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Two recursive estimation algorithms, which use pairs of

measured vectors to yield minimum variance estimates of the

quaternion of rotation, are presented. The nonlinear relations

between the direction cosine matrix and the quaternion are

linearized, and a variant of the extended Kalman filter is used to

estimate the difference between the quaternion and its estimate.

With each measurement this estimate is updated and added to the

whole quaternion estimate. This operation constitutes a full state

reset in the estimation process. Filter tuning is needed to obtain a

converging filter. The second algorithm presented uses the

normality property of the quaternion of rotation to obtain, in a

straightforward design, a filter which converges, with a smaller

error, to a normal quaternion. This algorithm changes the state but

not the covariance computation of the original algorithm and

implies only a partial reset. Results of Monte-Carlo simulation runs

are presented which demonstrate the superiority of the normalized

quaternion.

Manuscript received April 10, 1984.

Authors' address: Department of Aeronautical Engineering, Technion,
Technion City, Haifa 32000, Israel.

0018-9251/85/0100-0128 $1.00 ©) 1985 IEEE

The problem of determining the attitude of a vehicle
by using pairs of vector measurements has been treated
by several researchers in the past, using various
approaches. Most of the researchers attacked this problem
by trying to evaluate the direction cosine matrix (DCM),
which is the transformation matrix between some
reference coordinate system and the system whose
attitude is to be determined, or by trying to evaluate a
corresponding sequence of Euler angles. The DCM
evaluation was carried out using either a purely
deterministic approach [1, 2], or a batch least square
fitting [3, 4], or a recursive least square fitting [5]. An
algorithm for a recursive minimum variance DCM
identification was also recently introduced [6].

Another popular way to represent attitude between
two coordinate systems is the quaternion of rotation [7]
(or attitude quaternion). Only a few investigators selected
the quaternion to determine the attitude from vector
measurements. Shuster [8] as well as Shuster and Oh [2]
discuss a batch weighted least square algorithm to obtain
the quatemion.

A rather general discussion of the application of
Kalman filtering to quaternion estimation was recently
presented in a survey paper [9] in which the possibility of
covariance matrix singularity was given considerable
attention. Gai et al. [10] handle a problem similar to the
one dealt with in this paper. Their solution yields a
different algorithm, which stems from the difference
between the two approaches. In particular, they define the
difference between the true and the estimated quaternion
as a quaternion too; therefore the error is multiplicative in
nature, while in our work the difference is a column
matrix and is additive.

A recursive minimum variance estimator of the
quaternion of rotation which is based on vector
measurement is introduced here. The normality property
of the quaternion of rotation is used to improve
convergence and accuracy. Although this work is
concerned with the estimation of only the quaternion of
rotation, it can be easily modified, using standard
procedures, to estimate other variables such as gyro
drifts, misalignment angles, etc. The present work is a
natural evolution of the work described by Shuster [81
and Shuster and Oh [2] and was inspired by that work as
well as by the parallel work on DCM identification which
is described in [61.

The problem attacked in this work is stated in Section
II. In Section III the development of a certain quatemion
estimation algorithm is presented. Section IV introduces
an improved algorithm in which normalization is
employed. Section V presents results of Monte-Carlo
simulation runs of both algorithms, and the conclusions
are discussed in Section VI.
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11. PROBLEM STATEMENT

A sequence of vectors ri, i = 1,2, ..., N, is
measured in two Cartesian coordinate systems u and v.
System v is attached to a rotating vehicle and system u is
a reference coordinate system. The measurements in
system u result in the sequence {ui} i = 1,2, ..., N of
column matrices, whereas in system v, the measurements
result in the corresponding sequence {vi} i = 1,2, ..., N.
The column matrices ui and vi ER3. We wish to compute
Q, the minimum variance estimate of q, where the latter
is a column matrix whose elements are the components of
the quaternion of rotation. (In the ensuing we refer to q
and 4 as the quatemion and its estimate, although in
reality q and q are column matrices whose elements are
those of the quaternion and its estimate, respectively.)

Ill. QUATERNION ESTIMATION

The Static Case

Unlike the DCM, the relations between the quaternion
of rotation q and the column matrices ul and vi are
nonlinear. Therefore, in contrast to the DCM
identification technique of [6], the whole quaternion
cannot be estimated using the ordinary Kalman filter.
Rather, a filter similar to the extended Kalman filter
(EKF) is used to estimate the difference between the
actual quaternion and its estimate. Each newly updated
estimate of this difference will be added to the quaternion
estimate to form the newly updated (or current) whole
quatemion estimate. As a first step in the algorithm
development, we derive, in the ensuing, the linear
relations between Sq, ui+, and vi+ , where 6q is the
difference between q and its estimate q.

It is well known that D can be expressed in terms of
q as follows [ 1 1 ]:
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Suppose qi+ l/i, the estimate of q at step i + 1 given the
previous i measurements, is known and a new pair of
measured column matrices, ui + and vi, is obtained.
The new error-free measurements satisfy

(5)

It is assumed that the measurements ui + and v-+, of
uo i+ l and vo, + 1 are contaminated by the noises nL i+ l
and n, i+,, respectively, such that

Ui+I = UO,i+l + nu,i+I

vi+l = vo,i+l + n,,,i+l.

(6a)

(6b)

It is further assumed that the noises nu, + l and n, i+1 are
zero mean and white, whose respective covariance
matrices are denoted by R.1+,1 and R, i+,. Let us express
qi+1 as

-i+Iq=4/11 + Sqj+1 (7)

which is an implied definition of 6qi,+. Substitution of
(6) and (7) into (5) yields

(8)
D (q) =

Lq2+±q2- q_ q

2(q2q3 - q,q4)
L2(q2q4 + qlq3)

2(q2q3 + q1q4)
q 12-q2+ q2- q2q1 2q+q 3q4
2(qq3 -q1q2)

2(q2q4 -qlq3)
2 (q4q3 + q1 q2)

q2 q2 q2+ q422 3 I4

(1)

where qj, j - 1,2,3,4, are the four components of q.
Suppose q and hence D(q) are known; we may use a
first-order Taylor series expansion to compute D(q + S q)
as follows:

4

D(q +6q) - D(q) + / 8qj. (2

Denote

aJD
AJ(q) =-a q j 1,2,3,4 (3

then the partial differentiation of (1) yields

Use can now be made of (2) and (3) to express (8) as
follows

Vi+, - D(qij+1,,) ui+ I

4

= EAj(qi+ I/) Sqi+ i,,]ui+jl

4

- ,Aj(qi+ I/) Sq.+ X ]nU, i+ l

D(±i+ pi) nu,i+ I + n,,.i+ I. (9)
The second term on the right-hand side of (9) is a
second-order term which can be omitted. The first term
on this side can be written as

4

Aj[Ey(q'-+ I/i) ±qi±+ 11Ui ( ,(+l

=Hi+ I1i(4i+ l/i, Ui+ I ) Sqi+ I ( 10
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vo,i+ I -:::: D(qi+ I) uo,i+1.

Vi+ D(q^i+ l/i + Sql.+ l) (uj-. n,,i+ 1) + n,,,i+ 1
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Hi+ l/i - [h, h2 h3 h41

h. = A1(M +111) ui+1, j = 1,2,3,4.

(1la)

(1 lb)

Across Measurements:
State update

Ki+ 1 - Pi+ l/i HTI/i (Hi+ l/i Pi+1/ HT+l

+ Ri+ /i)
and where

841+ lli+l =--- Ki+ I ei+1.

Estimated quaternion reset

(12)(1)qi+ l/i+ l = qi+ lli + sqj+ l/i+1l
Covariance update

Pi+ 1/i+ 1 = (I - Ki+ 1 Hi+ 1/i+ 1) Pi+ l/i

ni+ l/i n,.i+l - Di+ I/i nu,i+ (13

where

Di+ l/i_ D(q,+ 1j) (14

then obviously, ni+ l/i is a zero-mean white-noise column
matrix whose covariance matrix, Ri+ 1,i, is given by

Rj+ ,,i A Cov {ni+1/i}

=R,+1 + Di+ l/i R i+DT+Ii (15

Finally, define ei + l as follows

ei+ 1 = vi+ 1 - Di+ l/i ui+1 (16

then, using (10), (13), and (16), (9) can be written as

ei+ -= Hi+ l/i qi+ ±+ ni+ 1/i. (17,

Equation (17) is the sought linear relationship between
the data column matrix ei,+ and the unknown column
matrix, qi,+ l, which is the difference between the
quaternion of rotation and its estimate (see 7 and 12).
Note that ei ,+ , Hi + ii and even ni + 1,i are all functions of
the current estimate of the quatemion of rotation which is
a main feature of the EKF.

The estimation of q is done as follows. Given a new
set of measured column matrices ui+ , vi+ , use (17) as
the observation equation in an EKF-like algorithm to
obtain a new estimate of bqi+, , which is denoted by
64i+,,i+ Then add Sqi+j1i+ to the latest estimate of
the quaternion, which is denoted by qi+ l/i, to form
qi,+ + 1, the updated quatemion estimate. The fact that
q^i+/i+1 is added to q4i+/i in its entirety, implies an

impulsive reset [121, consequently, qi+,± 1i+1 has to be
zeroed before its propagation in time.

In conclusion, the quatemion estimation algorithm in
the static case is as follows.

Between Measurements:

qi+ 1 /i =,-- q,-li (18a)

x (I - Ki+I H-+ ,+ )T + Ki+I Ri+,I-+, KTf1. (18f)

Note that Hi+ 1/i+ 1, as well as Ri+ l/i+ 1, in (1 8f) are
recalculated using the current estimate qi + l,i + l which was
computed in (18e). This step is not a part of the classical
EKF algorithm ([13], Table 6.1 -1). In fact it is realized
from (16) that the data ei+ 1, which the algorithm of (18)
processes, is a function of the current estimate of the
quaternion. This feature by itself is a divergence from the
ordinary EKF. Therefore the algorithm presented in (18)
is not the traditional EKF. It was derived using the same
rationale which was used in the derivation of the EKF,
only it was tailored to the problem on hand and justified
in simulations. It was found that the use of the current
estimate of q in (18f) was imperative. The use of Hi+ l/i
rather than Hi+ /i + 1 brought about a quick decrease in the
value of P. That, in turn, reduced the value of Ki+ 1 too
early, such that the filter rejected new measurements
much before the estimation error was properly reduced.
This phenomenon almost always caused the filter to
diverge.

The Dynamic Case

Coordinate system v usually rotates with respect to
coordinate system u. Denote the angular rate vector of
this rotation by W. Obviously the quaternion of rotation
and hence the column matrix q change from one vector
measurement to another. It is well known that the rate of
change of q is given by

q = flq
where

fi 1 Wr ° Wt)

2 wy - W 0
L-WWZ-\ W,

(19)

a.)!
v,

O_j

(20)

and whose elements are the three components of -X when
coordinates are made in the v system. The true quatemion
propagates according to (19); however, the estimated
quaternion is propagated computationally according to

(18b) q = l q (21)
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Sqi[+ ,

Sqj+1 = Sqi+ 1,2
8qi+ 1,3

Define

(18c)

(1 8d)

(18e)

Pi+ ,,i = Pili
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where Ql is a matrix similar to Ql, except that its entries
are Wx, Wx and 4~ which are the three measured angular
rates. Since the gyros, which supply these three rate
components, are not ideal, the measurements are
contaminated with noise; hence

+

where 6w is the vector noise component and W is the
measured angular rate vector. Following (22), (19) ca
written as

q= (fl-6fi)q
in which 6fl is a matrix similar to Ql. The elements c
617 are the components of 8x, when the latter is reso
in system v; that is, the components of 8x, and hence
AQ, are the three gyro error components. Equation (2
can be written as

q = Qq + B So

where

q3 q4
q4 -q3

-ql q2
-q2 -ql_

(22)

where Qi - cov{8ci}. In addition, it is concluded from
(21) that

qi- I -/i= qili - (30)
Equations (28)-(30) can now be used to modify (18).
This yields the following algorithm for the dynamic case.

Between Measurements:

(31 a)

(31b)Pi+ l/i =I) Pi,,4 + BiQA BIT.
(23) Across Measurements:
)f State update

~lved Ki+ l = P,+ /li HT+ li (Hi+ ,/i Pi+ l/i HT+,

(3 1 c)

(31 d)sq^i+ 1/i+, -=Ki+ 1 ei+ 1

(24) Estimated quaternion reset

qi+ l/i+l1 = qi+ l/ + qi+ 1/i+ I -

Covariance update

(25) Pi+ 1/i+ = (I -Ki+ 1 Hi+ 1/i+ 1) Pi+ l/i

x (I -Ki+ 1 Hi+ i)T + Ki+ 1 Ri+ 1/i+ 1 Ki+ 1.

(3 1 e)

(31f)

and 6w is a column matrix whose elements are the three
gyro error components. Now when (21) is subtracted
from (24), the following dynamics equation is obtained
for 6q

q = flbq + B t. (26)

When (26) is discretized, the following difference
equation is obtained for the propagation of Sq

qi-+1 = Xi4 qi + Bi 6wi. (27)

Note that 4i is a function of the measured angular rate
vector w and Bi is a function of qi. Since qi itself is not
known we use its estimate qi to compute Bi. The latter is
a well known characteristic of the EKF.

In our work it is assumed that 6wi is a zero-mean
white-noise column matrix, although other typical gyro
noise models could be easily used instead (see [13],
pp. 78-84). We do this in order to focus the attention to
the estimation techniques of the quaternion itself with the
knowledge that the inclusion of typical gyro and
misalignment models is straightforward. Following (27),
6q is propagated between measurements according to

q^i+ i = X,i 4i,i (28)
However, like in the static case, an implied full reset is
manifested in the recomputation of 4 after each update of
6q4. This drives 64ili, and consequently 64i+ Ii, to zero.

The estimation error covariance matrix is propagated
according to

Pi+ l/i = 4,iPili 4 + Bi Qi BT (29)

It is shown in Section V that although this filter initially
converges very fast, the estimation error reaches a
minimum after which it starts diverging slowly. This
phenomenon calls for filter tuning [14]. Filter tuning
which was carried out by artificial adjustment of the term
BiQiBT in (31b) does indeed solve the problem, and a
stable filter is obtained. Although an initial value for
BiQiBT can be computed, the tuning operation requires as
usual a trial and error design mode. In order to eliminate
this design mode and obtain in a straightforward manner
lower steady state estimation errors, as well as a normal
quaternion estimate, normalization is performed in the
estimation process. This idea is presented in the next
section.

IV. NORMALIZED QUATERNION ESTIMATION

A proper quaternion of rotation possesses the
following quality

qTq - 1. (32)
This relation can be used to upgrade the preceding
algorithms. To achieve a lower estimation error and avoid
trial and error tuning, the estimated quatemion undergoes
optimum normalization each time it is reset; that is, after
each application of (18e) or (31e). It has been shown [15]
that an optimal normalization in the Euclidean sense is
achieved when the quaternion which is to be normalized
is simply divided by its norm. Consequently, (18e) and
(31e) are followed by

qi* 11,+1 - qi+ 1/i11i+i/ l4 +1/1±11. (33)
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Now the propagated estimate is q j+ l/i+, rather than
qi+ ,i+, hence (18a) and (31a) have to be replaced by

qi+ lli =i-'l (

and

qi.+l/i = Pi qi*li ('

because the covariance matrix is the covariance of this
error vector. In fact, it will be shown that the estimation
error is not affected by the normalization operation. To

34) show this let us first consider the case without
normalization. Define the estimation error, after the
update of Sq, as follows:

35)

respectively.
The introduction of the normalization operation into

the unbiased minimum variance estimation algorithm is
an outside intervention in the process. Therefore the
effect of this imposed operation has to be examined, and
if necessary, steps taken to restore the unbiased minimum
variance feature of the algorithm. To accomplish this we
examine the implications of the normalization process.
Recall that the combination of either (18e) or (31e) and
(33) yields the following computation of the normalized
estimate

4,+ I/i+ l =- (4i+ l/i + 8 'i+ l/i+ 1)ll1i l/

(41)Ei+1Ii+j±iI-q1i+ I- Sqi+l/i+I

but

ei+fo=qi+re - qi+l/i

therefore

(42)

(43)
Denote the estimation error, after the reset operation of
either (18e) or (31e) is carried out, by E'i+/i±+ and the
corresponding estimate of 8iq by q '̀j+ I /i + l . Since the
reset is a full one, 8q'i+l±i+I is zero. Then from the
definition of the estimation error

E i+ l/i+ l -:= 8 i+ l - 8q`i+I/j+1 =- q'j+1. (44)
+ q,i+l1+l (36)

A first-order Taylor series expansion which uses the fact
that 4,+ is normal yields

ql/ q qi+l/i+l 1 4f+li q+l/i+ l (37)

Substitution of (37) into (36) results in

*+1i+1 (qi+lli + bq1+11+1)

x 1-q+lqi+ + +l).(38)

Neglecting second-order terms, (38) becomes

qi +Il/i + I
-

qi+ ll/i q'i + I/i+lI

-qi+ liqi+ l/ qi+ 1/i+ l. (39)

The reason we concluded that an impulsive reset was
implied in the preceding algorithms stemmed from the
fact that the whole estimated quantity qi+ 1i+1 was
added to 4i+ l,i. Examination of the right-hand side of
(39) reveals that to a first-order approximation not all of
qi+ I/i +1 is added to qi+ 1/i+1 to form the estimate of

qi+ , which is then propagated in time, but rather the
quantity 4i±+ 1 + l less 4i+ l/i qTj+ Ii + I/i+ I is added to

That is, the quantity q /il4, li4i+li+l remains
as an unreset part of 41 + I/i+ l and has to be propagated
between measurements; that is,

-i+21i+1 X+Iqliq+li qi+i+I1 (40)

and (1 8d) and (31 d) have to include the b+l,1i terms

which are no longer zero.
The latter modifications to the preceding algorithms,

which are due to the normalization operation, involve
changes which are related to the state. We now ask
ourselves whether additional modifications which are
related to the covariance matrix are also necessary. To
resolve this quandary, let us examine what happens to the
estimation error as a result of the normalization operation,

Now 8q'i+ l, the quaternion error after reset, is given by

j+1 = -qi q1+11±1+ (4-
while from either (18e), for the static case, or (31e), for
the dynamic case,

i+1/i+1 :::- +i+ l/i + 6qi+ (4(

Therefore (45) becomes

8q1j+1 - qi+I - (qi+lIi + qiI/+I)- (47)

When (47) is substituted into (44) the following is
obtained

E 1+ 11i+1 = f+l -qi+lli - bqi+li+l. (48)
A comparison between (43) and (48) reveals that the reset
operation in the estimation algorithms which does not
employ normalization does not affect the estimation error
and thus does not affect the covariance matrix either.

In the normalized quaternion estimation algorithm, the
expression for the estimation error before normalization is
identical to the one obtained for the preceding algorithms.
That is, Ei + I/i l is given, as before, by (43). The
estimation error after normalization E * ± is by
definition

6,+i+11-t bq,+ X- qi*+ I/i+ l 49

where

-qq1= qqi±l (50)si*I-q+ 1-l+ I/i+ I*(0

Let us denote the matrix 4i+ K1+Iby C; then
following (39) and (40) it is clear that

qi*+1j+1 =: qi+lbi+ 8qi+l/±+1 - C Sq±i+li+l (51)
and

qvit+ 1/+ I = C64i+11i+1 (52)
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Using (50)-(52), (49) becomes

Ei+pI/i+ I qi+l q1±1i +Ii qi+l/i+l (53)
which is identical to Ei + /l. + l and E'i + 1i+ given in (43)
and (48), respectively. As mentioned before, the final
conclusion is that neither the reset of (1 8e) or (31 e), nor
the normalization of (39), changes the estimation error.
Therefore, the covariance matrix does not change due to
these operations. Consequently, the normalization
operation which was introduced in the algorithm for
estimating the quaternion does not affect the propagation
of the covariance matrix.

The invariance of the estimation error across the
normalization operation can be explained by the fact that
the sum of the estimated quaternion 4 and the estimated
quaternion error 64 stays constant across normalization.
This is because the part of 64, which (in order to
maintain the normality of 4) is not added to q, does
remain in 64. This feature is accorded to the quatemion
estimation since the filter estimates Sq rather than q
directly, which stems from the nonlinear relationship
between the quaternion and the DCM. In the DCM
estimation algorithm of [6] the situation is different, since
there the estimation problem is a linear one and any
operation on the estimated DCM, D, affects the
estimation error directly. Therefore, the situation is
reversed in the sense that the orthogonalization of the
estimated DCM affects the covariance matrix and not the
estimated state vector.

The normalized quaternion estimation algorithm for
the dynamic case is summarized as follows.

Initial Conditions

covariance update

Pi+ 1/i+ l = (I - Ki+ 1 H.*+ /i+ 1 ) Pi+ /ii
x (I -Ki+1 H*1,i+±)T + Ki+ R,* /i+1 KTfl. (55h)

The asterisk on H and R denote that they are recomputed
using qi*+ 1/i+ i . The algorithm for the static case is of
course a special case of the latter, and is obtained by
replacing Xi with the identity matrix.

V. MONTE-CARLO SIMULATION

To examine the performance of the normalized
quatemion estimation algorithm versus the performance of
the ordinary quaternion estimation algorithm in terms of
convergence and orthogonality, we define two indices of
performance. The convergence index of the normalized
algorithm is defined as

-= tr[(D*+ 1i+1 - Di+ )T(D*+ 1/i+ 1-Di+1)] (56)

where D /+ l and D +1 are the DCMs which
correspond to qj*+ 1/i+ 1 and qi+ l, respectively. The
convergence index J of the ordinary algorithm is defined
in a similar way except that Di+ 1/i+ 1 replaces Di*+ +
where Di+ + 1 is the DCM which corresponds to
qi+ 1/i+ 1I

The orthogonality index is defined for the normalized
case as

I)T

see remarks in Section V
I is a 4-dimensional
identity matrix and a

is a large scalar.

Betveen Measurements:

qi 1/i Xiq=ili

Pi+ I/i f i Pilio1 + Bi Qi BT

qi l/ =i i q'li- 1 Ti I ili.

Across Measurements:

state update

Ki+1 Pi+li HT+1,i

X (HW+IliP,+1iHT+l/i + Ri+j-)1
1 1sq^i+ I/i+ I = si+ I/i

+ Ki+, (ei+ -Hi+ ,,i 84i+ ,,i).

estimated quaternion reset and normalization

= qi+lli + IIi+1 1+1

4 i + 1+Ii+ 1+ Iqi + I /i + I

(54a)
For the ordinary case we use the same definition, but
without the asterisks, to obtain Fi+ l . Note that the

(54b) convergence index measures the closeness of the
estimated DCM to the actual one; it is always positive
and becomes zero for a perfect convergence. Similarly,

(55a) the orthogonality index measures the closeness of the
estimated DCM to orthogonality; it is always positive and

(55b) becomes zero only when the estimated DCM is
orthogonal. (Note that a normal quaternion automatically
yields an orthogonal matrix.)

Since the quaternion propagation ui, vi and thus the
quatemion estimate are random processes, it is not
enough to show results for only one time simulation run.

Therefore 100 Monte-Carlo simulation runs were carried
out for each of the two estimation algorithms. The

(55d) expected values of their indices were computed as follows

(55e)

(5Sf)

(55g)

1 100

= E{JP'} >o J*'(k)

1 100

j A E{Ji}~- E Ji(k)
k=

FA*_ E{Fi*}

(58a)

(58b)

(59a)
1100
1: F ~(k)

1 kl=o
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q-= [ 1,0,0,0],
P1 = I a,

1 1

*T11i+F* 1
= tr[(D 1 D*i+ I+ 1+ lli+

1 1

*TX (Di.+ 1/1+ 1 Di+ 1/i+ I)]. (57)
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1100
Fi _ E{Fi} - > Fi(k).

Ink =i

In each run the initial DCM, DO, was

DO=
0.33696
0.18352
0.92346

- 0.88924
- 0.26025
0.37620

0.30937
- 0.94794
0.07550A

(59b)

(60)

whereas the initial quatemion estimate was q =
[1,0,0,01, which meant that the estimate of the initial
DCM was the identity matrix. The nominal angular rate
was a constant vector whose components in body axes
were 0.628 rad/s along each axis. The gyro measurement
noises which constitute 6w were three, zero-mean
white-noise components, whose spectral density was
0.01 o/h'2. A measured pair, ui and vi, was obtained and
processed every 0. 1 s. The measurement noise of ui and
vi was zero mean and white. Its standard deviation
corresponded to a random angular error of 100 arcsec.

Plots of the convergence indices are shown in Fig. 1.
It is clearly seen that Ji, which is the time average of the

30.100.8 CONVERGENCE INDEX

20.10

20.1o8-8

J. ..i. Ji~~~~J

~~~ ~ 1-

4- ____-_-_T_ - r - J
200

i-iteration No.

400

Fig. I. Ensemble average of convergence index of quaternion
estimation algorithm with normalization (J*), without normalization

(JI), and without normalization but with tuning (J1).

convergence index of the untuned ordinary quatemion
estimation algorithm, diverges after reaching a minimum
point. Tuning of this filter solved the problem as can be
seen from the plot of J'i, the corresponding averaged
convergence index. Tuning was achieved by replacing
BiQiBT, in (31b) by a matrix whose value was adjusted
to achieve the lowest steady-state value of Ji. The initial
value of that matrix was chosen as the value which
preserved the value of Pi1 /i at the level which Pi ,1i had
during the time segment in which the untuned filter
exhibited fast convergence. The plot of Ji demonstrates
the better accuracy achieved when the normalized
estimation algorithm was used. The corresponding
orthogonality indices shown in Fig. 2 exhibit a similar
behavior. Since the normalized quaternion estimation
algorithm yields an orthogonal DCM after each
normalization operation, F* is practically zero and is not
plotted in Fig. 2. The effect of the normalization of the
estimated quaternion is more pronounced than that of the
orthogonalization of the estimated DCM, which is
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Fig. 2. Ensemible average of orthogonality index of quatemion
estimation algorithm with normalization (F) and without normalization

but with tuning (F;).

performed in [6]. This is because the quaternion
normalization algorithm is exact while the DCM
orthogonalization algorithm is just one cycle of an
iterative process.

The algorithms were tested for several true initial
attitudes and although the initial DCM estimate was
always the identity matrix, the algorithms invariably
behaved in a manner similar to the one presented in
Fig. 1.

VI. CONCLUSION

Two quaternion estimation algorithms were presented
which process a sequence of pairs of vector
measurements. Since the functional relationship between
the measured vector pairs and the estimated quatemion is
nonlinear, it was necessary to develop EKF-like
algorithms to estimate the difference between the true
quatemion and its estimate. The estimate of the difference
was added to the whole quaternion estimate each time the
former was updated after the acquisition of new
measurements. The two algorithms deviate from the
classical EKF mainly in that their covariance update uses
the current quaternion estimate. In addition, the
normalized quaternion estimation version includes a
normalization stage which is a peculiar operation. The
normalized quaternion estimation algorithm makes use of
the fact that the quaternion of rotation is normal to
upgrade the first algorithm presented in this work. The
result is an algorithm which converges to a more accurate
completely normal quaternion. While the latter is
obtained through a straightforward design, the
nonnormalized version requires filter tuning.

Monte-Carlo simulation runs were carried out to test
the algorithms. True body rotations were simulated,
measurements were generated using random number
generators, and the estimation algorithms were applied to
the simulated measurements in order to estimate the time
varying quaternion of rotation. The difference between
the true and the estimated DCMs was used to evaluate
convergence and orthogonality indices. One hundred
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simulation runs were made and their indices were
averaged at each update point to obtain an estimate of the
expected value of the indices. These averages were
examined in order to evaluate the algorithms. It was
found that both algorithms always converged independent
of the initial orientation, although in all cases the initial
estimate was qT = [1,0,0,0]. The normalized quaternion
estimation version, which yields a normal estimate,
exhibited better convergence properties.

As a result of the Monte-Carlo simulation runs it is
recommended that the normalized version of the
algorithm be used. Finally, it is recommended that further
work be performed to compare the latter algorithm with
the one presented in [10].
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