
Adaptive Particle Filtering for Spacecraft Attitude
Estimation from Vector Observations

Avishy Carmi∗ and Yaakov Oshman†

Technion—Israel Institute of Technology, 32000 Haifa, Israel

DOI: 10.2514/1.35878

An extension is presented to the recently introduced genetic algorithm-embedded quaternion particle filter.

Belonging to the class ofMonte Carlo sequential methods, the genetic algorithm-embedded quaternion particle filter

is an estimator that uses approximate numerical representation techniques for performing the otherwise exact time

propagation and measurement update of potentially non-Gaussian probability density functions in the inherently

nonlinear attitude estimation problem. The spacecraft attitude is represented via the quaternion of rotation, and a

genetic algorithm is used to estimate the gyrobiases, allowing one to estimate just the quaternion via the particlefilter.

An adaptive version of the genetic algorithm-embedded quaternion particle filter is presented herein that extends the

applicability of this filter to problems with highly uncertain measurement noise distributions. The adaptive

algorithm estimates themeasurement noise distribution on the fly, alongwith the spacecraft attitude and gyro biases.

A simulation study is used to demonstrate the performance of the adaptive algorithm using real data obtained from

the Technion’s TechSAT satellite, whose three-axis magnetometer’s data are non-Gaussian. The simulation, which

compares the performance of the filter to the nonadaptive genetic algorithm-embedded quaternion particle filter,

demonstrates the viability of the new algorithm.

I. Introduction

U SING a sequence of vector measurements for attitude
determination has been intensively investigated over the last

four decades. First proposed 40 years ago byWahba [1], the problem
is to estimate the attitude of a spacecraft based on a sequence of noisy
vector observations, resolved in the body-fixed coordinate system
and in a reference system. Body-fixed vector observations are
typically obtained from onboard sensors, such as star trackers, sun
sensors, or magnetometers. Corresponding reference observations
are obtained by using an ephemeris routine (for a sun observation), or
from orbit data and a magnetic field routine (for a magnetic field
observation), or from a star catalog (for star observations).

Inertial reference systems typically use vector measurements in
combination with strapdown gyros to estimate both the spacecraft
attitude and the gyro drift rate biases. Several approaches have been
proposed for the design of such systems, differing mainly in their
choice of attitude representation method. The quaternion, a popular
rotation specifier, was used in the framework of extended Kalman
filtering (EKF) in [2] (reviewing three derivations using the so-called
multiplicative approach) and in [3] (using the additive approach). In
[4], vector observations were used to estimate both the quaternion
and the angular velocity of the spacecraft, in a gyroless attitude
determination and control setting. The main advantage of using the
quaternion representation is that it is not singular for any rotation.
Moreover, its kinematic equation is linear and the computation of the
associated attitude matrix involves only algebraic expressions.
However, the quaternion representation is not minimal, because it is
four-dimensional. This leads to a normalization constraint that has to
be addressed in filtering algorithms. Thus, Lefferts et al. [2] assume

that the 4 � 4 quaternion estimation error covariance matrix must be
singular and propose reduced-order algorithms to maintain the
assumed singularity. On the other hand, Bar-Itzhack andOshman [3]
assume no such singularity, but incorporate a normalization stage
within their EKF algorithm, which renders the resulting estimator
strictly nonoptimal and increases its workload. In a recent paper [5],
an unscented Kalman filter (UKF) has been proposed for the
estimation of the rotation quaternion. The UKF does possess a
reported advantage over the EKF with regards to dealing with
strongly nonlinear systems, because it avoids the linearization
associated with the EKF. However, because using the UKF directly
with the quaternion attitude parameterization would also yield a non-
unit-norm quaternion estimate (after all, the UKF is still a Kalman
filter), Crassidis and Markley [5] chose to work with a generalized
three-dimensional attitude representation, still using the quaternion
for updates tomaintain the normalization constraint. It should also be
noted that, as a Kalman filter mechanization, the UKF is also
sensitive to the statistical distribution of the stochastic processes
driving the dynamic model: non-Gaussian distributions guarantee
nonoptimality of the estimates.

In a recent work [6], the authors have presented a particle filter
(PF) that sequentially and directly estimates the rotation quaternion
from vector observations. Also known as sequential Monte Carlo
(SMC) methods, particle filters refer to a set of algorithms
implementing a recursive Bayesian model using simulation-based
methods [7]. Avoiding the underlying assumptions of the Kalman
filter, namely, that the state space is linear and Gaussian, these rather
general and flexible methods enable solving for the posterior
probability distributions of the unknown variables (on which all
inference on these variables is based) within a Bayesian framework,
exploiting the dramatic recent increase in computer power. Particle
filters are not just smart implementations of the Kalman filter or its
nonlinear variants/extensions; rather, they are entirely different
algorithms that lead to entirely different solutions to the nonlinear,
non-Gaussian filtering problem. Contrary to the Kalman filter
extensions, the solutions obtained using PF algorithms are
approximations to the optimal (in the Bayesian sense) solutions,
which can be made arbitrarily close to the exact solutions by
increasing the number of particles involved in the computation,
thereby also increasing the computation workload.

As a member of the PF class of algorithms, the quaternion PF
(QPF) enjoys the aforementioned accuracy-related properties.
Furthermore, it naturally maintains the unit-norm property of the
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rotation quaternion, thus avoiding the incorporation of external
ad hoc normalization procedures, such as those used in [2,3]. In an
extended version of the filter, called a genetic algorithm-embedded
quaternion particle filter (GA-QPF), a genetic algorithm is used to
generate a maximum likelihood estimate of the gyro biases, thus
alleviating the potential computational burden problem associated
with the number of required particles [6]. In fact, running with as few
as 150 quaternion particles and a 200-element population for the
genetic algorithm bias estimation scheme, the algorithm has been
shown in simulations to be amenable to real-time implementations.
The GA-QPF algorithm’s superiority over the Kalman filter variants
is manifested in its faster convergence rate and enhanced robustness
to initial conditions uncertainty. Furthermore, a comparison of the
estimation error covariance of this filter to the theoretical Cramér-
Rao lower bound shows that it is asymptotically efficient in the
statistical sense, thus corroborating its optimality and unbiased-
ness [6].

This paper presents an extension of the GA-QPF algorithm to
situations in which the measurement noise probability density
function (PDF) is uncertain or even completely unknown. Such
situations might occur, in practice, whenmagnetometers are used for
deriving the vector measurements because, then, the actual noise
PDF onboard the spacecraft may be different from the one predicted
on the ground. This can be the result of various remnant magnetic
fields induced by the spacecraft’s own electrical instruments or by
Earth’s magnetic storms. In other cases, various faults may also
change the sensor measurement noise PDF. The essential feature of
the new algorithm is its ability to estimate, on the fly, the actual
measurement noise PDF using a statistical analysis of the filter-
generated innovations process.

The remainder of this paper is organized as follows. The next
section presents themathematicalmodel of the quaternion estimation
problem. For completeness, a concise summary of SMC methods,
and, in particular, of the GA-QPF algorithm, is presented in Sec. III.
Constituting the heart of this paper, Sec. IV presents an extended
GA-QPF algorithm that adaptively estimates the measurement noise
PDF on the fly. Results of an extensive numerical simulation study,
whichwas carried out to assess the performance of the new algorithm
and to compare it with its nonadaptive counterpart, the GA-QPF, are
then presented. Concluding remarks are offered in the last section.

II. Mathematical Model

In this section, the problem of quaternion estimation from vector
observations is mathematically defined.

A. Observation Model

Let rk and bk be a pair of corresponding vector measurements
acquired at time k in the two Cartesian coordinate systemsR and B,
respectively. LetAk be the rotationmatrix (also known as the attitude
matrix or the direction cosine matrix) that rotates the axes ofR onto
the axes of B at time k. In general, the reference vector rk is known
exactly, whereas the body vector bk is measured. This results in the
following attitude measurement model:

b k � Akrk � �bk (1)

where f�bkg1k�1 is the measurement noise process, with known PDF,
denoted as �bk � p�bk .

B. Quaternion Process Model

The discrete-time quaternion stochastic process satisfies the
recurrence equation

q k�1 ��o
kqk (2)

where the process fqkg1k�1 denotes the quaternion of rotation from a
given reference frame R onto the body frame B at times
k� 1; 2; . . . ;1, with some initial PDF q0 � pq0 . The quaternion
process takes its values on the unit three-sphere S3 and is constructed
from vector and scalar parts:

q k �
h
%Tk q4k

i
T

(3)

The orthogonal transition matrix �o
k is expressed using

!ok � �!o1k !o2k !o3k �T , the true angular velocity of B with respect
to R, resolved in B. Assuming that !ok is constant during the
sampling time interval �t yields

�o
k ≜��!ok� � exp

 
1

2

	�!ok�� !ok
	!oTk 0

� �
�t

!
(4)

where �!ok�� denotes the cross-product matrix associated with the
vector !ok .

In practice, the true angular velocity vector !ok is not known;
rather, it is measured or estimated. Let f!kg1k�1 be the measured
angular velocity stochastic process. Using!k instead of!

o
k in Eq. (4)

yields the following quaternion process equation:

q k�1 ���!k�qk (5)

where the process noise is incorporated through the transitionmatrix.
The relation between the process and observations is established

by expressing the attitude matrix as a quadratic function of q, that is,

A� A�q� � ��q4�2 	 %T%�I3�3 � 2%%T 	 2q4�%�� (6)

C. Rate Sensor Measurement Model

When the angular rate is measured, the characterization of the
driving process noise depends upon the rate sensor. The most
common angular rate sensor onboard spacecraft is the gyro triad. For
this sensor, a widely used model is given by [2]

! k �!ok � �k � �k (7)

where!k denotes the measured angular velocity vector and �k � p�k
and �k � p�k are the gyros’ measurement white noise and bias
vectors with their given PDFs, respectively. Commonly, the bias
vector is modeled as a random-walk process, that is,

� k�1 � �k � �k (8)

where f�kg1k�1 is a stationary zero-mean, white noise process with
covariance Q�. Typically Q� is very small (e.g., with entries on the
order of 10	7 �rad2=s2).

III. Attitude Estimation via Sequential
Monte Carlo Methods

This section briefly overviews some of the key ideas underlying
the particle filtering method. A concise summary of the QPF
algorithm of [6] is presented thereafter.

A. Sequential Monte Carlo Methods

The optimal solution of the nonlinear estimation problem involves
an accurate propagation of the optimal PDF, namely, the conditional
PDF of the state given the observation history. Because of the
complex nature of nonlinear estimation problems, many estimation
algorithms rely on various assumptions to ensure mathematical
tractability. It is well known that the Kalman filter is the optimal
estimator for linear Gaussian state-spacemodels, but its performance
is limited when the aforementioned assumptions do not hold. The
optimal PDF admits a Bayesian recursion, which means that it is
propagated in accordance with some prior distribution of the state
and a likelihood function that relates the states to the incoming
observations. In the case of linear Gaussian models, where the PDF
can be characterized by its first twomoments, the Bayesian approach
yields the Kalman filter. In general, for nonlinear, non-Gaussian
models, there is no explicit, closed-form solution. Several
approximate methods have been proposed. These include the EKF,
the Gaussian sum filter, and numerical integration over a state-space
grid. Particle filters, or SMCmethods [8], refer to a set of algorithms
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implementing a recursive Bayesian model by simulation-based
methods. This involves representing the required posterior PDF by a
set of random samples with associated weights, and deriving the
estimates based on these samples. Unlike the other methods, SMC
methods are very flexible, easy to implement, and applicable in very
general settings.

1. Bayesian Approach to Filtering

Let the unobserved signal (i.e., the process) fxk; k 2 Ng be anRn-
valued Markov process with a given initial probability density
functionpx0 that evolves according to a transition kernelpxkjxk	1 . The
observation process fyk; k 2 Ng is an Rp-valued stochastic process.
Given xk, the observation process is a conditionally independent

sequence, possessing the conditional PDF pykjxk . Let X k ≜

fx0; . . . ; xkg and Yk ≜ fy1; . . . ; ykg be the process and observation

time histories up to time k, respectively, and let Xk ≜ fX0; . . . ; Xkg
andYk ≜ fY1; . . . ; Ykg be the realizations ofX k andYk, respectively.

In filtering problems, one is commonly interested in estimating the
marginal PDF pxkjYk (filtering density) sequentially in time.
Adopting the Bayesian approach to filtering, this density is obtained
using a two-step recursion as

pxkjYk	1�Xk j Yk	1�

�
Z �1
	1

pxkjxk	1 �Xk j Xk	1�pxk	1jYk	1�Xk	1 j Yk	1� dXk	1 (9a)

pxkjYk�Xk j Yk�

�
pykjxk�Yk jXk�R�1

	1 pykjxk �Yk jXk�pxkjYk	1 �Xk j Yk	1�dXk
pxkjYk	1�Xk j Yk	1�

(9b)

In most cases, one cannot obtain the normalizing densitypykjYk	1 and
themarginals of the posterior densitypXkjYk . Thus, these expressions
can rarely be used in a straightforward implementation. Instead,
approximations, based on alternative methods, should be used.

2. Particle Approximation

ThePFmechanization approximates Eqs. (9) using afinite number
of samples. To understand the rationale behind this method, assume
that N independent random samples (called “particles”), denoted by
fXk�i�gNi�1, are sampled from the posterior distribution. Then, it
follows directly from the strong law of large numbers (SLLN) that,
for any function f that is integrable with respect to pXkjYk [9],

1

N

XN
i�1

f�Xk�i�� ! E�f�X k� j Yk� (10)

where (here and in the sequel) the symbol! stands for almost sure
convergence inN. Equation (10) means that the continuous posterior
PDF pXkjYk can be effectively approximated by its particles, and that
the level of accuracy of this approximation is determined by the
number of particles used.

Unfortunately, sampling directly from the posterior distribution is
typically infeasible. For this reason, the concept of importance
sampling is an integral part of any practical PF [8]. When using
importance sampling, the samples are drawn from a so-called
importance distribution. The importance distribution can be chosen
arbitrarily; the only constraint it should satisfy is that its support must
include the support of the posterior distribution. Nevertheless,
because the choice of importance distribution greatly affects the
behavior of the PF, it constitutes a major consideration during PF
design.

Thus, choosing the importance density as �XkjYk , an
approximation of the expectation in Eq. (10) is obtained as

1

N

XN
i�1

wk�i�f�Xk�i��

where

wk�i�≜
pXkjYk�Xk�i� j Yk�
�XkjYk�Xk�i� j Yk�

(11)

is the importance weight of the ith sample. Let

~w k�i�≜
wk�i�P
N
j�1 wk�j�

(12)

be the normalized importance weight of the ith particle, then it can be
easily verified that

XN
i�1

~wk�i�f�Xk�i�� ! E�f�X k� j Yk� (13)

In practice, the PF algorithm exploits the recursive structure of
Eqs. (9) to compute the normalized importance weights sequentially
in time.

3. Particle Degeneracy and Resampling

Practical implementation of the sequential importance sampling
method inevitably results in zero weights for all but, usually, one
particle, after just a few iterations. This phenomenon is known as
particle degeneracy in the PF literature [8]. Particle degeneracy
occurs due to the use of a finite number of particles, which
consequently allows only a partial representation of the sample
space. A solution to this problem was introduced a decade ago as an
ad hoc procedure known as resampling.

Resampling consists of discarding state trajectories whose
contributions to the final estimate are small, and multiplying
trajectories whose contributions are expected to be significant. This
means regeneration of particles with large importance weights and
eliminating those with small importance weights. The resampling
procedure decreases the particle degeneracy algorithmically, but
introduces some practical problems. During the resampling
procedure, more likely particles are multiplied, so that the particle
cloud is concentrated in regions of interest of the state space. This
produces a new particle system in which several particles share the
same location. Moreover, if the dynamic noise is small, the particle
system ultimately concentrates in a single point in state space. This
loss of diversity eventually prevents the filter from correctly
representing the posterior. One way of maintaining the particles’
diversity is by injecting artificial process noise into the system. This
technique is known as regularization or roughening (see [7], p. 247).

B. Quaternion Particle Filter

The QPF algorithm estimates the quaternion from pairs of vector
observations. Within this particle filter, each particle is a unit-norm
quaternion, so that the norm constraint is inherently preserved. For a
detailed presentation of the QPF algorithm, the interested reader is
referred to [6].

1. Quaternion Particle Filter Initialization

Large initial attitude errors require a large number of quaternion
particles, at least until the zones of high likelihood are populated. A
simple initialization procedure that demands a significantly smaller
number of particles is used for the QPF. The idea is based on the fact
that the first vector observation defines a quaternion of rotation up to
1 degree of freedom. This degree of freedom is used to generate the
initial set of particles from the first observation only, Y0 � �b0; r0�. In
the simulations shown in [6], the QPF has been started with 1500
quaternion particles, reducing their number to 200 after the first two
measurement updates.
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2. Measurement Update

Denote by Yk � f�b1; r1�; . . . ; �bk; rk�g a set of measurements
constructed from pairs of vector observations up to time k. Given a
realization qk of the quaternion qk at time k, the measurement
Yk � �bk; rk� is statistically independent of past observations.
The likelihood of the measurement Yk associated with a given
quaternion is

pykjqk�Yk j qk� � p�bk�bk 	 A�qk�rk� (14)

Now let fqk	1�i�gNi�1 and f ~wk	1�i�gNi�1 denote N independent unit
quaternion samples from the filtering distribution at time k 	 1 and
their associated weights, respectively. Setting the importance
distribution to be the prior PDF yields the importance weights as

wk�i� � pykjqk�Yk j qk�i�� ~wk	1�i� (15)

Equation (15) is referred to as the update stage.

3. Filtered Quaternion

At time k, N weighted unit quaternion samples are available. The
optimal quaternion estimate can be computed in several ways,
depending on the objective. The minimum mean square error unit-
norm quaternion estimate is obtained as follows. Letting

Bk ≜
XN
i�1

~wk�i�Ak�qk�i�� (16)

and denoting the singular value decomposition of Bk by

Bk �Uk�kV
T
k (17)

whereUk and Vk are the orthogonal singular vector matrices and�k

is the singular value matrix of Bk, the attitude matrix associated with
the optimal quaternion is computed as

Â k �UkVTk (18)

The filtered quaternion is then obtained from Âk.

4. Particle Maintenance

To avoid particle degeneracy, the QPF uses a resampling
procedure. The measure of particle degeneracy is the effective
sample size, approximated by the following empirical estimate [8]:

N̂ eff �
1P

N
i�1 ~wk�i�2

(19)

The resampling procedure is usedwhenever N̂eff becomes less than a
predetermined thresholdNth. The new set of samples is generated by
resampling each particle qk�i� with probability ~wk�i�. This consists
of multiplying each sample according to its associated normalized
weight.

5. Particle Evolution

Passing the unit quaternion samples at time k 	 1 through the
process equation results in a new set of samples. This is almost
equivalent to applying Eq. (9a) to the samples, that is,

pqkjYk	1�qk j Yk	1�

�
Z �1
	1

pqkjqk	1�qk j qk	1�pqk	1jYk	1�qk	1 j Yk	1� dqk	1 (20)

The slight difference is due to the process noise distribution, which
forms the transition kernel pqkjqk	1 . In the case of a relatively low-
intensity process noise, such as the noise characterizing the
quaternion evolution model, the new quaternion samples thus
obtained represent pqkjYk	1 quite adequately. In other cases, the
injection of an additional, artificial noise might be required.

6. Gyro Bias Estimation

The QPF is interlaced with an external maximum likelihood (ML)
estimator for the estimation of the gyro bias, thus alleviating the
potential computation load resulting from high-dimensional particle
filtering. The key idea here is that the particle filter is used for the
representation of pqkj�k;Yk instead of pqk;�kjYk , thus keeping the
dimension of the state low, whereas �k is estimated via an external
ML estimator assuming the knowledge of q̂k.

The GA-QPF, which is an extension of the QPF for biased rate
gyros, uses a genetic-algorithm-based ML estimator. The proposed
genetic algorithm (GA)maximizes the likelihood function of the bias
conditioned upon the observations historyL��k j Yk� sequentially in
time, and includes some modifications to cope with the time-varying
nature of the biases. The bias parameter population at time k is

denoted as f�k�i�g
N�
i�1. The bias parameter fitness function is related

to the likelihoodL��k�i� j Yk� and is denoted as ~’k��k�i��. A binary
coding scheme is used for the representation of the bias vector terms.
A single GA-QPF cycle is illustrated in Fig. 1.

IV. Measurement Noise Density Estimation

Forming the core of this paper, this section addresses the problem
of attitude estimation under a severe uncertainty in the measurement
noise distribution. Thus, it is assumed that the measurement noise
PDF p�bk is either significantly inaccurate or completely unknown.
This situation might arise in practice when the actual operating
conditions of the sensor differ significantly from the predicted ones.
In the case of a three-axis magnetometer, for example, magnetic
storms and the spacecraft’s own electrical instrumentation may
critically affect this sensor’s readings. In other cases, faults may also
change the measurement noise PDF. The simulation section, in the
ensuing, addresses a realistic example where a satellite momentum
wheel has induced a magnetic dipole which has resulted in a double-
peaked magnetometer noise PDF. The deviation of the assumed
measurement noise PDF from the actual one adversely affects the
optimality of the filtering scheme. In some extreme cases, this
deviation might even result in filter divergence.

To cope with the problem, the GA-QPF algorithm is equipped
with a self-learningmechanism that estimates themeasurement noise
PDF on the fly. The noise distribution estimation scheme is based on
an analysis of the filter-generated innovations process.

A. Innovations Process

Because the actual (true) measurement noise PDF p�bk is
unknown, the QPF particles are weighted using some initially
assumed or otherwise estimated PDF. After acquiring a measure-
ment, an estimate of the QPF innovations process is computed
according to

e k � bk 	 E
�A�qk�rk j Yk	1� (21)

where the mathematical expectation E
��� is computed using the
estimated measurement noise PDF (and not the actual one). An
approximation of Eq. (21) using the filter samples is

ê k � bk 	
�XN
i�1

~wk	1�i�A�qkjk	1�i��
�
rk (22)

where qkjk	1�i� denotes the ith quaternion particle, computed based
on k 	 1 measurements and propagated to time k. The relation
between the innovations and the measurement noise is obtained by
rewriting Eq. (21) as

ek � bk 	 E
�A�qk�rk j Yk	1�
� A�qk�rk � �bk 	 E
�A�qk�rk j Yk	1� (23)

Defining

�hk ≜ A�qk�rk 	 E
�A�qk�rk j Yk	1� (24)
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allows rewriting Eq. (23) as

e k � �bk � �hk (25)

Since �hk is independent of �bk, then

pek � p�bk 
 p�hk (26)

where 
 denotes the convolution operator. Writing Eq. (26)
explicitly yields

pek�ek� �
Z �1
	1

p�bk�ek 	 �hk�p�hk��hk� d�hk � E�p�bk�ek 	 �hk��

(27)

Assuming thatp�bk is a smooth function of �bk and using a first-order
Taylor expansion of p�bk in Eq. (27) yields

pek�ek� � E
�
p�bk �ek� 	

�
@p�bk��bk�
@�bk

�
T

�bk�ek
�hk

�

� p�bk �ek� 	
�
@p�bk��bk�
@�bk

�
T

�bk�ek
E��hk� (28)

Hence, pek ! p�bk if kE��hk�k2 ! 0. Obviously, �hk is related to
the quaternion estimation error, so that smaller quaternion estimation
errors result in better PDF approximations.

B. Histogram Estimator

In this work it is proposed to estimate the measurement noise PDF
using a histogram estimator (see [10] for a brief introduction on
density estimation). More precisely, the histogram estimator is
applied to the estimation of the PDF of the innovations process pe

that approximates the stationary noise PDF p�b, as has been
previously shown.

Let S ≜ suppfpeg 2 R3 be the support of pe, and let fAig
Np
i�1,

Ai 2 R3, be a partition of S, with nonzero Lebesgue measures

f��Ai�g
Np
i�1. For practical implementation reasons, it is assumed that

the support S is a bounded set and that some bound of it is available.

The innovations histogram estimator at time k is defined as

p̂ ek �e�≜
1

k��Ai�
Xk
j�1

1fej2Aig�ej�; e 2 Ai (29)

where 1fej2Aig denotes the indicator random variable for the event

fej 2 Aig.
The histogram estimator draws its power from the SLLN. Under

the assumption that the innovations process is an independent and
identically distributed sequence and the partition of S is sufficiently
fine, the SLLN implies

lim
k!1

1

k

Xk
j�1

1fej2Aig�ej� � E�1fej2Aig� � pe�e���Ai�

with probability 1; e 2 Ai (30)

yielding

lim
k!1

p̂ek�e� � pe�e� with probability 1; e 2 Ai (31)

The innovations samples of the QPF at time k are approximated
using Eq. (22) after acquiring a newmeasurement, and the histogram
estimator is computed sequentially using fêjgkj�1. Assuming a

uniform partition measure, that is,

��Ai� � �; i� 1; 2; . . . ; Np (32)

yields

p̂ ek�êk� �
k 	 1

k
p̂ek	1�êk� �

1

k�
1fêk2Aig�êk�; êk 2 Ai (33)

The GA-QPF is made adaptive by incorporating the estimator p̂ek
into the basic algorithm described in the previous section. Thus, the
likelihood pykjqk in Eq. (15) is computed as

pykjqk�Yk j qk�i�� / p̂ek �bk 	 A�qk�i��rk� (34)

Fig. 1 GA-QPF scheme.
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C. Curse of Dimensionality and Probability Density Estimation

The attainable performance of the histogram estimator is highly
affected by its resolution (i.e., the number of partition sets). In
particular, increasing the number of partition sets may improve the
PDF representation. However, as the number of partition sets used
grows, the PDF reconstruction procedure demands the acquisition of
a larger number of measurements. This also implies a slower
convergence of the histogram estimator. This phenomenon
constitutes the main problem underlying high-dimensional PDF
reconstruction.

One approach for alleviating this problem is by approximating the
PDF marginals instead of the joint PDF itself. Thus, each marginal
can be approximated using a one-dimensional histogram estimator.
Nevertheless, using this approach, it is necessary to model the
probabilistic relations between the various marginals for obtaining
an adequate joint PDF representation.

V. Simulation Study

A simulation study has been carried out to evaluate the
performance of the adaptive GA-QPF algorithm. As part of this
evaluation, both the adaptive and the nonadaptive GA-QPF schemes
are compared. The comparison is based on a test case involving real
data obtained from the Technion’s TechSAT satellite.

A. TechSAT Satellite Model

The performance of the adaptiveGA-QPF is tested using a realistic
three-axis magnetometer (TAM) noise model, taken from the
Technion’s TechSAT microsatellite. The TechSAT orbit is inclined
at 98 deg at an altitude of 820 km and its period is 101 min. In this
scenario, the satellite performs anEarth-pointingmission.Analyzing
75 h of TAM data (acquired at a rate of once per 10 s) allows
estimating the TAMmeasurement noise joint PDF. Themarginals of
this PDF are shown in Fig. 2. Clearly, Fig. 2 implies that the
TechSATTAM’s joint PDF is nonzeromean and non-Gaussian. The
double-peaked marginal distribution is due to a parasitic magnetic
dipole moment along the Y body-frame axis, which was encountered
during the momentum wheel slowdown [11]. The TAM noise is
contaminated by an additional bias having the magnitude of 	1 �T
along the Y axis. It is assumed that gyroscopic rate sensors provide
the angular rate readings. The rate-integrating gyros’ (RIGs’) output
is contaminatedwith ameasurement noise having two components: a
white, zero-mean Gaussian process with intensity 0:1 ��rad�2=s,
and a drift bias modeled as an integrated Gaussian white noise with
intensity 1 � 10	7 ��rad�2=s3. The RIGs’ initial bias is set to
0:1 deg =h on each axis. The Earth’smagneticfield ismodeled using
the eighth-order international geomagnetic reference field.

In theMonte Carlo simulation study, the initial attitude quaternion
is randomly generated according to a uniform distribution on the unit
three sphere. The GA-QPFs (both the adaptive and nonadaptive
versions) are initialized with N � 2000 particles and N� � 200 bias
parameters, using the initialization scheme previously described.
The chromosome length is set to l� 30 bit, and the crossover

procedure of the GA is applied to only 40% of the chromosomes.
After the first two measurement updates, the filters’ particle set is
reduced to theN � 200 unit quaternion particles associated with the
largest importance weights. The resampling threshold is set toNth �
2
3
N based on tuning runs. (DecreasingNth may reduce the resampling
frequency, consequently introducing less Monte Carlo variations
into the estimates, however, this might also increase the algorithms’
sensitivity to heavy-tailed measurement noise PDFs.) The sampling
rate of the TAM is one per 10 s, whereas the gyros are sampled at
1 Hz. The attitude estimation error (in degrees) is computed as

��� 2 arccos��q4� (35)

where �q4 is the scalar component of the error quaternion �q.
The nonadaptive GA-QPF is fed with an approximation of the

correct measurement noise distribution, obtained by fitting a
Gaussian mixture to the real data. The corresponding likelihood
function pykjqk used by this filter is given by

pykjqk �Ykjqk� � �fexp�	1
2
�bk 	 A�qk�rk 	 �n� �m�TR	1

� �bk 	 A�qk�rk 	 �n� �m�� � exp�	1
2
�bk 	 A�qk�rk

� �n� �m�TR	1�bk 	 A�qk�rk � �n� �m��g (36)

where � is a normalization constant, �n� � 0 	0:6 0 �T �T,
�m� � 0 	1 0 �T �T, and R� diagf�2x ; �2y=5:7; �2z g, where
�x � 1:06 � 10	1 �T, �y � 6:42 � 10	1 �T, and �z�
5:86 � 10	2 �T denote the TAM noise data sample standard
deviations along the X, Y, and Z axes, respectively.

1. Adaptive Filtering Using Marginal Estimators

The adaptive GA-QPF is not aware of the actual measurement
noise distribution. To construct the measurement noise PDF on the
fly in a computationally efficient manner, the following approximate
procedure is used. Instead of directly estimating the entire three-
dimensional joint PDF of the measurement noise, its marginals are
first separately estimated via the use of three histogram estimators.
This yields the three marginal estimates p̂e�i�

k
, i� 1, 2, 3, each

corresponding to a different TAM channel. Thus, the approximated

innovations component ê�i�k , i� 1, 2, 3, which is the ith component
of êk, is used to construct the ith marginal. Letting

gk ≜ �bk 	 A�qk�rk�, the likelihood pykjqk is then approximated as

pykjqk �Yk j qk� /
���h p̂e�1�

k

�
g�1�k

�
p̂e�2�

k

�
g�2�k

�
p̂e�3�

k

�
g�3�k

� i���
2

� 1fkgkk2<Mg�gk� (37)

where g�i�k , i� 1, 2, 3, denotes the ith component of gk. The bound of
the PDF support M is arbitrarily set to 6 � k� �x �y �z �k2. The
initial PDF is set to be zero-meanGaussianwith standard deviation of
100 nT, and each histogram estimator is initializedwith 200fictitious
innovation samples from this initial distribution. The number of
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Fig. 2 TechSAT TAM noise PDF marginals.
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equally measured intervals used for the support partition in each
histogram estimator is Np � 100.

To assess the performance of the histogram estimator, the
Kullback-Liebler divergence measure for discrepancy between two
densities is used. Denoted by J and defined as

J�p1; p2�≜
Z �1
	1

log

�
p1�X�
p2�X�

�
�p1�X� 	 p2�X�� dX (38)

it is a measure of the difficulty in discriminating between the two
densitiesp1 andp2. Themeasure J�p1; p2� 
 0 has all the properties
of ametric except for the triangle inequality, and it equals zero only if
p1 � p2. In the present case, where three different histogram
estimators are used, a norm Kullback-Liebler divergence is defined
as

Jk � k� J�p̂e�1�
k
; p

�b�1�
k
� J�p̂e�2�

k
; p

�b�2�
k
� J�p̂e�3�

k
; p

�b�3�
k
� �k2 (39)

where p
�b�i�
k
, i� 1, 2, 3, denotes the ith marginal of the true TAM

noise PDF.

2. Joint PDF Estimation

The measurement noise joint PDF can be fully approximated
using a three-dimensional histogram estimator. Contrary to the one-
dimensional case where each partition set is a line interval, in this
case, each partition set is a cube. Unfortunately, this type of
histogram estimator is highly subjected to the curse of
dimensionality. This implies that any increase in the resolution of
the histogram (i.e., number of partition sets) results in an exponential
growth of the number of innovations samples required for
reconstructing the PDF. A reasonable number of 103 partition sets is
used in this work (i.e., 10 partition sets for each of the three axes).

B. Simulation Results

Figure 3 demonstrates the performance of the adaptive estimation
scheme by showing the mean quaternion estimation error of 1000
Monte Carlo runs of both nonadaptive and adaptive versions of the
GA-QPF, where the latter uses three marginal histogram estimators.
Lacking any knowledge of the true TAMPDF, the adaptiveGA-QPF
reaches steady-state values of less than 0.1 deg after approximately
3 h. Providing a performance bound for comparison, the steady-state
value of the nonadaptive GA-QPF, equipped with the true TAM
PDF, is about 0.03 deg.

The advantage of using the adaptive scheme is highlighted by
comparing it with the nonadaptive GA-QPF scheme in a case where

both algorithms lack complete knowledge regarding the TAM PDF.
Figure 4 shows the performance of both schemes, where the
nonadaptive GA-QPF is not aware of the true measurement noise
distribution but, rather, assumes it to be a Gaussian PDF
parameterized by the correct statistical moments. The curve
corresponding to the adaptive GA-QPF mean attitude estimation
error is identical to that shown in Fig. 3. As can be clearly seen from
Fig. 4, the PDF reconstruction procedure enables the adaptive GA-
QPF to reach a steady-state estimation error of about 0.1 deg. On the
other hand, lacking adaptivity, and assuming an incorrect
measurement noise PDF (albeit with the correct statistical moments),
the basic GA-QPF algorithm attains a steady-state attitude error on
the order of 0.3 deg.

The Monte Carlo mean norm Kullback-Liebler divergence
measure is shown in Fig. 5. Starting from values of about 2.5, the
divergence measure decreases to about 0.2, which indicates that the
estimated marginals are converging to the true TAM marginals.

In another run, the initial distribution of the adaptive GA-QPF is
set to a zero-mean Gaussian distribution with standard deviation of
650 nT. The quaternion estimation errors for this case are quite
similar to those of the first case (in which the adaptive GA-QPF was
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initialized with a zero-mean Gaussian distribution with standard
deviation of 100 nT). The norm Kullback-Liebler measure, for a
single run of 40 h, is shown in Fig. 6. Corresponding to the larger
standard deviation of the initial distribution, the initial norm
divergencemeasure for this case is slightly larger than in the previous
case. Figure 7 illustrates the TAM PDF marginals reconstruction
process for this single run. The upper panel shows the true and the
initially assumed marginals (corresponding to a norm divergence
measure of about 3.7), whereas the bottom panel shows the true and
the estimated marginals after 40 h (corresponding to a norm
divergence measure of about 0.5).

Figure 8 shows the mean attitude estimation error based on 1000
Monte Carlo runs of the adaptiveGA-QPF using a three-dimensional
histogram estimator. As was previously mentioned, this setting is
suitable for approximating the measurement noise joint PDF. The
histogram estimator resolution is set to 10 partition sets for each axis,
which amounts to a total ofNp � 103 partition sets. When compared
with Fig. 3, Fig. 8 clearly depicts the effect of the dimensionality
problem on the estimation performance. Whereas the alternative
adaptive scheme in Fig. 3, which uses three marginal estimators,
attains attitude errors on the order of 0.1 deg, the attainable mean
attitude estimation error of this adaptive scheme is approximately
1 deg.
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Both Figs. 9 and 10 show the estimated and the true measurement
noise joint PDF. Clearly, the histogram estimator manages to capture
the essential properties of the joint PDF within a 1 h interval.

VI. Conclusions

An adaptive algorithm is presented for the estimation of spacecraft
attitude from vector observations in scenarios characterized by a high
uncertainty of the measurement noise distribution. The filter is based
on the recently presented genetic-algorithm-embedded quaternion
particle filter, that has been shown to effectively estimate the attitude
in nonlinear and non-Gaussian scenarios. In the GA-QPF, the
attitude is represented via quaternion particles, thus the quaternion
norm constraint is naturally maintained, avoiding the need for ad hoc
and external normalization procedures. A genetic algorithm is used
to generate a maximum likelihood estimate of the gyro biases, thus
alleviating the potential computational burden problem associated
with the number of required particles.

In the present work, the GA-QPF is made adaptive by equipping it
with a histogram estimator that facilitates the estimation of the
measurement noise distribution via a statistical analysis of the filter-
generated innovations process. Thus, the filter estimates the
measurement noise distribution on the fly, along with the spacecraft
attitude quaternion. A simulation study is used to assess the
performance of the adaptive algorithm in a scenario involving real,
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non-Gaussian data obtained from the Technion’s TechSAT satellite.
As part of this study, the adaptive filter is compared with the
previously introduced nonadaptive GA-QPF. The study demon-
strates the viability of the new algorithm and shows that, if an
estimate (or an upper bound) of themeasurement noise distribution’s
support is available, an accurate estimate of a non-Gaussian
distribution is obtained even when starting from a highly inaccurate
initial estimate.
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