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A novel algorithm is presented for the estimation of the spacecraft angular rate from vector observations.
Belonging to the class of Monte Carlo sequential methods, the new estimator is a particle filter that uses approximate
numerical representation techniques for performing the otherwise exact time propagation and measurement update
of potentially non-Gaussian probability density functions in inherently nonlinear systems. This paper develops the
filter and its implementation in the case of a low Earth orbit spacecraft, acquiring noisy geomagnetic field
measurements via a three-axis magnetometer. Because the effective measurement noise in this case is time correlated,
a special procedure is developed to account for that correlation in the particle filter implementation. The new
estimator copes with the absence of an exact inertia tensor by employing a secondary particle filter that computes a
maximum-likelihood estimate of the tensor of inertia, thus avoiding the need to expand the primary filter’s state. This
renders the new estimator highly efficient and enables its implementation with a remarkably small number of
particles. The results of a simulation study are presented, in which the new filter is compared to a recently presented
conventional extended Kalman filter. The comparison demonstrates the viability and robustness of the new

algorithm and its fast convergence rate.

I. Introduction

PACECRAFT attitude control systems and attitude estimation

algorithms must use angular rate information for tasks such as
detumbling, nutation damping, momentum management, and
attitude propagation. A widely used angular rate sensor onboard
spacecraft is the rate gyroscope triad, whose purpose is to provide
three-axis rate information.

Much experience has shown that rate gyros are failure prone. They
tend to saturate during high angular rate scenarios such as tumbling
and initial attitude acquisition. Moreover, gyros may not be suitable
for low-cost satellites due to price, power consumption, and weight
and volume considerations. This leads to the requirement of reliable,
gyroless rate estimation schemes that can provide backup
capabilities for spacecraft that use rate gyros, and affordable rate
solutions for low-cost gyroless satellites.

The most common source of information for deriving attitude and
attitude-rate estimates are so-called vector measurements. These can
be obtained from a star tracker, sun sensor, Earth sensor, and three-
axis magnetometer (TAM). Whereas high-accuracy star trackers are
extremely expensive and sun sensors are useless during sun eclipse
[for low Earth orbit satellites], the TAM is an integrated part of any
spacecraft, and its readings are available at any time.

Several methods have been proposed in the past for gyroless
angular rate estimation from vector measurements. Modeling the
angular rate as a stochastic process and considering the nonlinearities
involved, most of the methods use the framework of extended
Kalman filtering. Psiaki et al. [1] present an extended Kalman filter
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(EKF) for attitude and attitude-rate estimation from TAM readings.
Based upon perfectly known spacecraft ephemeris, this algorithm
converges in about an orbit and yields coarse estimates. Challa et al.
[2] use a slow deterministic algorithm to obtain a coarse angular rate
estimate that is later fed into an EKF-based orientation and angular
rate estimator. This algorithm uses temporal derivatives of Earth’s
magnetic field and is limited to steady-state, operational conditions
and when the angle between the satellite momentum and Earth’s
magnetic field is larger than 15 deg. Azor et al. [3] present an
extended interlaced Kalman filter that uses vector measurements and
their derivatives to estimate the angular rate. In related work, Harman
and Bar-Itzhack [4] present a pseudolinear Kalman (PSELIKA) filter
and a continuous-discrete algebraic Riccati equation (SDARE) filter
that also use the derivatives of vector measurements to estimate the
angular rate components. Azor et al. [3] use the PSELIKA and the
SDARE filtering schemes to estimate the angular rate based on qua-
ternion measurements or their temporal derivatives. The algorithms
presented in [3-5] assume the knowledge of spacecraft attitude. In
[6] a PSELIKA filter has been presented for estimating both attitude
and angular rate, but this filter has been shown to be restricted with
regard to its measurement requirements and update rate. Crassidis
and Markley [7] propose a predictive filter for gyroless attitude
estimation that is not based on the Kalman filtering methodology.
Based on the minimum model error estimator, and assuming that the
spacecraft tensor of inertia is perfectly known, their algorithm
estimates the spacecraft total momentum (along with the quaternion
of rotation), thereby providing an estimate of the angular rate.

A rather different class of algorithms has been recently introduced
in [8-10]. In this approach, the angular rate is estimated
independently of any attitude or orbital information. This class of
estimators relies on the underlying assumption that the inertial vector
measurement source (i.e., the sun direction vector or the magnetic
field vector) is nearly constant in inertial frame between two
successive measurements. Thus, the EKF algorithm presented in [8]
uses a coarse batch estimator for initialization proposes and executes
numerical differentiation of the vector measurements, which limits
its attainable accuracy. Improved versions of the estimators of [§] are
presented in [9], where the EKF is formulated to account, in addition
to the angular rate components, for corrections in five of the inertia
tensor elements. However, the deterministic batch estimator of [9]
shares the same disadvantage of the EKF of [8] because it uses
differentiation of the magnetic field vector. The EKF proposed in
[10] uses analytic propagation to achieve better accuracy and to
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reduce the computational burden. However, whereas this estimator
exhibits fast convergence when the spacecraft inertia tensor is
perfectly known, its performance degrades when the inertia tensor is
unknown and has to be estimated.

Based upon the underlying assumption of [8§-10], and motivated
by [11], this paper proposes to sequentially estimate the angular rate
from vector observations only, using a particle filter (PF). PFs, also
known as sequential Monte Carlo (SMC) methods, refer to a set of
algorithms implementing a recursive Bayesian model using
simulation-based methods [12]. Avoiding the underlying assump-
tions of the Kalman filter, namely, that the state space is linear and
Gaussian, these rather general and flexible methods enable solving
for the posterior probability distributions of the unknown variables
(upon which all inference on these variables is based) within a
Bayesian framework, exploiting the recent dramatic increase in
computing power. It should be emphasized that PFs are not just smart
implementations of the Kalman filter or its nonlinear variants/
extensions; rather, they are entirely different algorithms that lead to
entirely different solutions to the nonlinear, non-Gaussian filtering
problem. Contrary to Kalman filter extensions, the solutions
obtained using PF algorithms are approximations to the optimal (in
the Bayesian sense) solutions, which can be made arbitrarily close to
the exact solutions by increasing the number of particles involved in
the computation, thereby also increasing the computational
workload.

Estimating the angular rate using a PF enjoys two major
advantages relative to existing methods. First, the PF is easy to
implement, and (when implemented with a sufficiently large number
of particles) is insensitive to the initial conditions and to the
nonlinearities involved. Second, the PF is not constrained with
regard to the noise distributions, that is, it can work with any (not
necessarily Gaussian) noise distribution associated with the
particular sensors involved. In contradistinction, the KF assumes
Gaussian distributions of the driving noise processes, an assumption
that not always holds. On the other hand, implementing the PF with a
large number of particles (to achieve high accuracy) can lead to an
impractical computational burden.

This paper presents a novel efficient PF algorithm that alleviates
the workload problem via two special measures. First, a special
initialization procedure is used, to compensate for the small number
of particles. Based upon the first vector observation, an initial set of
samples is generated that represents a small, but highly likely, region
of state space. This ensures fast convergence with a relatively small
number of particles and renders the PF suitable for real-time
implementation. Second, greater robustness and higher computa-
tional efficiency are achieved by estimating the spacecraft entire
inertia tensor using a second, static PF, which works with the main PF
in an interlaced manner.

A major contribution of this paper is related to the fact that the
effective measurement noise for the mathematical model under
investigation turns out to be time correlated. To enable the PF to take
into account that time correlation, an approximate likelihood
computation procedure is developed herein. This procedure extends
the standard procedure used when the observations are conditionally
independent given the state process.

The remainder of this paper is organized as follows. The next
section presents a brief introduction to SMC methods. Next, the
mathematical model of the angular rate estimation problem is
outlined. Section IV provides a detailed development of the angular
rate PF for the case where the inertia tensor is exactly known. A
special approximate likelihood computation procedure is developed
to accommodate the effective measurement noise time correlation.
The extension of the PF algorithm to account for inertia tensor
uncertainties via the use of a secondary, static PF then follows in the
next section. Section VI presents the results of an extensive
simulation study that was carried out to assess the performance of the
new algorithm and compare it with the EKF estimator of [10].
Concluding remarks are offered in the last section. As a matter of
notational convention, lower case and upper case letters are used to
denote random variables and their realizations, respectively.

II. Particle Filtering

Particle filters are numerical simulation-based methods aimed at
sequentially approximating the optimal filtering distribution. Based
upon the strong law of large numbers, these methods implement
sampling techniques to obtain a finite number of samples (called
particles). The samples are then manipulated via a Bayesian
recursion yielding a two-staged filtering methodology, comprising a
propagation stage and a measurement update stage.

PFs draw much attention due to their ability to maintain an
approximation of the entire posterior filtering distribution. Along
with their rather simple simulation-based mechanization, this makes
them highly preferable for highly nonlinear and non-Gaussian
filtering applications.

Many researchers regard PFs as computationally intensive
methods that are mainly acceptable for postprocessing computations.
However, smart implementation, along with proper exploitation of
the problem’s unique characteristics, can render these methods fast
and amenable for real-time applications.

A. Bayesian Approach to Filtering

Let the unobserved process {x;, k € N} be an R"-valued Markov
process with a given initial probability density function p, that
evolves according to a transition kernel p,,|,, . The observation
process {y;, k € N} is an R”-valued stochastic process. Given x,, the
observation process is a conditionally independent sequence,
possessing the conditional probability density function (pdf) p,, |, -
Let X% 2 {x,.....,x} and Y* £ {y,.....y,} be the process and
observation time histories up to time k, respectively, and let X* 2
{X,,.... X, and Y* £ {Y,, ..., Y,} be the realizations of X* and )*,
respectively.

In filtering problems one is commonly interested in estimating the
marginal pdf p,, |y« (filtering density) sequentially in time. Adopting
the Bayesian approach to filtering, this density is obtained, using a
two-step recursion, as

Pt (X [ Y1)

+00
=/ Pty Xic | Xem ) Pyt Xir | Y*hdx,; (la)
—00

Py X | Y5
— pyk\).‘k(Yk | Xk)
Zoo Pyl Tk | Xp) Pyt (K a k
s Yl X (X | Y1) dX

Dy (Xk | Yk*l)
(1b)

In most cases one cannot obtain the normalizing density p,, |+ and
the marginals of the posterior density, pa«y«. Thus, these
expressions can rarely be used in a straightforward implementation.
Instead, approximations should be used, using alternative methods.

B. Particle Approximation

The PF mechanization approximates Eqs. (1) using a finite number
of samples. To understand the rationale behind this method, assume
that N independent random samples (called “particles’), denoted by
{X;()}Y, are sampled from the posterior distribution. Then, it
follows directly from the strong law of large numbers that, for any
function f that is integrable with respect t0 p x|y, [13]

N
&Y Fat ) > ELF@ | ¥ @)
i=1

where (here and in the sequel) the symbol — stands for almost sure
convergence in N. Equation (2) means that the continuous posterior
pdf px )+ can be effectively approximated by its particles, and that
the level of accuracy of this approximation is determined by the
number of particles used.
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Unfortunately, sampling directly from the posterior distribution is
typically infeasible. For this reason the concept of importance
sampling is an integral part of any practical PF [14]. When using
importance sampling, the samples are drawn from a so-called
importance distribution. The importance distribution can be chosen
arbitrarily; the only constraint it should satisfy is that its support must
include the support of the posterior distribution. Nevertheless,
because the choice of importance distribution greatly affects the
behavior of the PF, it constitutes a major consideration during PF
design.

A simple choice of importance density is the prior density p y«.
Adopting the prior as the importance density, an approximation of
the expectation in Eq. (2) is obtained as

&Y w D)
i=1

where

A ka\yk(xk(i) | )

wi (i) = . 3
‘ P (X4(0))
is the importance weight of the ith sample. Let
Looa wi(d)
w () ==y “
YL w)

be the normalized importance weight of the ith particle, then it can be
easily verified that

N
D (i) (X)) — E[f(X%) | Y¥] )
i=1

The PF algorithm exploits the recursive structure of Egs. (1) to
compute the importance weights sequentially in time. Indeed, Eq. (3)
yields
wi (i)

o P Y | Xk (D) Py, (X (D) [ Xgy (D) p iy (XL | YR

P Xe(D) | Xy (D) par (X1(0))
:Pykm(yk | X (D) wi—y (0) (6)

C. Particle Degeneracy and Resampling

Practical implementation of the sequential importance sampling
method, consisting of iterating Eq. (6), inevitably results in zero
weights for all but, usually, one particle, after just a few iterations.
This phenomenon is known as particle degeneracy in the PF
literature [14]. Particle degeneracy occurs due to the use of a finite
number of particles, which consequently allows only a partial
representation of the sample space. A solution to this problem was
introduced a decade ago as an ad hoc procedure known as
resampling.

Resampling consists of discarding state trajectories whose
contributions to the final estimate are small and multiplying
trajectories whose contributions are expected to be significant. This
means regeneration of particles with large importance weights and
eliminating those with small importance weights. The resampling
procedure decreases the particle degeneracy algorithmically, but
introduces some practical problems. During the resampling
procedure, more likely particles are multiplied, so that the particle
cloud is concentrated in regions of interest of the state space. This
produces a new particle system in which several particles have the
same location. Moreover, if the dynamic noise is small, the particle
system ultimately concentrates in a single point in state space. This
loss of diversity eventually prevents the filter from correctly
representing the posterior. One way of maintaining the particles’
diversity is by injecting artificial process noise into the system. This

technique is known as regularization, or roughening (see [12],
p. 247).

III. Mathematical Model

This section presents the angular rate process and observation
models. The process mathematical model is based on Euler’s
equation. The observation model relates the body-referenced vector
measurements to the sought-for angular rate process. It turns out that
the observation model’s effective measurement noise is time
correlated. This correlation is carefully handled in the next section.

A. Angular Rate Process Model

Let{®}%,, @ € R be the angular velocity (angular rate) process
of some body-frame Cartesian coordinate system 3 with respect to
some inertial reference coordinate system R, resolved in B.
Representing the angular rate of a spacecraft, this process is the
discrete-time equivalent of a continuous-time stochastic process
satisfying Euler’s equation. Using the common white noise
engineering notation, this equation is written as

o) =J"~e)xJo®]+50.  te€(tt) (D
where J denotes the spacecraft tensor of inertia. Given some initial
distribution @ ~ p,,, Eq. (7) is driven by the process noise {(t),
representing the combined effect of external disturbance torques
such as the aerodynamic, gravity gradient, and residual magnetic
dipole torques.

B. Observation Model

The discrete-time quaternion stochastic process satisfies the
recurrence equation

q; = 9q;- 1, k=1,2,... ®)

where the discrete-time process {q;}%>, denotes the quaternion of
rotation from a given reference frame R onto the body frame B, with
some initial pdf qo ~ pg,. The quaternion process takes its values on
the unit 3-sphere S* and is constructed from vector and scalar parts,
respectively,

q.=[el qul" 9

The orthogonal transition matrix @, is expressed using ;.
Assuming that ,, is constant during the sampling time interval Az
yields [15]

cos(} [|@il|AD) L33 — [ x] ¥y
b, = D(w,) = 2 3
¢ = P@) [ ! cos( oy A7)
(10)
where
1
w/fkésin(—nwknm) O (11)
2 ol
Let
S 2qi®qp,. k=12 (12)

be the rotation quaternion associated with the rotation of q,_; onto
q;, where ® denotes quaternion multiplication [15]. Then, Eq. (8)
yields

8qiy = (Prqi) ® Q) = Qk(qk—l ® (Ikill) = Cbk[ole I]T
(13)
and Egs. (10) and (13) give
8011 = ¥y

Equation (14) defines the transformation between @, and §q;_, . For

8qap-r = cos(%||wk||At) (14)
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conciseness, the quaternion vector and scalar parts will not be
designated separately in the ensuing, and thus the following notation
will be used for the transformation in Eq. (14):

3qiy = Q(wy) (15)

Now let r, and y, be a pair of corresponding vector measurements
acquired at time & in the two Cartesian coordinate systems R and B,
respectively. Let A(q,) be the attitude matrix corresponding to the
quaternion q,. In general, the reference vector r;, can be assumed to
be known exactly, whereas the body vector y, is measured. The
relation between the body and reference frame vectors is given by

Y« = AQri + 8y, k=0.1,... (16)

where {8y, }72 is the zero-mean measurement noise process, whose
pdfis known, 8y, ~ ps,, , with covariance R} Using the definition in
Eq. (12), the vector observation at time k can be written as

Y =Aq 1 ® i)y + 8y, = A(8qu_ )A(Qr_ )Ty + 8y
k=1,2,...
arn
Assuming, as in [§—10], that the reference frame vector r;_; does not
change considerably during the time interval A¢, yielding ry_; ~ ry,
Eqgs. (15-17) give the following observation equation:
Yi =ACQU_) Y1 — 8yi—1) + 8y = A(Q(@ ) Y1 + v (18)
The process {v,}%° |, where
A
vy =0y — AGqe_1)8yi (19)
is the effective observation noise process.

A slightly different formulation of the observation equation (18) is
obtained by noticing, from Eq. (12), that

A(qy) = A(Q(@)A(qy—1) (20)

thus identifying A(Q(w,)) as the transition matrix corresponding to
the solution of the attitude kinematics equation

94 = [~ox]A0) Q1)
dr

over the sampling interval At. Defining the matrix operator I'(-) as

T(0,) £ exp(—[wx]A7) (22)
Equation (21) yields
A(Q(w;)) = I'(wy) (23)
Using Eq. (23) in Eq. (18) gives
Yie=T(@)yi1 + vi(wy) (24)
with
V(@) =0y, — T(@p) 8y (25)

where it is noted that the effective observation noise depends on the
angular rate random variable @ .

Clearly, the effective measurement noise process of the
observation model in Eq. (24), {v (@)}, is time correlated
(colored). The derivation of an angular rate PF for the specific case
where the measurement noise is colored is detailed in the next
section.

IV. Angular Rate Particle Filter

The angular rate particle filter is first derived in this section while
assuming a perfectly known spacecraft inertia tensor. This

assumption will be relaxed in the next section. The new filter is
termed in the sequel omega particle filter (OPF).

A. Likelihood Computation for Colored Measurement Noise

Because the effective measurement noise is colored, the
assumption that the observations are conditionally independent
given the state process, which underlies Eq. (1b), is violated. The
classical solution to this problem consists of state augmentation [10].
However, implementation of a high-dimensional particle filter is
computationally inefficient because of the large number of particles
required for properly representing a high-dimensional pdf.

An efficient method for modeling colored noise measurements is
proposed in this work. The method, which consists of approximating
the likelihood of each particle, demands no major modifications in
the PF mechanization.

Let Y, be a realization of a single measurement y, and let 2, be a
realization of w,. For convenience, redefine the observation time

history up to time k and its realization as J* 2 {¥0,---» ¥} and

Yk & {Y,, ..., Y.}, respectively. Because the observation process is

colored, the Bayesian recursion [formulated in Eq. (1b) for the case
of conditionally independent measurements] is now written as

P+ <9k | Yk)
Pyt (Yk | 2, kal)
S5 Py (Y 1 20 V1) py s (@11 71 0,

X Pyt (41 V) (26)

Clearly, Eq. (26) differs from Eq. (1b) only in the likelihood term
Pyl 1> Which is affected by the time correlation of the
measurement process. An approximate computation of this
likelihood is presented in the ensuing.

1. Markov Modeling of the Effective Measurement Noise

First, the effective measurement noise process {v; (@)}, is
approximated by a Gauss—Markov process with equivalent second-
order statistics. The approximated noise is described via the
following first-order Markovian model

V(@) =M (@) + wy, k=2,3,... (@27)

where M, is a decorrelation matrix and {w, }3° , is a zero-mean, white
Gaussian driving noise with covariance E[w,w!] = RY. The initial
statistics of Eq. (27) is set according to the definition of the
observation noise in Eq. (25), thus v, (w ) is Gaussian with mean and
covariance given by

Ev(0) |0, =2]=E[p (o) |0, =2,]=0 (28a)

Evi(@)vi(@)" |0, =]
= E[vl(wl)vl((‘)l)r | @) =]
=R + (R )RyT(Q))" (28b)

The matrix M, and the covariance R}’ are next evaluated by
comparing the second-order moments of {v(w;)}>, and
{vi(w;)}72, based on Egs. (25) and (27), respectively.

Using Eq. (27), the conditional one-lag autocorrelation of the
process {v;(w;)}2, is

E[vk(wk)vk—l(wk—l)T | @ = Ry, 0 = 2]

= MkE[vk—l(wk—l)vk—l(wk—l)T | 0y = 2] (29)

A corresponding term is directly derived from Eq. (25) as
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E[vk(wk)vk—l(wk—l)r |0y =Ry, 04 =] = _F(ﬂk)R{q
(30)

Now, using Eq. (25) to express the covariance of v;_; (@;_;) | @;_;
yields

E (@) v (@) | @04 = 4] = Ri—l

+ D(R )R, T (2 )T (31
Setting
Evi (@) (@) | @y = 4]
= E[vk—l(wk—l)vk—l(wk—l)T | @iy = 2] (32)

and using Eq. (31) in Eq. (29) yields

E[vk(wk)vk—l(wk—l)T |0 =Ry, 04 = 2]

= MkI:R}t—l + F(ﬂk—l)szzr(ﬁk—l)T] (33)

Similarly, setting

Evi(@vi (@) | 0p = Ry, 05 = 4]

= E[v (@) v (@) | @ = R4, 04 = 4] (34)
the decorrelation matrix M, is derived from Egs. (30) and (33) as

_ v 5 y ]!
My = ~T@ORL Ry + T@RLI @]
k=12,3,...

The covariance R} is obtained by noticing from Eq. (27) that

Ev(@)vi(@)" 0= =2 ]
=MEW (@ )V (@) |0, =Rp.0, = Qk—l]MJ{ +RY
=MEW (@ )V (@) |0, = Qk—l]M;{ +RY (36)

Finally, replacing the covariances of v, (w;) | @, and v;_;(@0;_;) |
Wi in Eq (3_6) with their ”k(")k) | [OF and vk_|((l)k_1) | @
equivalents yields

RY = R} + (0K, [
— MR, + T(Re )R T(@)" |M] 37
k=2,3,...

2. Likelihood Approximation

Using the Markov model for the effective measurement noise, the
following theorem presents an approximation of the likelihood
Pyl -1 - For notational convenience, the following definition is
used:

pile ) ET@Y, |+ MY, — MI(P)Y, ,. k=23,...

(38)

Theorem 1. Assume that the angular rate process in Eq. (7) is driven
by a low-intensity process noise, and that the effective measurement
noise process {v;(@;)}7, is adequately represented by the Gauss—
Markov model in Eq. (27). Then, the likelihood p,, ,, y+-1 can be
approximated as

1

p)’l\'|w/<yyk7l (Yk | Szk’ Ykil) ~ W

1
X eXP{—E[Yk — (R R R

x[Y,— l“k(szk’f_l(szk))]} = Py (Vi | Sy, Ye=h o (39)

where f(£2,_,) is the solution at time 7, of the certainty-equivalent
first-order differential equation corresponding to Eq. (7)

Q1) =J 1 (=R(1) x JR(1)) (40)

with initial condition R (#,_,) = €,_,, f~! is the inverse operator of
f»>and M, is computed using Eq. (35) with f~!(£,) replacing €,_;.

Proof. First, observe that the likelihood p,, |, -1 can be
expressed as

py,{\wk.yk_] (Yk | Szk? Ykil)
+00 el
:/ Pyoro v Y | g, @4y, Y1)
—00

X Py tor 1 (Roy | Ry, Ykhyde, 41)

Thus, the problem of computing the likelihood translates to that of
computing the two pdfs under the integral sign.

To approximate py |, o, , > Eqs. (24) and (27) are used.
Replacing v, (@;) with its corresponding approximation v, (@) in
Eq. (24) yields

V(@) 2y — D@y (42)
Using Eq. (42) in Eq. (27) yields
Vi@ )y + My — (@i 1)yin) + wy (43)
From Eq. (43) it immediately follows that

Pyioroey P X | R4, €4y, Yk
~ Pu (Y —T(R)Yy — MY,y — T(R,_1)Y,,))
_ 1
- @n)* Ry

X exp{_%[yk — (R, DT RO Y, — (R, Szk—l)]}

(44)
To compute the second pdf appearing under the integral sign in
Eq. (41), py, 0,41 itis assumed that the process noise in Eq. (7) is
of low intensity (spacecraft motion is typically influenced by
extremely small external disturbances that form the driving process
noise, e.g., aerodynamic forces, gravity gradient, and magnetic
dipole torques). Based on this assumption, the transition kernel can
be approximated as

Polow, (R | R4y) ~6(R,— f(R,_)) 45)
where §(-) denotes Dirac’s delta distribution. Also,
Doyl Y = Porlor (46)

because, given ®;_;, the distribution of the state w, is solely
determined by the driving process noise, rendering it independent of
the measurement process [see Eq. (7)]. Hence, using Eq. (45), it
follows that
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Pyt (R | Yk
+00
- / Porion (@4 | Ri)po i Ry | Y1) AR,y

—00

+00
~ / SR — F( R )P, ot @iy | V1) R,

= Poy P! (F1 @ | Y 47)

Using Eqs. (45-47), Py, 0,3+~ can be expressed as

Poy|op 4! (Szk—l | 2, Yk_])
_ Poylog_; V<! (Qk | 21, Yk*l)l’wk,l\ykfl (Qk—l | Yk*l)
- Poyye! (Qk | Yk*l)
Pogor; (L | Qi) Po, ! (Szk—l | Yk_l)
- Poy1 (R | Yk
3~ @)y (Rt | V)

Pwk_,|yk*l(ffl(ﬂk) | Y&
~ (R — f(R41)) (43)

Finally, using Eqs. (44) and (48) in Eq. (41) yields
pyk\wk.y"’] (Yk | Szk? Ykil)
+00
%/ Pyopor - (Vi | @i, R4y, Yk

X 8(2y — f(S2-1)) A2y,
= Pylojoe V! (Y | szkvf_] (825, Yk_l)

1 1
~ WGXP{—E[Y/( — (L, TR
X (RY)Yy — (R, (R k))]} 49
which completes the proof. O

3. Computational Effort vs Performance

The colored noise modeling technique, described above, requires
the evaluation of the matrices in Egs. (35) and (37), consequently
increasing the computation load. An alternative, simplified approach
is to consider each measurement’s correlation with its immediate past
(its preceding measurement) only, while neglecting the correlation
with all other measurements. This approach results in reducing the
required computational load, at the price of sacrificing optimality and
performance. In this case, the likelihood of each realization € is
approximated as

ﬁyk\wk.y"’] (Y, | R, Y = Pyiocyi Y | @ Yily)
= ka(mk)(Yk -T(R)Y,) (50)

where the pdf of v, (w,) is computed using the convolution operator,
based on Eq. (25)

pvk(wk)(vk(ﬂk))
+00
= [ i@ + r@oor, )
—00
X Dy, (8Y ;) d8Y ., (51
The choice whether to implement the proposed noise modeling
technique or to disregard the measurements correlation is case

dependent, and trial runs should be performed to compare the cost-to-
benefit ratios obtained with the two alternatives.

B. Measurement Update

Given the measurement Y, the updated filtering pdf at time &,
based on the modified Bayesian recursion in Eq. (26), satisfies

Py (4 | Yh) o Pyo vt (Yi | Ry, Yk*l)l’wk\yk*l(ﬂk | &)
(52)

Let {2 ,(i)}Y, and {@,(i)})_, denote N independent samples from
the filtering pdf at time k, and their associated normalized weights,
respectively. Setting the importance distribution to be the prior pdf,
and using the approximated likelihood in Eq. (39), Eq. (52) yields the
updated importance weights as

WD) = Pyjo e (Ve | DV )iy (53)

These weights are then normalized according to Eq. (4).

Equation (53) is referred to as the update stage. Still, in accordance
with Eq. (52), an evolution stage needs to be incorporated, as the
samples need to represent the propagated pdf.

C. Particle Evolution

Passing the angular rate samples at time k£ — 1 through the
certainty-equivalent process [Eq. (40)] results in a new set of
samples. This is almost equivalent to applying Eq. (la) to the
samples, that is

k1 +00
Poat (21 7) = [ by (R 12000
X Py [P+ (ﬂk—l | Yk_l) e, (54)

The minor difference is due to the process noise distribution that
forms the transition kernel p,, o, _, - When the process noise is of low
intensity, the new angular rate samples thus obtained adequately
represent p,, y+-1. In other cases, the injection of an additional,
artificial noise improves the set.

D. Filtered Angular Rate

At time k, N weighted samples are available. Obtaining the
optimal angular rate estimate can be carried out in several ways,
depending on the objective. Two methods for doing so are proposed
in this work, using the minimum mean-squared error (MMSE) and
the maximum a posteriori (MAP) approach.

1. MMSE Approach

The MMSE angular rate estimate is obtained by computing the
weighted average of the samples {,(i)}Y_,, that is

i=1°

N
Q=) ()R (55)
i=1

2. MAP Approach
The MAP angular rate estimate is defined as

@, Sarg max p, (R | Y5 (56)

Qe{Q ()Y,
Using the filter samples {2, (i), (i)}, the MAP estimate is
obtained as

Q.= Szk(arg lrg%wk(i)) 57)

Experience shows that the MAP estimate is usually noisier than the
MMSE estimate due to the fact that a resampling procedure is carried
out every once in a while. Several smoothing methods to overcome
this problem are suggested in [12]. (Smoother MAP estimates are
obtained by reducing the effective sample size threshold, which
results in requiring fewer resampling procedures to take place.)
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E. Resampling

To avoid particle degeneracy, a resampling procedure is
implemented. The measure of degeneracy adopted here is the
effective sample size. Introduced by Kong et al. [16], this criterion is
defined using the variances of the importance weights. The effective
sample size N is defined as

N N
= <
1 + varw,  E,[w?]

>

Negr = N (58)

An empirical estimate of N is given by [12]

~ 1
Ngp=——— =
YN ()2

The resampling procedure is used whenever N, it < Ny, where Ny, is
a predetermined threshold. The new set of samples is generated by
resampling each particle (i) with probability w,(i). This consists
of multiplying each sample according to its associated normalized
weight. The number of offspring for each sample is evaluated by

N, (i) = int(N (i),  i=1,....N (60)

(59)

where int(x) denotes the integer nearest to x for any x € R. To
compensate for the loss of particle diversity, an artificial perturbation
scheme based upon regularization is introduced into the algorithm.

F. Regularization

Let {€2,(i)}, be the stock of N angular rate samples at time k.
The number of offspring for each particle in the stock is determined
using Eq. (60). The angular rate offspring are then computed in the
following manner: a set of vectors are sampled from a 3-dimensional
zero-mean, unit covariance Gaussian (or some other) kernel denoted

by KC, to obtain
8R,(j) ~ K(0, I3,3), Jj=1,...,int"(N(i)/2) 61)

where int™ (x) denotes the nearest integer to x such that x > int™ (x)
(floor function). The next step consists of rescaling and rotating these
vectors according to some regularization intensity measure. A
natural choice is the sample covariance of the set {€, (i)},

Po= Ym0 -2][0-2] @
i=1

Thus, the vectors are transformed according to
89 (j) = hPg 5%, ())
BRj + int= (Ny(1)/2)) = ~hPg 6, (j) (63)
J=1,...,int" (N (1) /2)
. gz .

where / denotes the regularization bandwidth, and Pg ~ is the matrix
square root of Pg. If N, (i) is odd, the last vector 62 (N, (7)) is set to

[0,0,0]", thus maintaining a symmetric set of N,(i) vectors
{62 (1)},”;5”. In this work, the bandwidth # is set as suggested in [12]
(p. 253), that is

h=[4/(N(n +2))= (64)

with n = 3, corresponding to the angular rate vector dimension. The
ith particle’s offspring are then obtained by

(D) =>0) +52(), I=1,...,N() (65)
After obtaining the angular rate offspring, each one should be
weighted properly. This second stage weighting is crucial for the
overall performance of the filter. The resampling procedure is, in fact,
an external interference that injects random particles that have no
past trajectories. Proper weighting of the offspring reduces the effect
of this contamination, whereas improper weighting of the offspring
degrades the quality of the filtering representation and, in some
extreme cases, can cause divergence. Reweighting can be carried out
based upon the regularization kernel K, so that the new particles are
treated as if they were sampled from a continuous pdf. Another idea,
which tends to give better results, is to reweight the offspring
proportionally to their likelihood. Thus, the second stage importance
weights are computed as

- L, 5
(7)== oyt (Ve | Rx0). ¥) (66)

where the normalizing constant ¢ is selected based on numerical
considerations. A particle stock with skewed importance weights can
be improved in the next time step by properly choosing c. In this

work the value ¢ = p,, |, ye1 (¥ | &, Y is used.

G. OPF Algorithm Summary

The angular rate particle filtering algorithm is summarized (using
informal pseudocode) in Algorithm ].

V. Robust Interlaced PF Estimator

In this section the OPF is modified to account for uncertainties in
the spacecraft inertia tensor. The technique described herein is
motivated by the approach of [11], and is based upon interlacing the
PF with a maximum-likelihood (ML) estimator for maintaining
computational efficiency. In this work the ML estimator is
implemented as a secondary, static PF.

Let J be the columnwise vectorized spacecraft tensor of inertia

J =vec(J) (67)

This parameter vector will be termed the inertia vector in the sequel.
The parameterization of any pdf using the real-valued vector of
deterministic but unknown parameters J is implied by the notational
convention p,;(-| JJ). Using the interlacing approach, the PF
algorithm is used for the representation of p,, |; 1+, thus keeping the

Algorithm 1 The OPF algorithm for perfectly known inertia tensor

1 Particle evolution: integrate Eq. (7) over the time interval At for all particles {€2,_, (i)}Y_,, to obtain a new set

(R (O

if a new measurement, Y, is available, then

Update the importance weights using Eq. (53) and normalize foralli=1,...,N
Compute the filtered angular rate as described in Sec. IV.D.

Compute regularization intensity using Eq. (62)

2
3
4
5 if Negp < Ny, then
6
7 foralli=1,...,Ndo
8

Compute the number of offspring N, (i) for particle €, (i)

9 Produce regularized weighted offspring as described in Sec. IV.F.
10 end for
11 end if

12 else {time propagation}

13 Obtain the filtered angular rate as described in Sec. [V.D.

14 endif
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dimension of the state low, whereas J is estimated via a separate
estimator assuming the knowledge of @,. Because the observation
model in Eq. (24) is independent of J,

Pylo "0 = Pylog 24! (68)

Hence, implementing the PF algorithm for p,,|; yx does not require
any modification in the computation of the importance weights.

Defined as the ML estimate of J, the inertia vector estimate is
obtained by maximizing the likelihood function

LY E py, (Y| ) (69)

The computation of this estimate is performed via a secondary, static
particle filter. The update stage of this filter uses the following
approximation of the likelihood function.

A. Likelihood Approximation
The likelihood function £(J | J¥) can be expressed as

k
LU Y =]]pypm ;1 Y70 (70)
j=1

whence

£(1|Y’<)—1'[/ Doyt (¥; | @, Y1)

X Poyyit (R Y7, 1) dQ;

k +00 1
= l—[/ Dyjlw; yi! ¥; | @,y
j=17J-00

X Doyt (R, ] Y7, J) AR

k
=[] Ey0 - (V1@ 27D | Y =Yg @)
j=1

The expectation in Eq. (71) is performed with respect to the
propagated filtering density, P31 g thus an empirical
approximation of the likelihood is obtained as

k N
LA 1YY =TT 00y, (¥, 1 21001 YY) (72)

Jj=1 i=1

where Sl;.r_, (i) is the ith angular rate particle at time j—1,
propagated via Eq. (40) with inertia tensor J. Equation (72) is
computationally intensive because it has to be evaluated over the
entire particle set for a given J. This computational effort can be
significantly reduced by further assuming that the angular rate
particles are concentrated near the filtered angular rate. In this case
the likelihood can be approximated by

IR | RS CATSNT)

~ [T By, .(Y |QF ,,YH) (73)

Jj=1

=~

where Sl _ is the filtered angular rate at time j — 1, propagated via
Eq. (40) w1th inertia tensor J. Equation (73) requires the evaluation
of the likelihood only once per time interval for a given realization of
J, thus facilitating real-time computation.

B. Inertia Estimation Using a Secondary Particle Filter

The inertia PF maintains a population of particles representing the
inertia tensor elements. The filter’'s measurement update stage
consists of sequentially computing the particles’ weights whenever
measurements are acquired, as is done in an ordinary PF. However, in

contrary with a conventional PF, which involves an evolution stage,
in this case the parameters are kept static over time. The robustness of
the resulting interlaced algorithm is gained by leaving the parameter
population unchanged over a certain time interval before the first
resampling is performed. Thus, the likelihood L(J | Y*) is
represented over the entire parameter region, instead of
concentrating over just a small portion of it. This requirement is
also crucial, because during the initial stage of the estimation process
the likelihood function in Eq. (73) is highly inaccurate, because it
depends on the angular rate estimates, which can be highly
erroneous. The determination of the first time instance kg, from
which resampling is allowed, can be performed using trial and error
or by checking the whiteness of the filter innovations over some
period of time.

Let{J (i)}?]:’1 denote a population of N, inertia vectors. Sequential
computation of the likelihood for each member of this population
requires the evaluation of Eq. (73) whenever a measurement is
available. Naturally, the weight associated with every inertia vector
in this population is proportional to the likelihood. Denoting the
weight of the ith inertia vector at time & by ¢, (i), Egs. (39) and (73)

yield
. 1 1 N oA T
(D) = WGXP{—E [Yk - Il«k(ﬂktl(ll Szk—l)]

< (Re) ¥ w210, sik_.)]}sok_l(i)

i=1,...,N;

(74)

The notation flkt 1(7) implies that the filtered angular rate at time
k—1 is propagated via Eq. (40) with inertia tensor J(i). After
obtaining the associated weights they are normalized to yield

@ (@)
Z;Vl] ()

Finally, the ML estimate of J is obtained as the inertia vector having
the greatest importance weight in the population {J (i )}l |- that is

@ (i) = (75)

A

J = J(arg max §,(i)) (76)

The ML estimate thus obtained may be quite rough. Smoother
estimates can be derived by taking the weighted average of the inertia
vectors, that is

2

Z @u(D)J (i) (77)

1. Computationally Efficient Estimation of the Complete Inertia Tensor

Applying the inertia PF to the complete inertia tensor results in a 6-
dimensional PF, which may be computationally intensive. In such a
case, large inertia uncertainties may require the use of too many
particles to reach an acceptable accuracy.

To alleviate this problem, two separate inertia PFs can be
interlaced for approximating

LY = pysgege (Y199 T10)
and
LAY =y (Y1 T °)
where
VIS VA A L NS VAN A (78)

Following this idea, the update stage of the PF for £(J¢ | Y¥) is based
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Fig. 1 Robust OPF scheme.

on using Eq. (74) with j,f,l as a fixed parameter. Analogously, the
second PF’s update stage uses the latest estimate J Z,l.

Applying these two PFs consecutively whenever a measurement is
available might be time consuming. Another approach, which tends
to be slightly less accurate but is much faster, is to use the PFs
alternately. Thus, only the first PF is applied at the first measurement
update, whereas only the second PF is applied at the next one, and so
on.

C. Robust OPF Algorithm
A single robust OPF cycle is schematically illustrated in Fig. 1.

The algorithm is summarized (using informal pseudocode) in
Algorithm 2.

D. OPF Initialization

Large initial attitude errors require a large number of particles, at
least until the high-likelihood zones are populated. A simple
initialization procedure that requires a significantly smaller number
of particles is used in this work. The idea is based on the fact that the
first two vector observations define a quaternion of rotation up to one
degree of freedom. This quaternion is associated with the rotation of
q, onto q, that is

8qo=q; ® q;" (79)

This degree of freedom is used to generate the initial set of
{O(R (i)}, [see Eq. (15)] from the first two observations Y, and
Y,. The angular rate particles are then obtained using the inverse
transformation of Eq. (15).

Algorithm 2 The robust OPF

1 Start with previous step’s estimates, Q w1 and J 1
2 Use previous step’s inertia vector estimate in the evolution stage of the
OPF.
if new measurement, Y, is available, then
OPF: perform measurement update and get current estimate, ) X
Compute the weights for every member of the set {J (i)}fgl using
Eq. (74), and normalize
Compute the inertia vector estimate using Eq. (77)
If needed, resample the members in {J (i)}?gl
if Nogr < Ny, then
OPF: resample
10 end if
11 else {time propagation}
12 Obtain the filtered angular rate as described in Sec. IV.D.
13 endif

R W

N=lc BN o)

VI. Simulation Study

An extensive simulation study has been performed, to assess the
performance of the new OPF algorithm and compare it with the
recently proposed angular rate EKF algorithm of [10], using a
realistic spacecraft model. The study also demonstrates the
robustness of the OPF estimator in the presence of uncertain
spacecraft inertia.

The spacecraft initial attitude and orbital parameters (i.e., altitude
and inclination) are randomly sampled (the altitude not exceeding
1000 km), and each component of the initial angular velocity is
sampled from a uniform distribution over the interval [—30,
30] deg/s. In all simulations the spacecraft angular rates are
numerically integrated using the Dormand-Prince explicit Runge—
Kutta (4,5) formula, implemented in MATLAB’s ODE45 routine
[17,18]. The integration takes into account the equivalent external
disturbance torque, which represents the effects of the aerodynamic,
gravity gradient, and residual magnetic dipole torques. Adopting the
parameters used in the simulations of [10], this torque is modeled as a
stationary white Gaussian noise with intensity 1 (urad)?/s®. The
spacecraft is equipped with a TAM that provides the vector
measurements. The TAM noise is modeled as a zero-mean, Gaussian
white process with a standard deviation of 50 nT. The Earth magnetic
field is modeled using the eighth-order international geomagnetic
reference field. Two cases are examined, as described in the sequel.

A. Perfect Model Knowledge

In the first case, the filters are implemented assuming perfect
knowledge of the spacecraft inertia tensor. The inertia tensor and the
EKF initialization are taken as in [10], thus J = diag{500, 550,
600} kg - m?. The EKF is running in information form and is
initialized with (Py)~' = 10787 rad’/s*> and 1initial estimate
@y =[0,0,0]". The OPF is initialized with N = 900 particles, using
the initialization scheme described previously. After two measure-
ment updates, the filter continues using only the N = 150 particles
having the largest importance weights. At first, the OPF is applied
using the colored noise modeling technique described in Sec. IV.A.
In this case each particle is weighted using the likelihood
approximation in Theorem 1. In another set of runs the OPF is
examined while taking into account each measurement’s correlation
with its immediate past only (according to the argumentation in
Sec. IV.A). In this case, each particle is weighted using the
approximated effective noise pdf in Egs. (50) and (51). Because the
measurement noise is Gaussian, from Eq. (25) it follows that, given
®,, the effective measurement noise is Gaussian also, with the
following statistical moments:

Elvi(@p) | 0, = 2] =0, k=1,2,... (80a)
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Ry 2 Elo (@) v (@) | 0 = R,] = R, + T(R)R,_ T()"
k=1,2,...
(80b)

[Notice that, as could be expected, Eq. (80b) also results upon setting
M, =0 in Eq. (37), signifying the lack of correlation in the model
(27).] Recalling that, in the case under investigation, the
measurement noise is stationary, and assuming further that I'(2 ;) ~
I3, (for small enough At), Eq. (80b) yields

Ry ~2R) (81)

Using the simplified method of considering each measurement’s
correlation with its immediate past only, the likelihood
approximation for each particle is given by

1

ﬁyklwk.ykfl(Yk | Slk(i), Yk_l) = W

enp{ {17~ DY, T (R Y - @Y, )
(82)

The resampling threshold is set to Ny, = _%N , based on tuning runs.
Decreasing Ny, may be beneficial, because resampling procedures
will be executed less frequently, consequently introducing less
Monte Carlo variations into the estimates. However, this also
increases the algorithm’s sensitivity to heavy-tailed measurement
noise pdfs. The numerical integration of the Euler equation in the
evolution stage of the PF is performed using the Runge—Kutta-4
formula, with constant time interval of Az/5. The TAM sampling
rate is 2 Hz. The normed angular rate estimation error (in deg /s) is
defined as

18w, 2 @, — &ll2 (83)

Figure 2 shows the spacecraft angular rates in a typical single run.
These rates are similar to those tested in [10]. The estimation errors of
the OPF and EKEF filters in that run are shown in Fig. 3, clearly
demonstrating the performance advantage of the OPF over the EKF.

Figure 4 presents the statistical distribution of the angular rate
estimation error of the OPF algorithm based on a 5000-run
Monte Carlo study. Figure 4a presents the performance of the PF
when using the colored noise modeling technique, whereas Fig. 4b
shows the estimation error of the simplified PF that uses the
likelihood approximation of Eq. (82) (notice the ordinate axis
logarithmic scale in both figures). The curves in Figs. 4a and 4b, top
to bottom, correspond to the 95, 85, 50, 15, and 5 percentiles of the
Monte Carlo runs, respectively. The performance benefit of the
colored noise modeling technique is noticeable upon comparing both
figures: whereas the 5 and 15 percentile lines in Fig. 4a reach values
of approximately 0.002 deg /s and 0.005 deg /s, respectively, the

Angular rates (deg/sec)

50 160 1%0 2(;0 2%0 300
Time (sec)

Fig. 2 Spacecraft angular rates in a single typical run: dotted line, w, ;
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Fig. 3 Angular rate estimation error in a single typical run: solid line,
OPF; and dashed line, EKF.
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Fig. 4 Statistical distribution of angular rate estimation error of the
OPF algorithm, based on 5000 Monte Carlo runs. Lines, top to bottom:
95, 85, 50, 15, and 5 percentiles.

corresponding percentile lines in Fig. 4b reach values of
approximately 0.003 deg /s and 0.006 deg /s, respectively. Thus,
although the colored noise modeling technique is more computa-
tionally intensive, it does result in smaller minimum estimation
errors. Notice that the rougher plots of the 5 and 15 percentiles in
Fig. 4a (compare with Fig. 4b) indicate that, as could be expected, the
decorrelation procedure increases the filter’s sensitivity to the
information contained in the measurements (this increased
sensitivity is better pronounced at small estimation errors).

For comparison, Fig. 5 presents the corresponding results for the
EKF algorithm. As can be seen from Figs. 4 and 5, in 95% of the runs,
the OPF’s steady-state angular rate estimation error is lower than
0.05 deg /s, whereas the EKF’s steady-state estimation error
reaches similar values in just 5% of the runs.
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Fig. 5 Statistical distribution of angular rate estimation error of the

EKEF algorithm, based on 5000 Monte Carlo runs. Lines, top to bottom:
95, 85, 50, 15, and 5 percentiles.

B. Computational Complexity Evaluation

To assess the OPF algorithm’s computational complexity, the
mean cycle computation time, denoted by Atf, is adopted as a
complexity index. This index is computed by averaging 1000 filter
cycle computation times for both the OPF and EKF algorithms,
where each filter cycle includes one measurement update and one
evolution stage. Both algorithms are implemented using MATLAB
(running in interpreter mode) on a Pentium 4/2.8 GHz machine.
Table 1, showing the mean cycle computation times for both
algorithms, demonstrates that the OPF algorithm with 150 particles is
approximately 1.6 times slower than the EKF of [10]. Still, the OPF is
sufficiently fast for real-time implementation, because (even when
implemented in MATLAB’s interpreter mode) it requires about 200 s
for processing 1000 filter cycles, that last 500 s at the filter’s 2 Hz
update rate.

C. Model Uncertainty
1. Initial Inertia Uncertainty

This section demonstrates the performance of the simplified OPF
filter in the presence of large errors in the inertia tensor. A
Monte Carlo study is performed, where the true initial angular rate is
uniformly sampled with norm not exceeding 30 deg /s. The space-
craft orbit altitude and inclination are set to 350 km and 35 deg,
respectively (corresponding to the orbital parameters of the tropical
rainfall measurement mission spacecraft [15]). The true inertia tensor
is

500 25 15
J=125 550 10 | kg-m? (84)
15 10 600

The diagonal elements of the inertia tensor are estimated using an
inertia PF. Denoting the initial particle population set of this filter by

{Jd(i)}gl, where
T'OE[I00) Tnl) Ju®]  i=1...Nf (85
the particles are sampled from a uniform distribution as follows:

T (i) ~ U[425,600],  Jp(i) ~ U467, 660]

(86)
J33(i) ~ U[588,612]
Table 1 Mean filter cycle computation time
Algorithm At
Correlated noise OPF (150 particles) 0.20s
EKF [10] 0.12s

25F 1
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Fig. 6 OPF angular rate estimation error in the presence of inertia
tensor uncertainty in a typical single run.
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with N9 =700 particles. The off-diagonal elements of the inertia
tensor are estimated using a secondary inertia PF. Denoting its initial

population set by {J° (i)}j\’:yl, where
T &[T Isl) Ta®].  i=1..N7 (87
the particles are sampled from a uniform distribution as follows:

JZl(l) ~ U[O, 30], J23(l) ~ U[O, 30], J13(l) ~ U[O, 30]

(88)

with N9 = 700 particles. The OPF is initialized as before with the
same number of particles and the inertia PFs are applied alternately as
described in the previous section. In this case kp =oco (no
resampling is used) for both inertia PFs.

Figure 6 shows the normed angular rate error in a single typical run
of the OPF (the angular rates in this run are the same as in Fig. 2). The
corresponding inertia component estimation errors are shown in
Fig. 7. The effect of the inertia tensor uncertainty is clearly
pronounced in the initial time interval of about 8 min, which is the
time required for the inertia estimates to converge to within errors of
about 7 kg - m?.

Figure 8 shows the statistical distribution of the OPF’s angular rate
estimation error in this case, based on 1000 Monte Carlo runs. As can
be observed from this figure, the steady-state performance of the
filter is not significantly affected by the inertia uncertainty. This can
be attributed to the fact that the inertia tensor elements are accurately
estimated. Indeed, defining the following estimation error measures
for the diagonal and off-diagonal elements of the inertia tensor as

I8J4 2 I1TE = g9, and 8 21T =1, (89)

respectively, the statistical distributions of the inertia tensor
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Fig. 7 OPF inertia estimation errors in a typical single run: solid line,
8J11; dashed line, 8J,,; and dotted line, §/53.
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Fig. 8 Statistical distribution of angular rate estimation error of the
OPF algorithm in the presence of inertia tensor uncertainty, based on
1000 Monte Carlo runs. Lines, top to bottom: 95, 85, 50, 15, and
5 percentiles.

estimation errors are shown in Fig. 9. As can be clearly seen from this
figure, it takes the filter about 25 min to estimate the inertia tensor to
within an acceptable accuracy.

2. Abrupt Inertia Change

Figures 10 and 11 demonstrate the robustness of the algorithm in
the case of a simulated abrupt physical failure that results in a sudden
change of the inertia tensor. In this case the true initial spacecraft
inertia matrix is J = diag{J,;, J», J33}, where the diagonal entries
are identical to those of Eq. (84). At t =25 min the true inertia
matrix is changed to J =diag{1.2J,;,1.2J5,J3;}; the OPF
estimator is not aware of the sudden change. Notice that, as has

120 T T T T T

118911 (Kg-m?)

0 10 20 30 40 50 60
Time (Min)
a) Diagonal elements

35 T T T T T

18 J° 1l (Kg-m?)

0 10 20 30 40 50 60
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b) Off-diagonal elements
Fig. 9 Statistical distribution of inertia tensor estimation errors based
on 1000 Monte Carlo runs. Lines, top to bottom: 95, 85, 50, 15, and
5 percentiles.
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Fig. 10 Angular rate estimation error for the OPF in the presence of an
abrupt change in the inertia tensor.

Time (Min)

Fig. 11 Inertia components estimation errors in the presence of an
abrupt change in the inertia tensor: solid line, §./,;; dashed line, 6J,,.

been observed in [10], when the inertia matrix is diagonal, Euler’s
equation is invariant relative to scaling the entire inertia matrix,
yielding that only two diagonal elements are independent. Hence, in
this case, just two inertia terms are modified.

As can be seen from Fig. 10, before the failure occurs the OPF
reaches its steady-state estimation error after about 15 min. The
change in the inertia tensor at r =25 min does give rise to an
estimation error of more than 1 deg /s; however, as Fig. 11 shows,
the modified inertia terms are estimated correctly within about
20 min, after which the filter returns to nominal operation.

VII. Conclusions

A novel algorithm is presented for attitude-free estimation of
angular rates from vector observations. The new filter belongs to a
recently introduced class of angular rate estimators. However,
whereas the three algorithms currently belonging to the class are
extended Kalman filters, the new angular rate estimator is a particle
filter that copes naturally with non-Gaussian driving processes and
with the inherent nonlinearity of the angular rate estimation problem.
Because the effective measurement noise in the problem under
consideration is time correlated, a special procedure has been
developed to enable the particle filter (classically designed for white
noise processes) to cope with this correlation. To increase the
estimator’s robustness with respect to spacecraft inertia uncertainty,
a secondary static particle filter is used that computes the maximum-
likelihood estimate of the entire spacecraft inertia tensor. The
secondary inertia filter is run in an interlaced manner with the
primary rate particle filter. Thus, the need to augment the filter’s state
is avoided, along with the potential computational burden associated
with the increased number of required particles. The performance of
the new algorithm is shown via simulations to be superior to that of a
recently introduced extended Kalman filter-based rate estimator. A
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Monte Carlo simulation study is used to demonstrate the algorithm’s
robustness with respect to spacecraft inertia variations of up to 20%.
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