, it can be regarded as a “hole filler.” The intensity of
contamination, which controls the expansion of the new particle set,
is related to the sample covariance of the particle set or to some other
similar measure.

3) Importance Sampling: Setting the importance density as close
as possible to the posterior PDF tends to diminish the phenomenon.
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In that case, the PF can better evaluate the locations of holes in the
search space. The probability of having particles in these regions is
close to zero depending on the importance density.

With these observations in mind, consider the following example.
Assume that the first k measurements, Y*, render the particles
{Xk(i)}?/:'1 the greatest importance weights out of the entire set,
{X;(i)}_,, where N > N,. Execution of a resampling procedure
produces a new set, {X (D}, in which all offspring belong to
{Xk(i)}?;'l. If the regularization intensity is relatively small, the
newly constructed regularized set is rather close to {)2 HOIAEE
Obviously, the new particle set covers a reduced portion of the search
space. Now, if the measurements Y* are located at the tail of pyy, itis
likely that the following measurements will render the particle set
small importance weights. Because the regularization intensity is
small, all particles of the next steps will stay in the neighborhood of
their parent particles, ever trapped in a small probability region.

Based on this example, one can conclude that retaining some of the
underweighted particles of the set {X,(i)}}_ ~,+1 Would be beneficial
in getting away from the trap. In the ensuing paragraphs, two
techniques based on this insight are presented.

3. Importance Weight Cooling Schedule

A simple idea for retaining underweighted particles is borrowed
from the simulated annealing optimization method [14,15]. The
concept of simulated annealing is based on the manner in which
metals recrystalize in the process of annealing, which can be thought
of as an adiabatic approach to the lowest energy state. If the initial
temperature of the system is too low or the cooling process is
insufficiently slow, the system may be trapped in a local minimum
energy state. Analogously to the simulated annealing ‘“cooling
process,” the PF algorithm’s importance weight update equation is
modified to allow some lightly weighted particles to survive via
slowing down the algorithm’s search for the best particle
representation of the posterior PDF. Thus, the modified importance
weight update rule is

w (D) = py 1, Vilge())' b, (i) (15)

where T} € [0, 1] is the temperature parameter. When 7, = 1, the
particles are considered equally weighted regardless of the incoming
observation. Decreasing the temperature allows less underweighted
particles to survive. In this work, the following cooling schedule is
adopted:

1
T,=1—yk—1), ke [1,int(;)+l] (16)
where y < 1 is some predetermined constant.

4. Partitioned Particle Filtering

Another method for allowing lightly weighted particles to survive
is based on partitioning the entire particle set into several smaller sets
and using each set as the particle population of a different PF.
Regarding the particle’s weight as a measure of effectiveness in the
PDF approximation while recalling that it is normalized by the sum
of all weights, one can conclude that lightly weighted particles can
survive by having a PF implemented exclusively using lightly
weighted samples. However, implementing a PF using highly
unlikely samples may cause a severe numerical problem in the
normalization of the particles’ weights, when Y w; (i) approaches
the machine’s underflow level, €. For this reason, it is necessary to
bound the smallest allowed value for the importance weight, such
that

wi(i) Z Wyin = €/N, V¥ ik a7

Let S = {[g:()", L()"]"})_, be the entire particle set, and
consider a partition of this set into m disjoint subsets {S;}"",, such
that S = |J™, S;, as shown in Fig. 2. Let [§, ()7, 2,(i)T]" be the

minimum mean squared error (MMSE) estimate of the ith particle

d
Sl

Fig. 2 Illustration of particle set partitioning. Particles and subsets are
represented by the bold circles and dashed boxes, respectively. The entire
particlesetis S = S; [J S, U S3. The lightly weighted particles constitute
the subsets S; and S;.

filter obtained using the set S;. The interaction between the particle
filters is established by taking the most likely MMSE state estimate
trajectory, that is,

[ar. @] =@ (182)
where
i* = arg max py . (VX () (18b)
and
OGO 2O DT (19)
An equivalent recursive version of Eq. (18b) is written as

i* = arg max W, (i) (20)

where

W) = Py apon Yellde, @)W,y (i)
= Ckuk\qk(Yk|ék(i))Wk—1(i) (21a)

Wi(D) = €1 Py, 100, X101 (DT, 2, ()T = ¢1py, 10, (Y1161 (D))
(21b)

with the normalization constant ¢, set to

m —1
o= [Z Prvtas Yl (DN Wi_y (j)] 22)
j=1

and Wy(j)21,j=1,....m.

5. Filter Reinitialization

Even after implementing the aforementioned techniques, the PF
algorithm may still be trapped in a low-probability region (hole) of
the search space. In such cases, the filters’ unnormalized cost
functions c; ! W, (i) drop below some threshold value €, /m. The best
solution in this situation is to reinitialize the algorithm. Thus,
reinitialization is carried out whenever

Yo' W) <€, Yk>k (23)
i=1

D. Inertia Tensor Estimation via State Augmentation

The attitude and angular-rate PF turns out to be highly sensitive to
inertia modeling imperfections. This drawback originates in the
angular-rate  dynamics characterized by the Euler equation.
Experience shows that even a minor inertia deviation on the order
of 0.1% in one of the major axes may lead to filter divergence.
Therefore, unless the inertia is known to within a sufficient level of
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accuracy, proper implementation of the PF should include an
appropriate inertia estimation scheme.

A straightforward solution of this problem consists of augmenting
the original state by the vectorized form of the spacecraft’s inertia
tensor. However, the implementation of the PF algorithm for the
augmented system is subject to the aforementioned curse of
dimensionality. Practically, this implies that any increase in state
dimension is associated with a significant increase in the number of
particles needed for acceptable PF performance. As a consequence,
the PF algorithm may become prohibitively computationally
intensive.

In the present case, the dimension of the state vector accounting for
inertia imperfections lies between 8 and 13, corresponding to 1-6
inertia entries. In this work, a PF was implemented assuming a 4%
error in just one of the diagonal inertia entries. Unfortunately,
satisfactory performance could only be obtained using no less than
20,000 particles. The related results are summarized in Sec. IV.

E. On the Viability of the Interlacing Technique

The dimensionality problem is alleviated in the related works of
[10,11] via interlacing the PF algorithm with a parameter estimator.
Using this approach, the PF maintains its original state dimension,
whereas the additional parameters are handled by an external
estimator. The information sharing between the two estimators is
established in an interlacing manner, that is, each estimator is driven
by its companion algorithm’s previous-time estimates.

Although the interlacing approach degrades the filtering
performance, it is viable and much more computationally efficient
than the conventional state-augmentation technique. However, there
are some cases in which this method fails to work. The weakness of
PF interlacing lies in the underlying assumption of high estimation
accuracy gained within a relatively short time. This implies that
sufficient information is within reach even though the dependency of
the state and parameter channels is misrepresented (the interlacing
scheme handles these two channels as independent of each other).

It turns out that, in the case under consideration, the interlacing
technique fails to work. This follows from the fact that both
information channels, corresponding to the attitude and the angular
rate, are tightly coupled due to the physical nature of the problem.
Thus, any separation of the two, which amounts to neglecting their
physical coupling, causes wrong processing of the information
embedded in the measurements, which brings about filter
divergence.

IV. Simulation Study

The fast attitude and angular-rate PF algorithm is applied to a
realistic LEO spacecraft. The spacecraft is in a near-circular 90 min
(350 km) orbit with an inclination of 35 deg (these orbital parameters
correspond to the Tropical Rainfall Measuring Mission [4]). The
spacecraft’s inertia tensor is J = diag{500, 550, 600} Kg - m?. In all
simulation runs, the spacecraft’s initial attitude quaternion is
randomly sampled from a uniform distribution over the unit three
sphere. The initial angular rate is sampled from a uniform
distribution, with the norm not exceeding 30 deg/s. In all
simulations, the spacecraft’s angular rates are numerically integrated
using the Dormand-Prince explicit Runge—Kutta (4, 5) formula,
implemented in MATLAB®’s ODE45 routine. The spacecraft is
equipped with a three-axis magnetometer (TAM) that provides the
vector measurements. The TAM noise is modeled as a zero-mean
Gaussian white process with a standard deviation of 50 nT. The
Earth’s magnetic field is modeled using the eighth-order
international geomagnetic reference field.

The fast attitude and angular-rate PF is initialized using the OPF of
[11]. The OPF is executed during the first 3 min, processing the first
batch of measurements. After 3 min, N, = 30 angular-rate particles
are taken out of the OPF population and used in composing the initial
population of the combined attitude and angular-rate PF, as
described in Sec. IV.C. The initial quaternion population is produced
using the initialization algorithm detailed in [10] with Ny = 60

quaternion particles. This yields a total population of N = N,Nq =
1800 particles, denoted as {[go())", Ro(HT]", i=1,..., Ny, j=
1,...,N,}.

The PF uses the importance weight cooling schedule and the
particle set partitioning methods described previously. The synthetic
temperature constant is set to y = 5 x 107*,

The particle set consists of four partitions, each containing 450
particles, which amounts to four particle filters running
simultaneously. The minimal importance weight and the minimal
filter cost function threshold values are set to w,,;, = 1072 and
€, = 10715, respectively. The resampling threshold is set to
Ny = %N . This value is chosen based on tuning runs. Decreasing Ny,
may be beneficial because resampling procedures will be executed
less frequently, consequently introducing less Monte Carlo
variations into the estimates. However, this increases the algorithm’s
sensitivity to heavy tailed measurement noise PDFs. The numerical
integration of the Euler equation in the evolution stage of the PF is
performed using the fourth-order Runge—Kutta method with a
constant time interval of Az/5. The TAM sampling rate is 1 per 5 s.
The attitude estimation error is computed as

o = 2arccos(8q,,) (24)

(in degrees), where 8q,, is the scalar component of the error
quaternion at time k, 8¢, defined as

‘quéqk ®q;' (25)

The angular-rate estimation error (in degrees per second) is
computed as

15211 =112, — 2.1 (26)

A. Precise Inertia Modeling

In the following runs, the inertia tensor is assumed to be known.
The results of 500 Monte Carlo runs are presented in Figs. 3 and 4. In
these figures, the statistical distributions of the estimation errors are
illustrated via their percentile curves. The results are presented
starting from time =3 min subsequent to the ending of the
initialization OPF run.

Figure 3 shows the statistical distribution of the quaternion
estimation error over the period of 3 h. From this figure it can be
clearly seen that, in 95% of the runs, the PF attitude errors reach
values of less than 0.02 deg after 3 h.

The PF angular-rate-estimation error statistical distribution is
presented in Fig. 4. It can be seen that, in 95% of the runs, the

Quaternion Estimation Error (Deg)

Time (Hour)

Fig. 3 Statistical distribution of the quaternion estimation error based
on 500 Monte Carlo runs. Lines, top to bottom: 95th, 85th, 50th, 15th,
and Sth percentiles.
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Time (Hour)
Fig. 4 Statistical distribution of the angular-rate estimation error

based on 500 Monte Carlo runs. Lines, top to bottom: 95th, 85th, 50th,
15th, and 5th percentiles.

angular-rate-estimation error reaches values of less than
0.003 deg /s after 3 h.

The partitioned particle filtering selection mechanization is
demonstrated using a typical single run in Fig. 5. It can be seen that
the filter with the smallest estimation error is selected after about
6 min.

The effect of the partitioned PF scheme is further illustrated in
Fig. 6. Shown in this figure is the joint marginal PDF, p G s, IV after
afew iterations. The partitioned sample space consists of four visible
peaks corresponding to the particle population of each filter. The true
state (marked with an “X” in Fig. 6a) lies within a high-probability
region.

The advantage of using the partitioned PF method is manifested in
the observed lower reinitialization rate of the partitioned PF vs the
unpartitioned algorithm. The unpartitioned PF uses a total of 4 x
450 = 1800 particles, and both filters use the importance weight
cooling schedule. In 500 Monte Carlo simulation runs, the
reinitialization rate observed for the partitioned PF is only 2% vs 17%
for the unpartitioned PF (using the same total number of particles).

B. Inertia Modeling Uncertainties

The attitude and angular-rate PF is modified to cope with inertia
uncertainty in just one of its diagonal entries. This is done by taking

Quaternion Estimation Error (Deg)

-2 ! ! !

4 6 8 10 12 14
Time (Min)

Fig. 5 Partitioned particle filtering selection mechanization (single

run): the four particle filters’ attitude estimation errors (dashed lines)

and the estimation error of the selected filter (bold line).

4,

-1
-1 0.5 0 05 1

a) Marginal PDF top view

b) Marginal PDF

Fig. 6 Partitioned PDF of the first two entries of the quaternion,
Pay 19 after a few iterations. True state is marked with an “X.”

the first diagonal element of the inertia tensor to be the eighth
component of the state vector. In this case, the inertia error is
defined as

8= = Jil @7

where J;; and J « denote the true and the estimated first diagonal
inertia element, respectively. The inertia-augmented PF is run using a
total number of 20,000 particles. The simulation results, consisting
of a single run in which the initial attitude and inertia errors are set to
ay = 120 deg and 8J, = 20 Kg - m?, are shown in Figs. 7-9. From
these figures it can be recognized that the PF converges, almost
immediately, to within 0.05 deg in attitude errors. Similarly, the
angular-rate norm estimation error attains values of less than
0.02 deg /s. Figure 9 shows that the inertia estimation error reaches
values lower than 0.1 Kg - m® after a couple of minutes.

C. Computational Aspects

To assess the computational requirements of the attitude and
angular-rate PF, the filter was run for 2160 cycles (wherein each
cycle involves one measurement update and one evolution stage). At
the measurement rate of 1 per 5 s, this run corresponds to a real-time
duration of 3 h. Implemented in MATLAB® (running in interpreter
mode without any code optimization) on a Pentium 4/2.8 GHz
machine under the Windows XP operating system, the run required
3.24 h, which means that even this crude implementation of the filter
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Fig. 7 The quaternion estimation error of the gyroless attitude and
inertia PF. Single run.
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Fig. 8 The angular-rate estimation error of the gyroless attitude and
inertia PF. Single run.
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Fig. 9 The inertia estimation error of the gyroless attitude and inertia
PF. Single run.

is almost real-time compliant. Clearly, a real-life implementation of
the filter (properly coded and compiled in a high-speed computer
language under a real-time operating system) should easily close the
aforementioned computational requirement “gap,” thus permitting
the use of the filter in real-time applications. Moreover, recent
advances in the parallel implementation of particle filters on field-
programmable gate arrays [16,17] should facilitate the use of the
newly proposed filter even further.

V. Conclusions

A new particle filtering algorithm is presented for the
simultaneous estimation of both the attitude and angular rate from
vector observations in gyroless applications. The new estimator
naturally copes with non-Gaussian driving processes and with the
inherent nonlinearity of the attitude and angular-rate-estimation
problem. The dimensionality problem is alleviated by using an
efficient initialization procedure, along with an importance weight
cooling schedule and particle set partitioning. A simulation study,
involving arealistic LEO spacecraft model, is presented, in which the
new algorithm demonstrates a fast convergence rate and high
estimation accuracy. The new gyroless PF can be modified to cope
with inertia tensor uncertainties at the expense of computational
efficiency by using the common state-augmentation technique.
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