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The asymptotic behavior of the estimation error covariance of quaternion estimators ismathematically examined.

It is proved that the condition number of the asymptotic covariance matrix is of the order of the inverse of its largest

eigenvalue, so that this matrix becomes asymptotically ill-conditioned as its trace tends to zero. Nevertheless, it is

proved that the aforementioned asymptotic behavior cannot be captured by low-order Taylor approximations of the

covariance, such as the one computed by the extended Kalman filter. Geometrical interpretation of the results is

provided, using tools from differential geometry. The analytical results are demonstrated via a simulation study

using the recently introduced quaternion particle filter and the additive quaternion extended Kalman filter.

I. Introduction

B EING used in many attitude estimation algorithms, the rotation
quaternion is perhaps the most common spacecraft attitude

representation. The most attractive feature of this attitude specifier is
that it is not singular for any rotation. Moreover, its kinematic
equation is linear and the computation of the associated attitude
matrix involves only algebraic expressions. However, the quaternion
representation is not minimal because it is four-dimensional. This
leads to a normalization constraint that has to be addressed infiltering
algorithms.

In the early 1980s researchers began using the celebrated extended
Kalman filter (EKF) for spacecraft attitude filtering algorithms. The
EKF (and its variants) has become the most widely applied attitude
estimation algorithm ever since. The EKF is an extension of the
Kalman filter (KF) for nonlinear systems. Like the KF, the EKF
represents the filtering probability distribution function (pdf) via its
first twomoments (namely, mean and covariance) only.Whereas the
KF yields the (optimal) minimum mean square error (MMSE)
estimate in the case of linear Gaussian models, the EKF yields
suboptimal (in the MMSE sense) estimates, at best, when applied in
nonlinear/non-Gaussian systems.

Employing the EKF or a similar filtering mechanization that
computes the second-order statistics of the filtering pdf using a
quaternion attitude representation has lead to a debate among the
attitude determination community. At the core of the debate is the
question of whether the quaternion estimation error covariance
matrix is singular or ill-conditioned due to the quaternion’s unit-
norm constraint. A notable example is [1], that assumes that the
4 � 4 quaternion estimation error covariance matrix must be
singular and surveys reduced-order algorithms that maintain this
singularity. The suggested reduced-order algorithms are based on
three approaches: the first approach uses the transition matrix of the
state error vector to obtain a reduced-order error covariance
representation. The second approach consists of omitting one of the
quaternion components to obtain a truncated covariance expression.

Finally, the third approach uses a compositional incremental
quaternion error, which leads to a covariance representation similar
to that of the first approach.

The quaternion estimation error covariance singularity is
mentioned in [2,3] as a direct consequence of the quaternion norm
constraint. Although the algorithm suggested in [2] is not a KF
variant, the singularity issue is pointed out as validating the use of the
reduced-order EKFs of [1] and theminimummodel error estimator of
[2]. In [4] a nonlinear predictive filtering approach is presented for
gyroless spacecraft attitude estimation. One of the advantages of the
predictive filter over the EKF is its ability to maintain the quaternion
norm constraint. Reference [4] maintains that the EKF quaternion
estimation error covariance is strictly singular due to the norm
constraint.

Reference [5] presents a quaternion-based autonomous attitude
estimation and control architecture for the Ørsted satellite.
Addressing the EKF’s estimation error covariance singularity, the
attitude determination algorithm is chosen to be a reduced-order
EKF, using the incremental quaternion error approach of [1].

In a recent work [6], an unscented KF (UKF) has been proposed
for the estimation of the rotation quaternion. TheUKF does possess a
reported advantage over theEKFwith regard to dealingwith strongly
nonlinear systems, because it avoids the linearization process
associated with the EKF. However, because using the UKF directly
with the quaternion attitude parameterization would also yield a
nonunit norm quaternion estimate, the authors of [6] chose to work
with a generalized three-dimensional attitude representation, still
using the quaternion for updates to maintain the normalization
constraint. Further justifying the use of a three-component attitude
representation, [6] states that the quaternion estimation error
covariance is ill-conditioned and may also be singular when a linear
computation, such as the EKF, is involved.

An extensive survey of EKF-based quaternion filtering strategies
is presented in [7]. Divided into two broad classes, the filtering
algorithms representing the attitude errors using minimal-parameter
representations are compared with the one that directly estimates the
four-component quaternion. As part of its conclusions, [7] asserts
that the latter algorithm suffers from numerical instability originating
in an asymptotically singular covariance matrix.

Reference [8] suggests a unique EKF-based algorithm for
spinning spacecraft attitude estimation. Resolving the angular-
momentum vector in both the inertial-reference and body-frame
coordinate systems while using a three-axis magnetometer as its
primary sensing device, the derived filter is able to compute attitude
estimates. As part of its mechanization, the proposed algorithm
addresses the problem of enforcing both angular-momentum
representations to have the same norm. Consequently, [8] resorts to a
reduced-order covariance representation for maintaining its
singularity, thereby corroborating with [1].
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The quaternion covariance singularity/ill-conditioning is circum-
vented in [9,10]. The former paper suggests a new method for
deriving quaternion estimates on the unit 3-sphere. A major part of
this work is devoted to a new quaternion probabilistic model
expressed solely in terms of the quaternion second moment. A
sampling procedure is then developed, adopting the proposed model
for use by Monte Carlo type of algorithms. Reference [10]
parameterizes the attitude using the direction cosine matrix (DCM)
while deriving an analytic optimal filtering method. The time-
propagation and measurement-update stages are implemented using
the Fokker–Planck stochastic differential equation and Bayes
formula, respectively. The DCMoptimal estimates are then obtained
based on either minimizing a cost function expressed exclusively
using the attitude estimation error Frobenius norm on SO(3) or
minimizing a negative-log-likelihood function related to the
probability density on SO(3).

In other papers the covariance singularity issue is either regarded
as amisunderstanding or is completely avoided. These papersmostly
rely on the fact that practical implementation of the EKF using a
quaternion attitude representation has never, in the past, yielded a
singular estimation error covariance. As an example, the authors of
[11] assume no such singularity while incorporating a normalization
step into their quaternion-based EKF algorithm. Reference [12]
illustrates the regularity of the EKF covariance matrix through
several examples that consist of estimating random variables with a
functional relationship. It then analyzes the quaternion estimation
problem, reaching the conclusion that the discrepancy stems from the
fact that a functional relationship does exist between the quaternion
components, but not between the components of its incremental
estimation error.

In a related work [13], a method is presented for enforcing an
algebraic constraint in a quaternion-based EKF. Similar to [11], the
EKF formulation suggested by [13] involves the full quaternion
vector as part of its state. A correction step is then devised for theEKF
measurement-update stage, thereby increasing its stability. Finally,
the efficiency of the algorithm is demonstrated via a numerical
simulation study. No covariance ill-conditioning or singularity has
been detected in this study.

As part of an extensive comparison between the two common
approaches for EKF-based quaternion estimation of [1,11], [14]
states the conditions under which the quaternion estimation error
covariance is expected to become nearly singular and claims that the
EKF-computed covariance will not become ill-conditioned in the
presence of process noise. However, in the absence of process noise,
[14] claims that covariance ill-conditioning is an expected
characteristic of the additive EKF (AEKF) algorithm of [11].

Recently, innovative methods have been proposed for spacecraft
attitude estimation. In [15], a particle filter (PF) was implemented to
sequentially estimate the attitude quaternion from vector
observations. Also known as sequential Monte Carlo methods, PFs
are algorithms implementing a recursive Bayesian model using
simulation-based methods (see [16]). Avoiding the underlying
assumptions of the KF (namely, that the state space is linear and
Gaussian), these rather general and flexible methods enable solving
for the entire posterior probability distributions of the unknown
variables (onwhich all inference on these variables is based) within a
Bayesian framework, exploiting the dramatic recent increase in
computer power. Contrary to KF extensions, the solutions obtained
using PF algorithms are numerical approximations to the optimal (in
the Bayesian sense) solutions, which can be made arbitrarily close to
the exact solutions by increasing the number of particles (samples)
involved in the computation. It should be emphasized that
implementing a PF for the attitude quaternion estimation completely
avoids the covariance singularity issue, because the entire filtering
distribution is represented via particles and not by its statistical
moments. Thus, the error covariancematrix is not a formal part of the
algorithm, although it can always be computed, if needed, using the
filtering distribution (represented by its particles).

An extensive evaluation of the properties of the estimation error
covariance matrix computed using the quaternion PF (QPF) of [15]
has confirmed that it becomes ill-conditioned during the estimation

procedure. This finding has provided the motivation for the work
presented here.

This paper mathematically examines the asymptotic behavior of
the quaternion estimation error covariance matrix. It proves that the
condition number of the asymptotic covariance matrix is of the order
of the inverse of its largest eigenvalue. Furthermore, it proves that the
aforementioned asymptotic behavior cannot be captured by low-
order Taylor approximations of this matrix. Conclusions are drawn
for the EKF case. The essential conclusions are demonstrated by an
extensive simulation study that uses both the QPF of [15] and the
AEKF of [11].

To set the stage for some of the key issues tackled in this paper,
consider the following simple example. Let x, a random vector (rv)
taking values on the unit circle, be defined as

x � �cos �; sin ��T; ��U��1
2
a; 1

2
a�; a 2 R (1)

where U�c1; c2� denotes a uniform distribution over �c1; c2�. The
eigenvalues of the covariance matrix cov�x� � diagf�1; �2g are

�1 �
1

2
	 1

2

sina

a
�
�
sin�a=2�
a=2

�
2

; �2 �
1

2
� 1

2

sina

a
(2)

Thus, although x is a constrained rv, its covariance is not, in general,
singular or ill-conditioned (setting a� 2� yields �1 � �2 � 0:5).
However,

lim
a!0

�1
�2
� 0 (3)

implying that cov�x� does become asymptotically ill-conditioned as
a! 0.

The four-dimensional counterpart of the rv x is the rotation
quaternion. It turns out that the covariance matrix associated with the
quaternion estimation error possesses the asymptotic property
underlined in this example. Furthermore, recalling that in a typical
estimation procedure the trace of the covariance matrix decreases
rapidly, this property indicates that ill-conditioning is inevitable in
optimal quaternion estimation (however, it cannot be used to indicate
such behavior in suboptimal estimators).

The remainder of this paper is organized as follows. The next
section reviews some mathematical concepts from asymptotic
analysis and examines the behavior of the second-moment matrix of
a nonlinearly constrained random vector. The main results of the
paper are presented in Sec. III, in which the conclusions from the
analysis of Sec. II are used to infer the behavior of the true quaternion
estimation error covariance and of the AEKF covariance. Section IV
presents a geometric interpretation of the results of the previous
section using differential geometry tools. Section V presents the
results of a numerical simulation study that is carried out to validate
the analytical conclusions obtained throughout this paper.
Concluding remarks are offered in the last section. For improved
readability, several auxiliary results and proofs are deferred to the
Appendices.

II. Second Moment of a Constrained Random Vector

The asymptotic behavior of the quaternion error covariance can be
regarded as part of the more general problem of evaluating the
statistical properties of a constrained rv. Directed at the quaternion
covariance problem, this section is concerned with the asymptotic
behavior of the second-moment matrix as its trace tends to zero. For
completeness, the analysis is preceded by some definitions.

A. Order Symbols in Asymptotic Analysis

The following definitions are taken from [17] (pp. 2–3).
Definition 1. Let X be a metric space and let x0 2 X. A pointed

neighborhood of x0 is a set of the form V n fx0g, where V is a
neighborhood of x0.

Definition 2. Let f�x� and g�x� be functions defined in a pointed
neighborhood V of x0. Then f�x� is O�g�x�� as x! x0, denoted as

f�x� �O�g�x�� as x! x0 (4)
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if there exists a pointed neighborhood V of x0 and a constant
0< c <1 such that

jf�x�j 
 cjg�x�j; x 2 V (5)

If g�x� does not vanish near x0, then the relation (4) is equivalent to
the condition

lim
x!x0

sup

����f�x�g�x�

����<1 (6)

Order symbols can be used to effectively convey the dominance of
mathematical forms without writing them explicitly. Thus, the order
of any mathematical entity can be expressed by manipulating the
order of its elements. The basic properties of order symbols can be
found in the literature on asymptotic analysis [17]. Some useful
properties of the order symbol O��� that are extensively used in this
work are reviewed below. The notation is the one commonly used in
asymptotic analysis; the meaning ofO�g� is that some function f is
O�g�. Therefore,O�g�O�g� �O�g2� implies that if f1 �O�g� and
f2 �O�g�, then also f1f2 �O�g2�.

1) O�g�O�f� �O�fg�.
2) If c is a constant, then cO�g� �O�g� and O�cg� �O�g�.
3) O�O�g�� �O�g�.
4)

Xm
i�k

O�gi� �O�gk�; g! 0; m � k

B. Asymptotic Behavior of the Second Moment

The following lemma uses the notion of functional order in
asymptotic analysis to infer the asymptotic behavior of a contracting
covariance matrix. The following definition will be useful.

Definition 3. The condition number of a matrix A 2 Rn�m is the
ratio between its largest and smallest singular values: that is,

��A�≜ �max�A�
�min�A�

(7)

Remark 1. The singular values of a symmetric positive definite
matrix equal its eigenvalues.

Lemma 1. Let A 2 Rn�n be a symmetric positive definite matrix.
The condition number of A satisfies

��A� � c�trA��d as trA! 0 (8)

where c > 0 is a finite constant, if and only if there exists a quadratic
form gTAg�O��trA�d	1� as trA! 0, for some unit vector g and a
nonnegative scalar d.

Proof. (If.) LetG be an orthogonal matrix, and let g to be one of its
columns. The quadratic form gTAg is a diagonal element of GTAG.
According to the Cauchy inclusion theorem, the minimal eigenvalue
of GTAG is smaller than or equal to any eigenvalue of its
submatrices, hence

�min�GTAG� 
 gTAg�O��trA�d	1�; trA! 0 (9)

The trace of a matrix equals the sum of its eigenvalues, hence

�max�GTAG� � 1
n
trA (10)

Combining both Eqs. (9) and (10) yields

��GTAG� � c�trA��d as trA! 0 (11)

Notice that because G is orthogonal, both GTAG and A share the
same eigenvalues (and hence the same condition number).

(Only if.) Let gmin denote the unit eigenvector of A corresponding
to �min�A�. Then

�min�A� � gTminAgmin (12)

Because

�max�A� 
 trA (13)

it follows that

�max�A� �O�trA� as trA! 0 (14)

It then follows fromEq. (8) that �min�A� �O��trA�d	1� as trA! 0.
Thus, Eq. (12) yields

gTminAgmin �O��trA�d	1� as trA! 0 (15)

thereby completing the proof.
Corollary 1. The smallest and largest eigenvalues of a matrix

A 2 Rn�n satisfy

�min�A� �O��max�A�d	1� as �max�A� ! 0 (16)

if and only if A satisfies Lemma 1 for some nonnegative scalar d.
Proof. Because

tr A 
 n�max�A� (17)

it follows that

tr A�O��max�A�� as �max ! 0 (18)

Equations (14) and (18) render �max�A� and trA interchangeable in
terms of order symbols. Equations (16) and (8) thus imply each other
straightforwardly. □

Consider now a constrained rv of the form

v � �uT; un�T; un � �uTu��d	1�=2 (19)

where d and u denote a nonnegative real scalar and a rv taking its
values onRn�1, respectively. Let� be the second-moment matrix of
v. Using decomposition (19), the matrix � can be written as

�� E�vvT � � E�uuT � E��uTu��d	1�=2u�
E�uT�uTu��d	1�=2� E��uTu�d	1�

� �
(20)

Setting g� �01��n�1�; 1�T , it follows that

g T�g� E��uTu�d	1� 
 E��uTu	 u2n�d	1� � E��vTv�d	1� (21)

Equation (21) implies that� satisfies Lemma 1 for the number d � 0
if

E��vTv�d	1� �O��tr ��d	1�; tr �! 0 (22)

because then

g T�g�O��tr ��d	1�; tr �! 0 (23)

Equation (22) is a property of the distribution of the rv v. The
conditions for the existence of this property are detailed in the
following proposition and in the ensuing discussion.

Proposition 1. Let v be a rvwith a finite second-moment matrix�.
Then Eq. (22) is satisfied for any d � 0 if

X1
i�1

id	1prob��i� 1�tr �< vTv 
 i tr ��<1 (24)

where prob�C� denotes the probability of the event C.
The proof of Proposition 1 is deferred to Appendix A.
Corollary 2. Let v be a rv with finite second-moment matrix �,

and let the pdf ofv have a compact support.‡Thenv satisfies Eq. (22).
Proof. From the finite cover property of compactness, it follows

that there exists N <1 such that

‡A closed and bounded set in Rn is compact. A more general definition,
which is more appealing in the context of Corollary 2, is the “covering”
definition of compactness: A topological space is compact if each of its open
covers has afinite subcover (a cover of a setX is a collection of sets such thatX
is a subset of the union of sets in the collection; a subcover of X is a subset of
the cover of X that still covers X). The Heine–Borel theorem states that these
two definitions of compactness are equivalent for subsets of Euclidean
spaces. For further details, the reader is referred to [18].
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prob ��m� 1�tr �< vTv 
 m tr �� � 0 8 m � N (25)

which implies Eq. (24), thus yielding Eq. (22). □

III. Error Covariance of Quaternion Estimators

Forming the core of this work, this section applies the concepts
developed in the previous section to the quaternion estimation error
covariance matrix. The asymptotic behavior of this matrix is
explored, and conclusions are drawn regarding the terms under
which it can be adequately approximated.

A. Quaternion Estimators

The quaternion discrete-time process and observation equations
can be described in a rather general form as

q k ��k�qk�1;wk� (26a)

y k � hk�qk;nk� (26b)

where the quaternion rv qk (respectively, its realization qk) takes
values on the unit 3-sphere S3, and the observation rv yk takes values
inRp (detailed expressions for thematrix functions�k and hk can be
found, for example, in [15]). The quaternion rv is written as

q � %
q4

� �
(27)

where % and q4 denote its vector and scalar parts, respectively. In
addition, fwkg1k�1 and fnkg1k�1 are the process and measurement
white noises, respectively.

LetYk ≜ fy0; . . . ; ykg andYk ≜ fY0; . . . ;Ykg be themeasurement
time history up to time k and its realization, respectively. In filtering
algorithms, any statistical inference related to the unobserved signal
(i.e., the state process) is based on the incoming measurements.
Hence, the estimator of qk, denoted by q̂k, is a random variable
adapted to the filtration generated by the measurements up to time k
(in other words, q̂k is Yk-measurable). In many cases, one is
interested in obtaining the MMSE estimator of qk, which satisfies
q̂k � E�qkjYk�. In general, though, q̂k may be any Yk-measurable
function.

The ensuing development addresses sequential quaternion
estimators. This class of estimators is characterized by the form

q̂ k � G�yk; q̂k�1� (28)

where G��� is some measurable function.

B. Estimation Error Covariance

Let the additive estimation error belonging to the quaternion
estimator q̂k be defined as

~q k ≜ qk � q̂k (29)

Notice that ~qk is not necessarily a quaternion of rotation. LetP be the
conditional covariance of the rotation quaternion estimation error:
that is,

P≜ cov� ~qkjYk � Yk�
� Ef� ~qk � E� ~qkjYk��� ~qk � E� ~qkjYk��T jYk � Ykg (30)

Using definition (29) in Eq. (30) yields

P� Ef�qk � q̂k � E�qkjYk� 	 E�q̂kjYk���qk � q̂k � E�qkjYk�
	 E�q̂kjYk��T jYk � Ykg (31)

Because q̂k is Yk-measurable (that is, q̂k is a function of the
measurements Yk),

E�q̂kjYk� � q̂k (32)

Substituting Eq. (32) into Eq. (31) yields

P� Ef�qk � E�qkjYk���qk � E�qkjYk��T jYk � Ykg (33)

which, by definition of the conditional covariance, is

P� cov�qkjYk � Yk� (34)

so that the conditional covariances of both the quaternion and the
quaternion estimation error are identical, independently of the
estimator used.

Implying that the conditional estimation error covariances of all
estimators are the same, the last observation might give rise to two
questions:

1) How does this observation reconcile with the well-known fact
that not all estimators are optimal for such a problem?

2) If (being equal for all estimators) the conditional covariance of
the estimation error cannot be used to distinguish between different
estimators, what is its role and why is it important in the estimation
problem dealt with herein?

To answer these questions, notice that the MMSE estimator
(which is the conditional expectation estimator) minimizes the mean
square error (MSE) criterion:

MSE � trPm (35)

where Pm is the estimation error second moment:

Pm ≜ Ef�qk � q̂k��qk � q̂k�Tg (36)

Furthermore, it can be shown that the conditional expectation
estimator also minimizesPm itself, in the sense that for any otherYk-
measurable estimator q̂k,

§

Ef�qk � q̂k��qk � q̂k�Tg 
 Ef�qk � E�qkjYk���qk � E�qkjYk��Tg
(37)

Using the smoothing property of the conditional expectation and
explicitly writing the pdf with respect to which each expectation is
carried out, Eq. (37) can be rewritten as

EYEqkjYf�qk � q̂k��qk � q̂k�T jYg

 EYEqkjYf�qk � E�qkjYk���qk � E�qkjYk��T jYg (38)

which means that the MMSE estimator minimizes the conditional
expectation of the second-moment matrix of the estimation error.
Thus, the answer to the first question is that although the conditional
covariance of the estimation error of all estimators is the same as that
of the optimalMMSEestimator, only theMMSEestimator is optimal
(in the sense of minimizing the MSE criterion), because optimality
(in that sense) is determined by the conditional second-moment
matrix of the estimation error, rather than by its conditional
covariance.

Equation (38) also provides the answer to the second question,
because it shows that the minimum (achieved by the MMSE
estimator) of the conditional expectation of the estimation error
second-moment matrix is the conditional covariance of qk: that is,P.
Hence, the performance of any estimator designed to compute the
MMSE estimate (or a practical approximation of it) can be assessed
by the proximity of its computed conditional covariance to P.

Themain result of this paper is presented in the following theorem.
Theorem 1. The following relations hold as �trP� ! 0:

��P� � c1�trP��1 (39a)

��P� � c2��max�P���1 (39b)

where c1, c2 > 0 are finite constants.

§Let A and B be two compatible matrices; then A 
 B if A � B is positive
semidefinite.
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Proof. Let

�k ≜ E�qkjYk � Yk� (40)

and let�k ≜ �k=k�kk be the normalized version of�k, thenP can be
rewritten as

P� E��qk � �k 	 �k � �k��qk � �k 	 �k � �k�T jYk � Yk� (41)

Expanding Eq. (41) yields

P� ~P� �1 � k�kk�2�k�Tk (42)

where the matrix ~P is defined as

~P≜ E��qk � �k��qk � �k�T jYk � Yk� (43)

Let the matrix � 2 R4�3 be chosen such that �≜ ��;�k� is an
orthogonal matrix, and let the rv uk be defined as

u k ≜ �Tqk � �01�3; 1�T (44)

Then

�TP�� �T ~P� �
03�3 03�1

01�3 �1 � k�kk�2

" #

� E�ukuTk jYk � Yk� �
03�3 03�1

01�3 �1 � k�kk�2

" #
(45)

Because� is an orthogonalmatrix,�Tqk is a rotation quaternionwith
a vector part %k ��Tqk. Using %k, the vector uk can be expressed as

uk � �%kT; �1 � %kT%k�1=2 � 1�T (46)

Substituting Eq. (46) into Eq. (45) and extracting the fourth diagonal
component of �TP� yields

� TP�� E���1 � %kT%k�1=2 � 1�2jYk � Yk� � �1 � k�kk�2 (47)

The fact that % Tk%k 
 1 facilitates the use of Lemma 2 (see
Appendix C) in Eq. (47), thus

� TP� 
 E���1 � % Tk%k�1=2 � 1�2jYk � Yk�

 E��% Tk%k�2jYk � Yk� (48)

The definition of � implies

%k ��T�qk � �k� (49)

Therefore, inequality (48) can be written as

�TP� 
 E���qk � �k�T��T�qk � �k��2jYk � Yk�
� E�k�T�qk � �k�k4jYk � Yk� (50)

Using Lemma 3 (see Appendix C), inequality (50) takes the form

�TP� 
 E���qk � �k�T�qk � �k��2jYk � Yk�
� E�k�qk � �k�k4jYk � Yk� (51)

Because the quaternion’s distribution support is defined on the unit 3-
sphere S3, it is compact, rendering the support of �qk � �k�jYk

compact as well. Applying Corollary 2, Eq. (51) implies

� TP��O��trP�2� as trP! 0 (52)

According to Lemma 1, Eq. (52) implies Eq. (39a). Equation (39b)
follows from Eq. (39a) upon observing that

tr �P� 
 4�max�P� (53)

□

Theorem 1 immediately yields the following observation.
Corollary 3. The conditional covariance of the quaternion

estimation error becomes asymptotically ill-conditioned as its trace
tends to zero:

��P� ! 1 as trP! 0 (54)

C. Approximation of the Quaternion’s Covariance

1. Preliminaries: Statistical Taylor Expansions

Let v and V be a rv taking values in Rn and its realization,
respectively. Let also f: Rn ! R be a C1 function. The
multidimensional Taylor expansion of f about a nominal realization
V� is given by

f�v� �
X1
i�0

1

i!
��v � V��Tru�if�u�ju�V� (55)

where the gradient operator is defined as

ru ≜
�
@

@u1
; . . . ;

@

@un

�
T

(56)

When using Eq. (55) to compute the statistics of a rv, the ith-order
terms translate into moments of corresponding order. For instance,
writing the expansion of E�f�v�� yields

E�f�v�� �
X1
i�0

1

i!
E���v � V��Tru�if�u�ju�V� � (57)

which is a sum of moments of various orders of elements of v.
Proposition 2. Let v and V� be a rv taking values in Rn and its

nominal realization, respectively. Suppose that v � V� satisfies
Proposition 1 for any number d � 0. Then, for any sufficiently
differentiable function f: Rn ! R, the mth-order Taylor expansion
of ’�v�≜ E�f�v�� about V� satisfies

’̂ �m� �
Xm
i�0

O��trD�i=2� as trD! 0 (58)

where D≜ E��v � V���v � V��T �.
The proof of Proposition 2 is deferred to Appendix B.

2. Approximate Covariance Matrix

Conveyed by Theorem 1, the asymptotic properties of the
quaternion’s estimation error covariance matrix,P, do not carry over
to low-order Taylor expansions of P. This claim is made precise and
established in the ensuing.

Definition 4. The mth-order Taylor expansion of the quaternion
estimation error covariance P about some nominal quaternion

realization q�k is the 4 � 4matrix P̂�m� for which the elements are the
corresponding mth-order Taylor expansions about q�k of the
corresponding elements of P.

Consider the quadratic form

’�qk�≜ gTPg (59)

where P is defined in Eq. (30) and g 2 R4 is a unit vector.
Recognizing that

’�qk� � E��gT�qk � E�qkjYk � Yk���2jYk � Yk� (60)

the correspondingmth-order Taylor expansion of ’�qk� about some
nominal quaternion q�k is written as

’̂ �m� �
Xm
i�0

1

i!
E���qk � q�k�Trqk�if�qk; Yk�jqk�q�k jY

k � Yk� (61)

where the sufficiently differentiable function f�qk; Yk� is defined as
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f�qk; Yk�≜ �gT�qk � E�qkjYk � Yk���2 (62)

Because g is a constant vector, it can be deduced that

g TP̂�m�g� ’̂�m� (63)

where P̂�m� denotes the mth-order Taylor expansion of P.

Proposition 3. Let P̂�m� be the mth-order Taylor expansion of the
quaternion estimation error covariance P about some nominal

quaternion realization q�k . Assume that P̂�m� consists of second- and
higher-order terms only: that is, for any unit vector g 2 R4 it satisfies

g TP̂�m�g�
Xm
i�2

1

i!
E���qk � q�k�Trqk�if�qk; Yk�jqk�q�k jY

k � Yk�

(64)

where the sufficiently differentiable function f�qk; Yk� is defined in
Eq. (62). Then Theorem 1 does not apply to the second- and third-

order Taylor approximations of P, P̂�2�, and P̂�3�, respectively.
Proof. Because the quaternion rv has a compact support, it satisfies

Proposition 1 for any numberd � 0. Thus, using Proposition 2 yields

g TP̂�m�g�O��trD�M=2� as trD! 0 (65)

where D≜ E��qk � q�k��qk � q�k�T jYk � Yk�, and the integer M,
satisfying 2 
 M 
 m, depends on the selection of g. Hence, using
the least possible order of trD (i.e.,M� 2) gives

tr P̂�m� �
X4
j�1
eTj P̂�m�ej �O�trD� as trD! 0 (66)

where ej is a unit vector having 1 as its jth element.

Considering Theorem 1, for P̂�m� to satisfy

��P̂�m�� � c�tr P̂�m���1 as tr P̂�m� ! 0 (67)

Lemma 1 states that the following condition must hold,

g TP̂�m�g�O��tr P̂�m��2� as tr P̂�m� ! 0 (68)

for some unit vector g. Using both Eqs. (65) and (66), Eq. (68)
translates into

O ��trD�M=2��O��trD�2� as trD! 0; 2
M 
m (69)

Equation (69) can be satisfied for M � 4 only, implying that low-
order approximations of P, corresponding to m< 4, do not comply
with Theorem 1. □

Corollary 4. Approximations of P of orders lower than 4 do not
share their asymptotic properties with P.

Proof. The proof follows straightforwardly from Theorem 1 and
Proposition 3.

D. Illustrative 2-D Example

Although Corollary 4 addresses the quaternion covariance matrix,
it is conceivable that this claim applies to other matrices (of any
order) possessing similar properties aswell. Hence, it is interesting to
examine the asymptotic behavior of a corresponding low-order
Taylor expansion of the covariance matrix of the rv of Eq. (1).

BecauseC≜ cov�x� is a diagonal matrix, its second-order Taylor

expansion about some a� ≠ 0 is given by Ĉ�2� � diagf�̂1; �̂2g, where

�̂i � �ija�a� 	
@�i
@a
ja�a� �a � a��

	 1

2

@2�i
@a2
ja�a� �a � a��2; i� 1; 2 (70)

and

@�1
@a
� 1

2

cos a

a
� 1

2

sina

a2
� 2

sin a

a2
	 8

sin2�a=2�
a3

(71a)

@�2
@a
�� 1

2

cos a

a
	 1

2

sina

a2
(71b)

@2�1
@a2
�� 1

2

sina

a
� cos a

a2
	 sina

a3
� 2

cos2�a=2�
a2

	 8
sin a

a3
	 2

sin2�a=2�
a2

� 24
sin2�a=2�

a4
(71c)

@2�2
@a2
� 1

2

sin a

a
	 cos a

a2
� sin a

a3
(71d)

The condition numbers of both the true and the (second-order)
approximate covariance matrices were numerically computed using

Eqs. (2), (70), and (71). The behavior of both ��C� and ��Ĉ�2�� as
a! 0 is depicted in Fig. 1. Unsurprisingly, as predicted by
Corollary 4, the condition numbers of both matrices exhibit entirely
different asymptotic behavior.

E. Discussion

The preceding analysis shows that the quaternion estimation error
covariance matrix does possess the unique property of becoming ill-
conditioned as its trace tends to zero (see Corollary 3). However, this
property is not inherited by its corresponding second- and third-order
Taylor approximations (see Corollary 4). Recalling that the EKF-
computed covariancematrix consists of second-order terms only (see
AppendixD for an overview of the EKFmechanization), the analysis
presented herein explains why the AEKF has never been shown, in
practice, to compute an ill-conditioned covariance matrix.
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Fig. 1 Asymptotic condition number of the true (left panel) and (second-order) approximate (right panel) covariance of x.
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Recently, several conditions were given in [14,19] for the EKF-
computed covariance matrix to become ill-conditioned or even
singular. Both of these works suggest that the distinctive feature that
enables covariance ill-conditioning is the absence of process noise.
This claim is investigated using a numerical example in Sec. V.

IV. Geometrical Interpretation

Invoking the concept of smooth manifolds from differential
geometry reveals some interesting geometrical meanings of the
previously obtained results. Manifolds are topological spaces in
which the neighborhood of each point resembles an open subset of
Rn. The dimension of the Euclidean space in the vicinity of a point on
the manifold indicates the manifold’s dimension. The 3-dimensional
sphere, for instance, is a 2-dimensional smooth manifold (denoted as
S2 or 2-sphere), implying that to within a small region on its surface,
every point lies on a 2-D plane. The latter insight suggests that the
third dimension of a contracting domain on the 2-sphere vanishes
faster than the other two.

A. Contraction on a Smooth Manifold

LetM be an r-dimensional smooth manifold inRn (n > r), and let
�: M! Rr denote some coordinate chart. Let also ~P be the second-
moment matrix of the difference rv:

dv≜ v � V0 (72)

where v denotes a rv taking its values on M, and V0 2 M is some
deterministic point. In the case under consideration, the asymptotic

characteristics of ~P refer to the behavior of its eigenvalues as

tr ~P! 0. Bearing in mind that the support of the probability
distribution of v contracts to a single point on M, the notion of
manifold tangent space becomes useful for examining the

eigenvalues of ~P.

Let V be a realization of the rv v. Let also x≜ �x1; . . . ; xr�T and

X≜ �X1; . . . ; Xr�T denote a rv taking values onRr and its realization,
respectively. In the vicinity of V0 the difference in Eq. (72) is just an
infinitesimal variation of v. Thus, using the chain rule of differentials
and the coordinate chart ����, it follows that

dV � J�X� dX; tr ~P! 0 (73)

where

J�X�≜ @��1�X�
@X

2 Rn�r (74)

Now let c≜ dX=dX, where dX≜ kdXk. Using this definition,
Eq. (73) is rewritten as

dV � J�X�c dX; tr ~P! 0 (75)

which expresses the fact that dV can be written as a linear
combination of vectors [the columns of J�X�] in the tangent space
T�M�.

Letting g 2 Rn be some unit-norm vector, Eq. (75) yields

g T ~Pg� E��gTJ�x�GJ�x�Tg��dx�2�; tr ~P! 0 (76)

where G≜ ccT . Equation (76) implies

min
��1�X�2M

�gTJ�X�GJ�X�Tg� 
 gT ~Pg

E��dx�2�

 max

��1�X�2M
�gTJ�X�GJ�X�Tg� (77)

as tr ~P! 0. Now the condition number of ~P satisfies

�� ~P� �
max
g
gT ~Pg

min
g
gT ~Pg

�
max
g

min
��1�X�2M

�gTJ�X�GJ�X�Tg�

min
g

max
��1�X�2M

�gTJ�X�GJ�X�Tg� ;

tr ~P! 0

(78)

Taking the limit in Eq. (78), the support of the distribution of v
contracts to a single point having the coordinate X0 � ��V0�,
thereby yielding

lim
tr ~P!0

�� ~P� �
max
g
�gTJ�X0�GJ�X0�Tg�

min
g
�gTJ�X0�GJ�X0�Tg�

(79)

Now the dimension theorem yields

dim ker J�X0�T � n � r (80)

implying that there exists a unit-norm vector �g 2 Rn for which
J�X0�T �g� 0r�1. In turn, this implies that the denominator in Eq. (79)
equals zero, yielding

�� ~P� ! 1 as tr ~P! 0 (81)

irrespective of V0.
The preceding argumentation renders �g the direction associated

with the maximal contraction as tr ~P! 0. Let ui�X0� 2 Rn

(i� 1; . . . ; r) be the columns of J�X0�, and letTV0
�M� be the tangent

space ofM at V0. Then

TV0
�M� � span�fui�X0�gri�1� (82)

Because ui�X0�T �g� 0 (i� 1; . . . ; r), it follows that

�g 2 T?V0
�M�; tr ~P! 0 (83)

where T?V0
�M� denotes the cotangent space of M at V0. In other

words, themaximal contraction occurs in a direction perpendicular to
the tangent space at V0 (see Fig. 2).

B. Orthogonality Principle on S3

Because the rotation quaternion is defined on the unit 3-sphere S3,
the preceding insights apply to the quaternion covariancematrixP as
well.¶ Thus, the condition number of P grows without bound as its
trace tends to zero. Furthermore, Eq. (52) suggests that in this case,
the maximal contraction occurs in the direction of the quaternion’s
MMSE estimate. Hence, according to Eq. (83), the MMSE estimate

Fig. 2 TV0
�M� is the tangent space of themanifoldM atV0. The vector �g

is in the cotangent space T?V0
�M�. If, for example,M is the 2-sphere, then

the tangent space is a 2-dimensional plane.

¶The minor difference between the covariance matrix P and the second-
moment matrix ~P is pointed out by Eq. (42) in Sec. III. It is further shown in
the same section that both matrices share the same asymptotic behavior.

CARMI AND OSHMAN 1671



becomes perpendicular to the tangent space of S3 at the contraction
point.

Further assuming that q̂ is the normalized MMSE estimator of q
renders ~P the quaternion estimation error second-moment matrix
[see Eq. (43)]. Both Eqs. (72) and (75) imply that the asymptotic
quaternion estimation error is a linear combination of vectors in the
tangent space at a specific point on S3, which consequently means
that the estimation error becomes asymptotically perpendicular to the
MMSE quaternion estimate. This asymptotic property concurs with
the well-known orthogonality principle associated with Euclidean
MMSE estimators (see [20], p. 177).

V. Simulation Study

A. Quaternion Particle Filter

A simulation study has been carried out to demonstrate the
conclusions of previous sections. The asymptotic behavior of the
quaternion’s estimation error covariancematrix, stated inTheorem1,
was examined using the quaternion particle filter (QPF) of [15]. The
QPF is a quaternion-based particle filter that approximates the
posterior filtering density by means of samples (particles). This type
of estimator is capable of capturing the statistics up to any order, at
the expense of computational efficiency. The QPF was applied to a
conventional attitude estimation problem, assuming the following
measurement model:

b k � Akrk 	 nk; nk �N �03�1; R� (84)

where bk and rk denote body-fixed and reference-frame vectors,
respectively. The attitudematrix at time k, denoted byAk, is related to
the quaternion via the expression

Ak ≜ A�qk� � ��q4k�2 � %Tk%k�I3�3 	 2%k%
T
k � 2q4k �%k�� (85)

where �a�� denotes the cross-product matrix associated with a: that
is,

�a�� �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5 (86)

The process noise is a zero-mean white noise with intensity
0:94 ��rad�2=s, which is injected through the quaternion transition
matrix.

The results of the simulation runs corroborate the predictions of
Theorem 1 regarding the behavior of the estimation error covariance
matrix of the QPF. Figure 3 shows the eigenvalues and the condition
number of the covariance matrix as computed by the QPF algorithm
using 5000 particles in a typical run. The diagonal straight line in
Fig. 3b corresponds to 1=�max. From this figure it is evident that the
condition number of the covariance matrix is of the order of 1=�max,
as �max ! 0. In passing, it is noted that similar results have been

obtained using only 150 particles (which demonstrates the efficiency
and accuracy of the QPF algorithm).

B. Additive EKF

To demonstrate Corollary 4, the covariance matrix of the AEKF
algorithm of [11] was computed. As in the QPF case, the AEKF was
applied to a conventional attitude estimation problem, in which the
same vector measurement model was used. The AEKF initial
conditions and the noise statistical properties were set in accordance
with the conclusions in [14,19]. The authors of [14,19] conclude that
the AEKF covariance matrix becomes ill-conditioned, and even
singular, in one of the following situations: 1) in the absence of
process noise, 2) when the attitude estimation error covariance
becomes very small, and 3) when the initial covariance matrix
reflects extremely high certainty in the fourth quaternion estimation
error component. In other words, when P0 is ill-conditioned.

The AEKF was extensively tested under the aforementioned
conditions, using 5000Monte Carlo runs. In each run, the AEKFwas
implemented with the exclusion of process noise. The measurement
noise covariance was set to R� 10�11I3�3, allowing the attitude
covariance to reach extremely small values within a short time. The
initial covariance condition numberwas set within the range of 106 to
108, where the first 3 diagonal elements of P0 were uniformly
sampled over the interval �10�7; 10�5�. In each run, the true initial
attitude quaternion q0 was uniformly sampled on the unit 3-sphere,
and the initial estimate was set as

q̂0 �X0=kX0k; X0 �N �q0; P0� (87)

Figure 4 shows the distributions (via their percentile lines) of the
maximal eigenvalue and the condition number of the AEKF-
computed covariance matrix. This figure clearly validates
Corollary 4. The AEKF-computed covariance does not exhibit the
asymptotic properties conveyed by Theorem 1 and, except for a brief
transient at the beginning of the runs, its condition number is “well-
behaved” and improves with time.

C. AEKF in a Static Case

Consider the problem of estimating the attitude of a nonrotating
body (i.e., having zero dynamics and no process noise) using vector
observations. In this case, the AEKF covariance update equation can
be expressed in information form as

P�1k	1=k	1 � P�1k=k 	HT
k R
�1Hk (88)

where the 3 � 4measurement sensitivity matrixHk depends on both
the quaternion estimate q̂k and a reference vector measurement rk:
that is [11],

Hk ≜H�q̂k; rk� �
�
@�A�q�rk�T

@q

����
q�q̂k

�
T

(89)
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Fig. 3 Eigenvalues (left panel) and condition number (right panel) of the quaternion estimation error covariance matrix as computed by the QPF

algorithm using 5000 particles. The diagonal straight line in the right panel corresponds to 1=�max.
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Suppose that the attitude estimation errors are small, such that

~qk � q̂k � q� �O���;O���;O���;O����T

with probability 1; �! 0 (90)

where q≜ �q1; q2; q3; q4�T denotes the true attitude quaternion.
Using Eq. (90) in Eq. (89) while retaining the least-order term of the
corresponding Taylor expansion of Hk about q yields

Hk �H�q; rk� 	�H�q; rk� (91)

where the entries of the 3 � 4 random matrix �H�q; rk� satisfy

�Hij�q; rk� � �ruHij�u; rk�ju�q�T ~qk �O���
with probability 1; �! 0 (92)

Define

Ck ≜
1

k
P�1kjk (93)

Using Eq. (88), Ck can be expressed as

Ck �
1

k

�
P�10j0 	

Xk
i�1

HT
i R
�1Hi

�

� 1

k
P�10j0 	

1

k

Xk
i�1

H�q; ri�TR�1H�q; ri�

	 1

k

Xk
i�1

H�q; ri�TR�1�H�q; ri�

	 1

k

Xk
i�1

�H�q; ri�TR�1H�q; ri�

	 1

k

Xk
i�1

�H�q; ri�TR�1�H�q; ri� (94)

Nowassume that frigki�1 is an independent and identically distributed
sequence of sample vectors drawn from the probability distribution
of the rv r. Then, from the strong law of large numbers, it follows that

lim
k!1

Ck � S	 S1 	 S2 with probability 1 (95)

with S, S1, and S2 given by

S� E�H�q; r�TR�1H�q; r�� (96a)

S1 � E�H�q; r�TR�1�H�q; r�� 	 E��H�q; r�TR�1H�q; r�� (96b)

S2 � E��H�q; r�TR�1�H�q; r�� (96c)

where all expectations are performed with respect to the random
vector r. Using Lemma 4 (see Appendix C) in Eqs. (96b) and (96c)
yields

�S1�ij �O���; �S2�ij �O��2�; �! 0 (97)

Equations (93), (95), and (97) yield

lim
k!1

Ck � lim
k!1
�kPkjk��1 � �S with probability 1 (98)

where �Sij ≜ Sij 	O��� as �! 0. Perhaps counterintuitively, the
rank deficiency of the matrix H�q; r�TR�1H�q; r� does not
necessarily imply singularity of S in Eq. (96a). In fact, considering
the random nature of the vector observation r, this possibility can be
outright rejected, as established in Lemma 5 (see Appendix C).

Now, because the eigenvalues of amatrix are continuous functions
of its entries, it follows from Eq. (98) that

�i� �S�� lim
k!1

1

k
�i�P�1kjk� with probability 1; i� 1; . . . ;4 (99)

Also,�min� �S� � �min�S�, andLemma5 states that�min�S�> 0, hence
Eq. (99) yields

�� �S� �
lim
k!1

1
k
�max�P�1kjk�

lim
k!1

1
k
�min�P�1kjk�

� lim
k!1

��P�1kjk�

� lim
k!1

��Pkjk� with probability 1 (100)

Thus, under the assumptions of the specific example presented
here, the asymptotic condition number of the AEKF-computed

covariance should equal the condition number of �S� S almost
surely. The matrix S can be easily approximated via theMonte Carlo
sampling method. Using 5 � 104 vector samples corresponding to
the uniform distribution

r � �U��30; 30�; U��30; 30�; U��30; 30��T (101)

and setting R� 10�11I3�3, the condition number of the computed S
matrix was found to be ��S� � 1:5028. On the other hand, the limit
condition number limk!1��Pkjk�was evaluated using aMonteCarlo
simulation consisting of 1000 AEKF runs. In all runs, the initial
attitude estimation error was set as described in Sec. V.B. Figure 5
shows the distribution of ��Pkjk� using percentile curves, as well as
the line corresponding to ��S� � 1:5028. As can be clearly seen from
this figure, the distribution of ��Pkjk� quickly converges to the value
of ��S� � 1:5028, in accordance with the prediction of Eq. (100).

As an additional verification of Eq. (98), the following matrix
relative discrepancy index is adopted:

J�A;B�≜ �max�A � B�
�max�A�

; A; B 2 Rn�n (102)
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Fig. 4 Distribution of maximal eigenvalue (left panel) and condition number (right panel) of AEKF-computed covariance matrix in 5000Monte Carlo

runs. Lines, top to bottom, correspond to 95, 85, 50, 15, and 5 percentiles.
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Figure 6 shows the behavior of the discrepancy index J�S; �kPkjk��1�
in a typical single run. Clearly, this index tends to zero, in agreement
with the prediction of Eq. (98).

VI. Conclusions

The asymptotic properties of the quaternion estimation error
covariance are investigated. It is proved that, although this
covariance is regular, it does become asymptotically ill-conditioned
as its trace decreases. In particular, it is shown that the asymptotic
condition number of this covariance matrix is of the order of the
inverse of its largest eigenvalue. A particularly interesting outcome
of the analysis is that the aforementioned asymptotic behavior cannot
be captured by low-order Taylor approximations of the covariance,
such as the one computed by the additive extended Kalman filter. A
geometric interpretation of these results is given using concepts from
differential geometry.

The analytical results are backed by a simulation study employing
both the extended Kalman filter and the recently introduced
quaternion particlefilter. In addition, the covariance computed by the
additive extended Kalman filter is demonstrated to have a perfectly
healthy condition number in a static, noise-free attitude estimation
problem, contrary to predictions made in the literature.

Appendix A: Proof of Proposition 1

Proof. Let the indicator rv of an event C be defined as

IC�!�≜
�
1 ! 2 C
0 otherwise

(A1)

Using the indicator function, the expectation of the random variable
�vTv�d	1 can be written as

E��vTv�d	1� � E
�X1
i�1
�vTv�d	1If�i�1�tr �<vTv
i tr �g

�
(A2)

Manipulating Eq. (A2) yields

E��vTv�d	1� 
 E
�X1
i�1

id	1�tr ��d	1If�i�1�tr �<vTv
i tr �g
�

� �tr��d	1
�X1
i�1

id	1E�If�i�1�tr�<vTv
i tr �g�
�

� �tr ��d	1
�X1
i�1

id	1prob��i� 1�tr �< vTv 
 i tr ��
�

(A3)

Because � is finite, it follows that tr �<1. Under the condition
stated in Proposition 1, Eq. (A3) implies the proposition. □

Appendix B: Proof of Proposition 2

Proof: Themth-order Taylor expansion of ’�v� about the nominal
realization V� of v is given by

’̂ �m� �
Xm
i�0

1

i!
E���v � V��Tru�if�u�ju�V� � (B1)

Obviously,

’̂ �m� 

Xm
i�0

1

i!
E��jv � V�jT jruj�if�u�ju�V� � (B2)

where jxj denotes a vector for which the elements are jxjj
(j� 1; . . . ; n). The notation jruj indicates that the gradient is
evaluated using the absolute values of its components; thus, its jth
component is given by

�jrujf�u��j �
����@f�u�@uj

���� (B3)

Equation (B2) satisfies

’̂ �m� 

Xm
i�0

ck;iE�kv � V�ki1� (B4)

where k � k1 denotes the 1-norm, and the constant ck;i is defined as

ck;i ≜
1

i!
max
j1;...;jn

���� @if�u�
@uj1@uj2 � � � @ujn

����
u�V�

(B5)

Recalling that every two distinct norms on Rn are equivalent,
Eq. (B4) can be written using the Euclidean norm k � k as

’̂�m� 
 �
Xm
i�0

ck;iE�kv � V�ki�

� �
Xm
i�0

ck;iE���v � V��T�v � V���i=2� (B6)

where � is a norm equivalence factor. Because v � V� satisfies
Proposition 1 for any d � 0, Eq. (B6) implies the proposition. □

Appendix C: Auxiliary Results

Lemma 2. The following inequality holds for any �, satisfying
0 
 � 
 1:

��1 � ��1=2 � 1�2 
 �2 (C1)

Proof. Let f: R ���! R be a scalar function defined as

f�a� � a3 � 3a (C2)

0 50 100 150 200 250 300 350 400 450 500
10

0

10
1

k

κ

Fig. 5 Distribution (percentile curves) of the condition number of the

covariance computed by the AEKF in 1000 Monte Carlo runs vs the

condition number of the Smatrix, computed via 50,000 samples (dashed

line). Solid lines, top to bottom, correspond to 95, 85, 50, 15, and 5
percentiles.
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Fig. 6 Matrix discrepancy index; Jk ≜ J�S; �kPkjk�
�1�; single run.
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It can be verified that the function f�a� is a nonincreasing function on
the interval �0; 1�with a minimum at a�	1. Because f�	1� � �2,
it follows that

a3 � 3a	 2 � 0; a 2 �0; 1� (C3)

Multiplying both sides of Eq. (C3) by a and rearranging terms yields

a4 � 2a2 � a2 � 2a (C4)

whence

�1 � a2�2 � �a � 1�2 (C5)

Finally, setting a� �1 � ��1=2 2 �0; 1� in Eq. (C5) yields the
Lemma. □

Lemma 3. Let � 2 Rn�n be an orthogonal matrix written as

�� ��;��; � 2 Rn��n�1�; � 2 Rn (C6)

then the following inequality holds for every vector v:

k�Tvk 
 kvk (C7)

where k � k denotes the Euclidean norm.
Proof. The definition of the L2-induced matrix norm implies

k�Tvk 
 �max��T�kvk (C8)

Because � is orthogonal, it follows that

��T � In�n � ��T (C9)

The eigenvalues of the rank-1matrix��T consist ofn � 1 zeros and a
single nonzero eigenvalue that equals one. Therefore, Eq. (C9) can
be written as

��T �U
�
In�n �

0�n�1���n�1� 0�n�1��1
01��n�1� 1

� ��
UT (C10)

whereU 2 Rn�n is an orthogonal matrix having � as its nth column.
Equation (C10) implies that

�max���T� � 1 (C11)

yielding �max��T� � 1. Using the last result in Eq. (C8) yields the
Lemma. □

Lemma 4. Let ! and � be a random vector and its realization,
respectively. Let also G1�!� and G2�!� be some arbitrary n � n
finite random matrices, and let Z�!� be an n � n random matrix for
which the entries satisfy

Zij�!� �O��d� with probability 1; �! 0 (C12)

Then the entries of the matrix

S≜ E�G1�!�Z�!�G2�!�� (C13)

satisfy

Sij �O��d�; �! 0 (C14)

Proof. Let g1�!� and g2�!� be two finite random vectors taking
values in Rn. Then

E�g1�!�TZ�!�g2�!�� �
Z 	1
�1

g1���TZ���g2���p!���d�


 �max
�
g1���TZ���g2����

Z 	1
�1

p!��� d�

� �max
�
g1���TZ���g2���� (C15)

where p!��� denotes the pdf of !. Because g1�!�; g2�!�<1 with
probability 1, Eq. (C15) implies

E�g1�!�TZ�!�g2�!�� �O��d�; �! 0 (C16)

Setting g1�!� �G1�!�Tei and g2�!� �G2�!�ej where em 2 Rn

denotes a unit-normvectorwith 1 as itsmth element, Eq. (C16) yields

Sij � eTi E�G1�!�Z�!�G2�!��ej �O��d�; �! 0 (C17)

thereby completing the proof. □

Lemma 5. If the observations sequence frigki�1 consists of at least
two distinct noncolinear vectors, then the convergent sum

S� lim
k!1

1

k

Xk
i�1

H�q; ri�TR�1H�q; ri� (C18)

is nonsingular [i.e., �min�S�> 0].
Proof. Through direct calculation it can be verified that the matrix

H�q; ri� of Eq. (89) satisfies

H�q; ri���q�A�q�ri � 03�1 (C19a)

and

H�q; ri�H�q; ri�T � 4�rTi ri�I3�3 (C19b)

where

��q�≜ q4I3�3 	 �%��
�%T

� �
(C20)

Equations (C19) imply thatH�q; ri� is full rank (i.e., of rank 3) with
null space spanned by

kerH�q; ri� � span�vi� (C21)

where vi ≜��q�A�q�ri. Using the well-known property [7]

��q�T��q� � I3�3 (C22)

yields, for any two vectors vi and vj,

vTi vj � rTi A�q�T��q�T��q�A�q�rj � rTi rj (C23)

which means that vi and vj are colinear if and only if ri and rj are
colinear. Both Eqs. (C21) and (C23) assert that if ri and rj are
noncolinear, the kernels of H�q; ri� and H�q; rj� do not intersect.
This in turn implies that as long as the sequence frigki�1 consists of at
least two distinct noncolinear observation vectors, the convergent
sum in Eq. (C18) is nonsingular.

Appendix D: EKF Covariance Update

The EKF is a linear sequential estimator of the form

x̂kjk � x̂kjk�1 	 Kk�yk �Hkx̂kjk�1� (D1)

whereKk 2 Rn�p andHk 2 Rp�n are theKF-optimal gainmatrix and
measurement sensitivity matrix, respectively. The propagated and
updated states at time k � 1 are denoted by x̂kjk�1 and x̂k�1jk�1,
respectively. Using Eq. (D1), the EKF estimation error is

~xkjk � xk � x̂kjk�1 � Kk�yk �Hkx̂kjk�1� (D2)

The KF assumes a linear measurement model of the form

yk �Hkxk 	 nk (D3)

where nk is zero-mean white Gaussian noise with a known
covariance Rk. Its formal covariance measurement-update form is
obtained by first substituting Eq. (D3) in Eq. (D2): that is,

~xkjk � �I � KkHk� ~xkjk�1 � Kknk ≜ G� �xk;Yk�1�;
�xk � �xTk ;nTk �T

(D4)

where ~xkjk�1 ≜ xk � x̂kjk�1 is the propagated estimation error at time
k � 1. Note that this rv ismeasurable on the joint probability space of
xk and Yk�1. Taking the conditional expectation of Eq. (D4) yields
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~̂xkjk ≜ E� ~xkjkjYk � Yk� � �I � KkHk�E� ~xkjk�1 j Yk�1 � Yk�1�
(D5)

The EKF assumes that the conditional mean of the propagated
estimation error is zero (an assumption that is essentially incorrect):
that is,

E� ~xkjk�1 j Yk�1 � Yk�1� � 0n�1 (D6)

Under this assumption, Eq. (D5) yields

~̂x kjk � 0n�1 (D7)

which implies that the computed estimation error covariance at time
k is the second-moment matrix of the estimation error ~xkjk.

In general, the Taylor expansion of the second moment of ~xkjk
about �x�k takes the form

Pkjk ≜ E� ~xkjk ~xTkjkjYk � Yk� � G� �x�k ; Yk�1�G� �x�k ; Yk�1�T

	 �rx�
k
G� �xk;Yk�1�T�TE�xk � x�k jYk � Yk�G� �x�k ; Yk�1�T

	 G� �x�k ; Yk�1��E�xk � x�k jYk � Yk��Trx�
k
G� �xk;Yk�1�T

	 �rx�
k
G� �xk;Yk�1�T�TE��xk � x�k��xk � x�k�T jYk � Yk�

� rx�
k
G� �xk;Yk�1�T 	 �rn�

k
G� �xk;Yk�1�T�T

� E��nk � n�k��nk � n�k�T �rn�kG� �xk;Y
k�1�T 	 � � � (D8)

wherera�fT is the Jacobianmatrixwith @fi=@aj as its �i; j� element,
evaluated at a�. Notice that in the EKF case, the third- and higher-
order terms in Eq. (D8) vanish due to the linearity of the estimation
error in Eq. (D4). In addition, because nk is white, the cross-
correlation terms vanish as well. The EKF sets the nominal state to
�x�k � �x̂Tkjk�1; 01�p�T , which consequently means that the zeroth- and

first-order terms in Eq. (D8) equal zero. This yields the conventional
measurement-update form

Pkjk � �I � KkHk�Pkjk�1�I � KkHk�T 	 KkRKTk (D9)

where the propagated estimation error covariancePkjk�1 is defined as

Pkjk�1 ≜ E� ~xkjk�1 ~xTkjk�1 j Yk�1 � Yk�1� (D10)

Equation (D8) clearly shows that the covariance matrix of the EKF
consists of second-order terms only.
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