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Boost-Phase Identi� cation of Theater Ballistic
Missiles Using Radar Measurements

Meirav Almogi-Nadler,¤ Yaakov Oshman,† and Joseph Z. Ben-Asher‡

Technion—Israel Institute of Technology, 32000 Haifa, Israel

This paper addresses the problem of identi� cation of theater ballistic missiles during boost phase using radar
measurements. Based on theuse of the Waldsequential probabilityratio test (SPRT), three identi� cation algorithms
are presented, corresponding to scenarios of increasing uncertainty. The use of the SPRT allows meeting speci� ed
false-alarm and missed-detection probabilities, while minimizing identi� cation time. When the missiles’ dynamic
models and launch initial conditions (location and time) are completely and accurately known, the SPRT works
directly with the raw radar measurements. In other scenarios, including a case where the launch location and
launch time are unknown, two extended Kalman � lters are used to generate the innovations sequences driving
the SPRT. An extensive Monte Carlo simulation study is used to demonstrate the performance of the proposed
procedures. Although the identi� cation times and actual error probabilities depend, to some degree, on proper
� lter tuning, it is shown that reasonable mean identi� cation times can be attained, corresponding to acceptable
false-alarm and missed-detection rates, even in the presence of model uncertainties. This performance renders the
proposed algorithms viable for the dif� cult problem considered.

I. Introduction

I T is widely recognized these days that theater ballistic missiles
(TBM) impose a severe threat, which needs to be fully addressed

on various levels.This paper is concernedwith the operationallevel,
where several ballistic-missile-defense (BMD) systems, belonging
to competing concepts, have been proposed over the last decade.
Some of these systems, such as the PAC-3 and the Arrow, have al-
readydemonstratedtheirability to interceptnonmaneuveringTBMs
with a hit-to-kill accuracy in controlled experiments1;2 and have
been declared operational.

Currently known TBMs are not designed to maneuver. Never-
theless, they have an inherent high maneuvering potential in the
atmosphere, resulting from their very high reentry speed. The suc-
cessful development of BMD systems, such as the PAC-3 and the
Arrow, is expected to motivate the developmentof a new generation
of maneuveringTBMs in the foreseeablefuture.Althougha TBM is
blind with respect to the interceptor, it can execute hard maneuvers
randomly in order to avoid interception on its way to a designated
surface target, while complying with the constraint of hitting it. A
defense system that cannot guarantee that the miss distance gen-
erated by a target evasive maneuver will be suf� ciently small will
render the probability of an unacceptable leakage nonzero.

The TBM’s trajectory can be divided into three phases: boost
phase, midcourse, and the terminal phase. During the boost phase,
the engine is operating and so is the guidance system. In the mid-
course phase, which occurs mainly in space, the trajectory is essen-
tially ballistic. In the terminal phase the ballistic missile reenters
the atmosphere. It can be argued that the interception of a ballistic
missile during its boost phase is superior to its interceptionin subse-
quentphases (which has been the underlyingprincipleof BMD sys-
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tems such as PAC-3 and Arrow). This is so becauseduring the boost
phase the ballisticmissile is a huge, distinct,and especiallyvulnera-
ble target, in contrastwith the followingphasesduring which hitting
the target 1) is very dif� cult (and, hence, has been termed “shoot-
ing a bullet with a bullet” in the missile community) and 2) might
not be suf� cient for guaranteeing the required defense. During the
midcourse phase, the missile’s engine is off; hence, the TBM is
more dif� cult to detect. In addition, the missile is in space, and the
warhead can easily break up into many parts, including munitions
and debris, which are hard to hit. The missile’s dynamic behavior
during boost phase is quite predictable and essentially nonmaneu-
vering. On the other hand, when the ballistic missile reenters the
atmosphere it is extremely fast, maneuverable, and, consequently,
very hard to intercept.3 Moreover, as was demonstrated during the
1991 Gulf War, some ballistic missiles are not structurally well de-
signed;hence, they tend to breakup during their reentry and become
unstable, rendering them dif� cult to intercept. Finally, boost-phase
intercept (BPI) has the distinct strategic advantage of inducing a
threat to the enemy because of the risk of explosion above enemy
territory.

A feasibleBPI defensesystem can be basedon aerial platforms—
manned aircraft or unmannedvehicles—equipped with search-and-
track systems and armed with air-to-air missiles. The aerial plat-
forms loiter above the enemy territory, detect the TBM, and launch
the interceptingmissiles to hit or divert the threat.4 One of the most
dif� cult challenges facing such a defense system is the fact that the
boost-phase duration is relatively very short. The purpose of the
search-and-tracksystem of the platform is to identify the launched
TBM within a short time interval, which lasts from the time the
TBM is detecteduntil a reasonabletime prior to the end of the boost
phase. This information, along with the target data and its current
and future positions, is transmitted to the interceptor, enabling it to
plan the required interception.

This paper is concerned with the problem of identifying the type
of the TBM within the boost phase. Such a capability in this early
stageof the � ight is essentialfor planningthe interceptor’s trajectory
and for determining the performance envelope of the entire system.
The earlier is the TBM identi� cation, the higher is the BPI success
probability.Moreover, an early identi� cation capability enables the
reduction of the required interceptor velocity and maneuverability,
or, alternatively,the enlargementof the platform’s deploymentarea.
In addition, such a system can operate as a warning system for the
defended assets. The identi� cation methods presented herein are
based on Wald’s sequential probability ratio test (SPRT).5 Charac-
terized by its ability to reach a decision between two hypotheses

197
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using a minimal set of measurements while satisfying prespeci� ed
error probability constraints, the SPRT facilitates the identi� cation
of the launched TBM in minimal time, which, in turn, is essential
for the success of the BPI system.

The boost-phase missile identi� cation problem, dealt with here,
can be viewed as a member of the broad class of problems of iden-
ti� cation and classi� cation of objects. For obvious reasons, this
class of problems is of paramount importance in many applications.
Automatic-target-recognition (ATR) systems aim at solving such
problemsvia fusing informationfrom an array of sensors, including
electro-optical,infrared,radar, and other sensors.ATR systems deal
with the identi� cation of targets in the presence of clutter and with
their classi� cation, as well as with making the distinction between
similar types of targets. A review of ATR systems is presented in
Ref. 6. Bhanu7 discusses the application of neural networks tech-
nology to ATR problems. The optimum character of the SPRT has
rendered it a useful tool for ATR systems, and Jouny and Garber8

present extensionsof the SPRT to cases where the ATR system has
to distinguish between more than two targets (simple hypotheses).

The remainder of this paper is organized as follows. In the next
section the mathematical model of the TBM identi� cation problem
is de� ned. Three identi� cation algorithmsare then presented,corre-
spondingto threedifferentscenariosorderedaccordingto increasing
uncertainty. Results of an extensive Monte Carlo simulation study
are then presented,which demonstratethe capabilityof theproposed
algorithms. Concluding remarks are offered in the last section.

II. Problem Formulation
This paper is concerned with a scenario where two TBMs are

presentin the theater.Denote thesemissilesbyTBM-A and TBM-B.
The BPI aerial platform is a single unmanned vehicle, carrying a
radar systemthatmeasuresthe rangeand the two line-of-sight(LOS)
angles to the target. A typical scenario geometry is shown in Fig. 1.
The search-and-tracksystem uses the radar measurements to drive
an estimator and a statistical test in order to identify the type of
the launched missile. This scenario can form a basis for more com-
plicated scenarios, such as when more than two types of TBMs are
suspected,when a numberof launchersare active or when a number
of defending platforms are � ying.

A. Target Model
The TBM’s state vector is de� ned as

x
1D [x y z V ° Â an ]T (1)

where x , y, and z are the TBM horizontal, sideways, and vertical
coordinates, respectively, in an inertial system � xed to the launch
location,V is the velocity,° is the � ight-pathangle,Â is the azimuth
launch angle, and an is the normal acceleration.

Fig. 1 TBM boost-phase interception geometry.

Typically,the durationof theestimationand identi� cationprocess
is very short (on the order of about 30 s). Hence, to simplify the en-
suing analysis without losing generality it is assumed that the angle
Â is constant throughout the estimation process and that the Earth
is � at and nonrotating.In addition, it is assumed that the actual nor-
mal acceleration an obeys � rst-order dynamics with time constant
¿ , the TBM � ies at zero sideslip angle, and the TBM’s thrust is
directed along the � ight trajectory. The TBM equations of motion
thus become

Px D V cos ° cos Â (2a)

Py D V cos ° sin Â (2b)

Pz D V sin ° (2c)

PV D .T ¡ D/=m ¡ g sin° (2d)

P° D .¡an ¡ g cos° /=V (2e)

PÂ D 0 (2f)

Pan D aC
n ¡ an ¿; aC

n .t/ 6D 0 8t 2 [t1; t2] (2g)

where aC
n is the normal acceleration command, T and D are the

enginethrustandaerodynamicdrag, respectively,and g is thegravity
acceleration.The normal accelerationcommand is activebetween t1

and t2 (measured from launch time) in order to achieve the required
range with a predetermined cutoff time.

B. Measurement Model
Carried by the aerial platform, the radar system measures the

slant range and the two LOS angles to the target. The measurement
equation is

zk D hk.xk / C vk (3)

The radar measurement vector is given by

hk.xk / D [Ãk µk rk ]T

D

arctan
yk ¡ yr;k

xk ¡ xr;k

arcsin
zk ¡ zr;k

rk

.xr;k ¡ xk /2 C .yr;k ¡ yk/2 C .zr;k ¡ zk /2

(4)

where Ãk and µk are the azimuthand elevationLOS angles at time tk ,
respectively, and rk is the range to the TBM at time tk . The vectors
[xr;k ; yr;k ; zr;k]T and [xk ; yk ; zk ]T denote the positions at time tk of
the aerial platform, which carries the radar system, and the TBM,
respectively. Without loss of generality, it is assumed in this work
that the radar’s position is known and constant. This assumption is
justi� ed by noting that the duration of the decision process is very
short and that the radar-carryingplatformmeasures its own position
with great accuracy (e.g., using an inertial navigationsystem and/or
global positioning system).

The measurement noise vk is modeled as a zero-mean, white,
Gaussian sequence with known covariance, that is,

vk » N .0; Rk / (5)

where

Rk D diag ¾ 2
Ã ; ¾ 2

µ ; ¾ 2
r (6)

III. Identi� cation Algorithms
The TBM identi� cation algorithms are based on the use of a

statistical test for reaching a decision between the following null
and alternate hypotheses, respectively:
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H0: The observed TBM is TBM-A.
H1: The observed TBM is TBM-B.
To minimize the identi� cation time, the statistical test used in

this work is Wald’s SPRT.5;9 Devised in 1943 by Wald as the � rst
solution of the general problem of sequential tests of statistical hy-
potheses, the SPRT is commonly applied in various � elds such as
failure detection and isolation,10 radar target detection,11;12 and au-
tomatic target recognition.8 The SPRT considers the decision time
as a random variable and aims at reaching a decision between the
hypotheses in minimum time, while complying with the constraints
of false-alarm and missed-detection probabilities as set by the de-
signer. Conjectured by Wald in 1943, this optimum nature of the
SPRT was proved in 1948 in a joint work with Wolfowitz.13

Remark 1: The problem addressed in this paper deals with the
identi� cation of two ballistic missiles. Nevertheless,complex cases
dealingwith more than two missiles can also be handledusing simi-
lar principles.Thus, Ref. 8 treats the extension of the SPRT to more
than two hypotheses in order to identify an aircraft target out of
M > 2 possible targets, using radar measurements.

The SPRT is de� ned as follows.Observethe joint likelihoodratio,
or equivalentlythe logarithmof the joint likelihoodratio 3n , de� ned
as

3n ´ 3.Zn/
1D

p Zn H1

p Zn H0

(7)

where p.Zn jHi / is the the probabilitydensity function (PDF) of the
measurements given the hypothesis Hi , i D 0; 1.

A function of the observation sequence Zn , the log-likelihood
ratio (LLR) 3n is calculated sequentially. The LLR value is then
tested against two thresholds, A > 0 and B < 0, derived from the
predeterminedfalse-alarmand missed-detectionprobabilities® and
¯ , respectively, according to

A D [.1 ¡ ¯/=®] (8a)

B D [¯=.1 ¡ ®/] (8b)

where ® and ¯ are de� ned by

® D Prob Zn 2 01 H0 D
01

p Zn H0 dZ (9)

¯ D Prob Zn 2 00 H1 D
00

p Zn H1 dZ (10)

and 00 and 01 are the two disjoint subspaces, corresponding to the
two hypotheses, composing the observation space 0. The partition
of the observationspace 0 into 00 and 01 is such that the hypothesis
H0 is accepted if the observationsbelong to 00 and H1 is accepted
if the observations are from 01 . The SPRT, which is designed to
minimize the number of measurements required to make a decision
while satisfying the speci� ed error probabilities® and ¯ , is de� ned
as follows:

Hypothesis accepted D
H1 3n ¸ A

H0 3n · B

pending otherwise (11)

When either of the thresholds is reached, a correspondingdecision
is made. Until such occurrence,the decision is postponedto the next
observation sample.

Remark 2: Wald’s SPRT assumes a static hypothesis structure,
that is, one of the two given hypothesesis true and the other is false
throughout the estimation process. A modi� ed SPRT was proposed
by Shiryayev,14 in which a switch between the two hypothesesis al-
lowed during the process. This property makes the modi� ed SPRT
suitable for fault detection and isolation applications,15 where a
certain component can function properly at the beginning of the
process and then malfunction at a later stage (corresponding to a
failure, which can be described as a switch from H0 to H1 ). In the

case under considerationherein, the simpler Wald’s SPRT is appro-
priate because no switch between the hypotheses (correspondingto
the different missiles) is allowed.

The analysispresented in the sequel addresses three possible sce-
narios, corresponding to three levels of increasing uncertainty.

A. Complete Information
Assume that the launch location and launch time, as well as the

launch azimuthangle and the TBM model, are accuratelyknown. In
most cases, this assumption would be unrealistic.Nevertheless, this
case was analyzed in this work in order to provide a performance
bound for the more realistic cases to be addressed in the sequel.

Because the radar measurement noise is white, the raw measure-
ments in this case are statistically independent.Thus, the joint PDF
of the measurement sequence given each hypothesis can be com-
puted as the product of the marginal PDFs of all individual mea-
surements in the sequence

p Zn Hi D
n

k D 1

p.zk jHi / (12)

The LLR is given, in this case, by

3.Zn/
1D

p Zn H1

p Zn H0

D
n

k D 1

p.zk jH1/

p.zk jH0/
(13)

Notice that the LLR is given here as a function of the sample size,
which is a random variable. To calculate the LLR, the PDF of each
measurement in the observationsequenceneeds to be calculatedfor
each of the two hypotheses. To that end, notice that if TBM-A was
launched (corresponding to the null hypothesis) the measurement
equation is given by

zk D h xA
k C vk; vk » N .0; Rk / (14)

where xA
k is the state vector corresponding to TBM-A, that is, the

measurement sequence in this case is white, Gaussian, with mean
and covariance

zk jH0 » N h xA
k ; Rk (15)

To formulate the measurement equation in case TBM-B was
launched, assume that an additive, time-varying bias distinguishes
between the two missiles’ state vectors, that is,

xB
k D xA

k C bk (16)

This facilitates writing the expression for the measurement corre-
sponding to TBM-B as a function of TBM-A’s state

h xB
k D h xA

k C bk (17)

In practice, it is known that the differences between the trajectories
of similar theater ballistic missiles (e.g., SCUD-B and SCUD-C)
during the boost phase are minor, as shown in Fig. 2. Therefore,
Eq. (17) can be approximated using a � rst-order Taylor expansion
as

h xB
k ¼ h xA

k C rx hT xA
k

T
bk (18)

where the matrix rx hT denotes the gradient of the measurement
vector. Thus, given a TBM-B launch (correspondingto the alternate
hypothesis) the measurement equation is given by

zk ¼ h xA
k C rx hT xA

k

T
bk C vk (19)

yielding

zk jH1 » N h xA
k C rx hT xA

k

T
bk ; Rk (20)
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a) b)

Fig. 2 Boost-phase trajectories of SCUD-B and SCUD-C: a) horizontal component of slant range to missiles and b) vertical component of slant range
to missiles.

The PDFs of the measurement samples given the two hypotheses
are, thus, given by

p.zk jH0/ D

1 2¼ jRk j exp ¡ 1
2 zk ¡ h xA

k

T
R¡1

k zk ¡ h xA
k (21)

and

p.zk jH1/ D 1 2¼ jRk j exp ¡ 1
2 zk ¡ h xA

k ¡ rx hT xA
k

T
bk

T

£ R¡1
k zk ¡ h xA

k ¡ rx hT xA
k

T
bk (22)

The LLR for the kth measurement is given by

uk D
p.zk jH1/

p.zk jH0/
D zk ¡ h xA

k ¡ 1
2

rx hT xA
k

T
bk

T

£ R¡1
k rx hT xA

k

T
bk (23)

Thus the LLR for n statisticallyindependentmeasurements is given
by

3n D
n

k D 1

zk ¡h xA
k ¡

1

2
rx hT xA

k

T
bk

T

R¡1
k rx hT xA

k

T
bk

(24)

B. Staring Radar
In this scenario the assumptions of known launch location and

launch azimuth angle are relaxed. It is still assumed that the launch
time is known. This is a typical case for a radar staring at the target
area, which is capableof accuratelyobservingthe launch time with-
out being able to pinpoint the speci� c location of the launch. Here
the measurements are statistically dependent as a result of initial
condition uncertainty, and, therefore,

p Zn Hi 6D
n

k D 1

p.zk jHi / (25)

To use the SPRT in this case, the joint PDF of the measurement
history is written in terms of the conditionalPDF product

p.Zn/ D
n

k D 1

p zk Zk ¡ 1 (26)

where p.z1jZ0/ D p.z1/. To compute the conditional PDF product
on the right-hand side of Eq. (26), we use the innovations process
de� ned as

Qzk jk ¡ 1
1D zk ¡ Ozk jk ¡ 1 (27)

where the predicted measurement is

Ozkjk ¡ 1 D E zk Zk ¡ 1 (28)

Computed internally by the Kalman � lter, the innovations process
is zero mean, white, Gaussian distributed with

Qzkjk ¡ 1 » N 0; Hk Pk jk ¡ 1 H T
k C Rk (29)

where Hk is the measurement matrix (the Jacobian of the nonlin-
ear measurement function) and Pk jk ¡ 1 is the covariance matrix of
the prediction error. The conditional PDF of the kth measurement
sample given all previous measurements is given by

p zk Zk ¡ 1 D 1 .2¼/N=2 cov zk Zk ¡ 1
1
2

£ exp ¡ 1
2 zk ¡ E zk Zk ¡ 1 T

cov zk Zk ¡ 1 ¡1

£ zk ¡ E zk Zk ¡ 1 (30)

Using Eqs. (27) and (28) in Eq. (30) yields

p zk Zk ¡ 1 D 1 .2¼/N=2 cov zk Zk ¡ 1
1
2

£ exp ¡ 1
2
QzT

kjk ¡ 1cov zk Zk ¡ 1 ¡1Qzkjk ¡ 1 (31)

where covfzk jZk ¡ 1g is the covariance of the innovations process

cov zk Zk ¡ 1 D covfQzk jk ¡ 1g (32)
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Therefore,theconditionalPDF of themeasurementcanbe computed
via the PDF of the innovations process

p zk Zk ¡ 1 D p.Qzk jk ¡ 1/ (33)

which expresses the known fact that the measurement and innova-
tions processes are causally invertible.16 Because the innovations
process is Gaussian and white,

p.Zn/ D
n

k D 1

p zk Zk ¡ 1 D
n

k D 1

p.Qzkjk ¡ 1/ (34)

Using the last result, the LLR can be computed as

3.Zn/ D
p Zn H1

p Zn H0

D
n
k D 1 p.Qzkjk ¡ 1jH1/
n

k D 1
p.Qzkjk ¡ 1jH0/

(35)

To compute the PDFs of the innovations appearing in Eq. (35),
two extended Kalman � lters (EKFs) are used, corresponding to the
two hypotheses.Denote the EKF correspondingto the null hypothe-
sis (TBM-A) by EKF-0 and the EKF correspondingto the alternate
hypothesis (TBM-B) by EKF-1. The EKFs utilize the TBM differ-
ential equations (2), where the acceleration pro� les are derived by
propagating Eq. (2g) for nominal values of the acceleration com-
mands and time constants.

De� ne the state vector of both EKFs as

xst D [x y z V ° Â ]T (36)

The state variables satisfy the following differential equations:

Px D V cos ° cos Â C wx (37a)

Py D V cos ° sin Â C wy (37b)

Pz D V sin ° C wz (37c)

PV D .T ¡ D/=m ¡ g sin ° C wv (37d)

P° D .¡an ¡ g cos ° /=V C w° (37e)

PÂ D wÂ (37f)

Fig. 3 Typical behavior of the SPRT—complete information: : : : :, SCUD-C launched and ——, SCUD-B launched.

where wst D [wx ; wy; wz; wv ; w° ; wÂ ]T is a white, Gaussian noise
process with

E wst.t/wT
st.s/ D Qst.t/±.t ¡ s/ (38)

and

Qst D diagfqx ; qy ; qz; qv; q° ; qÂ g (39)

The noise intensity matrix Qst.t/ is used to tune the EKF in cases
where model parameter uncertaintyis considered.It is assumed that
the initial state is Gaussian distributed with

xst.0/ » N .¹st.0/; Pst.0// (40)

where

¹st.0/ D [¹x .0/ ¹y .0/ ¹z.0/ ¹v.0/ ¹° .0/ ¹Â .0/]T (41a)

Pst.0/ D diagfPx .0/; Py.0/; Pz.0/; Pv.0/; P° .0/; PÂ .0/g (41b)

The LLR for the kth measurement sample is given by

uk D 1
2

H 0
k P0

k jk ¡ 1 H 0
k

T C Rk ¡ 1
2

H 1
k P1

kjk ¡ 1 H 1
k

T C Rk

¡ 1
2

QzT
kjk ¡ 1 H1 H 1

k P1
kjk ¡ 1 H 1

k

T C Rk
¡1 QzT

kjk ¡ 1 H1

C 1
2

QzT
kjk ¡ 1 H0 H 0

k P0
kjk ¡ 1 H 0

k

T C Rk
¡1 QzT

kjk ¡ 1 H0 (42)

where the indices 0 and 1 indicate that the associated variables
are computed using EKF-0 and EKF-1, respectively. The SPRT is
implemented by testing the LLR

3.Zn/ D
n

k D 1

uk (43)

against the two thresholds computed previously, as detailed in
Eq. (11).

C. Search Radar
In this scenario a search radar is considered, which acquires the

target without having speci� c knowledge about its launch loca-
tion and launch time. Thus, in addition to other variables already
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estimated, in this case the launch time needs to be estimated as well.
To this end, the launch time needs to be explicitlyintroducedinto the
mathematical model. This is done by � rst calculating the nominal
� ight-path angle for each TBM using Eqs. (2e) and (2g). Then, the
differentialequationof the � ight-pathangle [Eq. (2e)] is replacedby
a polynomial expressing the � ight-path angle as a function of two
time variables: 1) t0, the duration from the unknown launch time
until the target acquisition by the radar, and 2) t, the running time
from acquisition to identi� cation.

De� ne the state vector of both EKFs in this case as

xsr D [x y z V Â t0]
T (44)

a)

b)

Fig. 4 SPRT operation as a function of measurement noise standard deviation: a) range and b) elevation.

The state variables satisfy the following differential equations:

Px D V cos ° .t0; t/ cos Â C wx (45a)

Py D V cos ° .t0; t/ sin Â C wy (45b)

Pz D V sin ° .t0; t/ C wz (45c)

PV D .T ¡ D/=m.t0; t/ ¡ g sin ° .t0; t/ C wv (45d)

PÂ D wÂ (45e)

Pt0 D wt0 (45f)
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where wsr D [wx ; wy ; wz; wv; wÂ ; wt0 ]
T is a white, Gaussian noise

process with

E wsr.t/wT
sr.s/ D Qsr.t/±.t ¡ s/ (46)

and

Qsr D diag qx ; qy; qz; qv; qÂ ; qt0 (47)

The noise intensitymatrix Qsr.t/ is used to tune the EKF in cases
where model parameter uncertaintyis considered.It is assumed that
the initial state is Gaussian distributed with

xsr.0/ » N .¹sr.0/; Psr.0// (48)

where

¹sr.0/ D ¹x .0/ ¹y.0/ ¹z.0/ ¹v .0/ ¹Â .0/ ¹t0 .0/
T

(49a)

Psr.0/ D diag Px .0/; Py .0/; Pz.0/; Pv .0/; PÂ .0/; Pt0 .0/ (49b)

The TBM’s � ight-path angle and mass variation with time are
given by the following polynomials:

° .t0; t/ D
¼=2 0 · t0 C t · t1

a1.t0 C t/4 C a2.t0 C t/3 C a3.t0 C t/2 C a4.t0 C t/ C a5 t1 < t0 C t · t3

b1.t0 C t/4 C b2.t0 C t/3 C b3.t0 C t/2 C b4.t0 C t/ C b5 t3 < t0 C t < t4 (50)

m.t0; t/ D
m ¡ Pm.t0 C t/ 0 < t0 C t · tco

m ¡ Pmtco t0 C t > tco (51)

The � ight-path angle’s polynomial coef� cients and the trajec-
tory segment end times t3 and t4 were chosen to best � t (in
a least-squares sense) the nominal curves. The engine cutoff
time is tco . The TBM’s mass m also varies as a function of t0

and t .

a)

b)

Fig. 5 Identi� cation time histogram in a Monte-Carlo simulation. Complete information: a) SCUD-C launched and b) SCUD-B launched.

IV. Simulation Study
A numerical simulation study was carried out in order to demon-

strate the performanceof the proposed TBM identi� cation method.
The TBMs assumed in this study are SCUD-C, correspondingto the
nullhypothesisH0, and SCUD-B, correspondingto the alternatehy-
pothesisH1. The model parametersof both missiles were estimated
based on data appearing in Ref. 17. These parameters are sum-
marized in Table 1. In the scenario analyzed one TBM launcher is
locatedat the originof the referenceframe (see Fig. 1). The radar co-
ordinates in the reference frame are [xr ; yr ; zr ] D [100; 10; 10] km.

Figure 2 shows the boost-phasetrajectoriesof both missilesunder
consideration. As can be clearly observed, the boost trajectories
of both missiles are very similar, which renders the identi� cation
problem rather dif� cult.

The measurements are sampled at a frequency of 10 Hz and are
contaminated by an additive zero-mean Gaussian noise with stan-
dard deviations of

¾µ D ¾Ã D 1:75 mrad; ¾r D 10 m (52)

The false-alarm and missed-detectionprobabilitiesare set to be

® D ¯ D 0:01 (53)

with corresponding threshold values

A D 4:6; B D ¡4:6 (54)

The three cases analyzed in the preceding section are considered in
the sequel.
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Table 1 TBM model parameters

Parameter SCUD-B SCUD-C

Range, km 300 500
m0, kg 5900 6400
tco , s 60 72
Pm, kg/s 62.5 62.5
t1 , s 3 3
t2 , s 15 15
aC

n , m/s2 2 2
¿ , s 1 1

a) EKF-0

b) EKF-1

Fig. 6 Position estimation errors, SCUD-C launch, staring radar: ——, estimation error; , 1-¾ envelope (as computed by � lter).

A. Simulation Results
1. Complete Information

In this case the launch location and launch time are assumed
known. Figure 3 demonstrates the performance of the SPRT for
both TBMs in a typical case. It can be observed that a SCUD-C
launch is identi� ed at about 7.5 s, whereas a SCUD-B launch is
identi� ed at about 9 s.

Figure 4 shows the performance of the SPRT as a function of
the measurementnoise intensity.As could be expected,higher mea-
surement noise results in delayed identi� cation.



ALMOGI-NADLER, OSHMAN, AND BEN-ASHER 205

Figure 5 presents a statistical analysis of the performance of the
SPRT, as observed using Monte Carlo simulations with the mea-
surement noise model of Eq. (52). The upper plot shows the identi-
� cation time histogramcorrespondingto 10,000 SCUD-C launches
(corresponding to the H0 hypothesis). The observed false-alarm
rate is 0.0081, and the mean identi� cation time is 8.54 s. The lower
plot shows the correspondingresult in the case of 10,000 SCUD-B
launches (corresponding to the H1 hypothesis). In this case the ob-
served missed-detectionrate is 0.0072, and the mean identi� cation
time is 8.53 s. In both cases the observed error rates do not exceed
the predetermined error probabilities.

As already mentioned, this unrealistic case of complete infor-
mation serves to obtain bounds on the attainable performance of
the proposed algorithms in more realistic cases. These cases are
presented next.

2. Staring Radar
In this case the launch time is assumed known, while the launch

location is assumed unknown. The statistical moments of the initial
state vector are summarized in Tables 2 and 3. The process noise
intensity used in this case is Qst.t/ D 0.

Figure 6 shows the TBM position estimation errors as generated
by the two EKFs associated with the SPRT. In both cases the mis-
sile launched is SCUD-C. As evident from Fig. 6, EKF-0 (designed
about the H0 hypothesis) performs well, contrary to EKF-1 (de-
signed about the H1 hypothesis). These results correlate well with
the divergence of the innovations process computed by EKF-1, as
shown in Fig. 7 for the three measurement components,Ã , µ , and r .

Table 2 Mean of initial state vector

¹.0/ component Staring radar Search radar

¹x .0/, m 0 0
¹y.0/, m 0 0
¹z.0/, m 0 0
¹v .0/, m/s 0 0
¹Â .0/, deg 0 0
¹° .0/, deg 90 ——
¹t0 .0/, s —— 1.5

Fig. 7 EKF-0 (assuming SCUD-C launch) and EKF-1 (assuming SCUD-B launch) innovations process in a case of a SCUD-C launch; staring radar.

The last result bears a special signi� cance because the implemen-
tation of the SPRT in this case is based on the innovations process
as computed by the two � lters.

3. Search Radar
In this case the launch location and the launch azimuth angle

are unknown, as in the earlier case. The time from launch until
target acquisition t0 is assumed to be uniformly distributedover the
interval [0; 3] s. The statistical moments of the initial state vector
are summarized in Tables 2 and 3. The process noise intensity used
in this case is Qst.t/ D 0.

Figure 8 shows the estimationperformanceof EKF-0 in a typical
case,wherethemissile launchedis SCUD-C. In thisparticularexam-
ple, the TBM was launched3 s before acquisition,while the estima-
tor assumed initially that t0 D 0 s. Excellentestimation performance
is demonstratedfor allestimatedstatevariables,includingthe launch
time. On the other hand, Fig. 9 shows the performance of EKF-1
in the same case. Because this � lter’s model (assuming SCUD-B)
does not match the true system’s state (correspondingto SCUD-C),
this � lter divergesin almost all state variables,as couldbe expected.

B. Monte Carlo Simulation Results
To statistically assess the performance of the method, a 600-run

Monte Carlo simulation study (300 runs for each TBM) was con-
ducted in both the staring radar and the search radar cases. In each
of these cases, the associated unknown TBM launch parameters
(launch location, azimuth angle and time) were randomly sampled
from their assumed respective distributions.

Table 3 Covariance of initial state vector

diagfP.0/g entry Staring radar Search radar

Px .0/, m2 106 106

Py .0/, m2 106 106

Pz.0/, m2 104 104

Pv.0/, m2/s2 0 0
PÂ .0/, deg2 0 100
P° .0/, deg2 100 ——
Pt0 .0/, s2 —— 0.75
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1. Nominal Performance
The � rst phaseof the simulationassumed nominal parameters for

the TBM’s mathematicalmodel (i.e., no parameteruncertainty). The
resulting mean identi� cation times and the observed error rates are
shown in Table 4. In both cases, the observederror rates differ from
their corresponding predetermined values. This can be explained
by noting that the SPRT is driven by the innovations process as
computed by the EKF; thus, the identi� cation time and the error

a) x, y, z

b) v, Â, t0
Fig. 8 EKF-0 estimation performance for a SCUD-C launch; search radar: ——, estimation error; , 1-¾ envelope (as computed by the � lter).

Table 4 Monte Carlo simulation study results
with nominal parameters

Observed performance Staring radar Search radar

SCUD-C mean identi� cation time (s) 13.2 14.7
SCUD-B mean identi� cation time (s) 15.6 15
Observed false-alarm rate 0 0.0033
Observed missed-detection rate 0.017 0.01
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a) x, y, z

b) v, Â, t0
Fig. 9 EKF-1 estimation performance for a SCUD-C launch; search radar: ——, estimation error; , 1-¾ envelope (as computed by the � lter).

rates depend, to some extent, on proper � lter tuning. Also, as could
be expected, the identi� cation times have almost doubled relative
to the complete information case. The identi� cation times for the
search radar case, where the launch time is unknown, are not sig-
ni� cantly different than those for the staring radar case, where the
launch time is assumed known. This can be attributed to the high ac-
curacy of the state estimators used and, in particular, to the accurate
estimation of the launch time.

2. Performance in the Presence of Parameter Uncertainty
In the second phase of the Monte Carlo simulation, some uncer-

tainty was assumed in the TBM’s mathematicalmodel main param-

eters. This case was run to analyze the sensitivity of the proposed
identi� cation algorithms to variations in the underlyingmathemati-
cal model.When missile parameteruncertaintiesare considered,the
identi� cation problem becomes more dif� cult because the feasible
missile trajectory envelopesbecome very similar. Thus, it becomes
more dif� cult to statistically distinguish between the missiles, and
it can be expected that the mean identi� cation times will be longer
(because more measurements are required to reach a statistically
signi� cant decision in the presence of uncertainty).

Variationsin the followingparameterswere assumed:initialmass,
mass reduction rate, drag coef� cient, and TBM acceleration com-
mand. Monte Carlo simulation runs were performed where these
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Table 5 3-¾ variations in TBM model parameters

Parameter Variation, %

m0 , kg 4
Pm, kg/s 4
cd 15
aC

n , m/s2 15

Table 6 Process noise intensity matrix
diagonal entries (uncertain parameters)

Intensity entry Staring radar Search radar

qx , m2 /s 0 4000
qy , m2 /s 0 490
qz , m2/s 0 90
qv , m2/s3 8.1 0.9
qÂ , deg2 /s 10¡3 0
q° , deg2/s 0 ——
qt0 , s —— 0

Table 7 Monte Carlo simulation study results
with parameter uncertainty

Observed performance Staring radar Search radar

SCUD-C mean identi� cation time (s) 21.8 21.5
SCUD-B mean identi� cation time (s) 18.7 20.5
Observed false-alarm rate 0.027 0.04
Observed missed-detection rate 0.033 0.02

parameters were sampled from uniform distributionsover intervals
centered about the nominal parameter values. The 3-¾ values of
these distributions are summarized in Table 5.

To enable the EKF to deal with parameter uncertainties,its band-
width was increased. This was done by using the process noise
intensity matrix given in Table 6.

Monte Carlo simulations of 300 launches for each TBM re-
sulted in the mean identi� cation times and observedfalse-alarmand
missed-detectionratesas shownin Table7. As couldbe expected,the
mean identi� cation times in the presence of parameter uncertainty
are longer, and the error rates are increased relative to the nominal
case. Nevertheless, the overall performance of the method is still
acceptable in both staring and search radar cases, with relatively
small error rates (albeit larger than the predetermined thresholds)
even in the presence of modeling errors.

V. Conclusions
The problem of decidingbetween two theater ballisticmissiles in

an uncertain environment using a minimal number of radar mea-
surements was addressed. Decision algorithms based on Wald’s
SPRT were developed for several scenarios of increasing complex-
ity. When the missiles’ models, as well as their launch location
and time, are completely known, the SPRT works directly with the
raw measurements. In more practical scenarios, when some of the
launch parameters are unknown, the identi� cation algorithms use
the innovations processes, computed by extended Kalman � lters,
to drive the SPRT. A Monte Carlo simulation study was used to
demonstrate the performanceof the proposedalgorithms.When the
launch parameters are completely known, the observed false-alarm
and missed-detection rates are identical to the prespeci� ed proba-

bility values. In more practical cases, where the launch parameters
are partially or completely unknown, the identi� cation times and
the observed error rates depend on proper � lter tuning, as could
be expected. Nevertheless, the simulation study demonstrates the
method’s viability and robustness, with mean identi� cation times
of about 20 s, correspondingto error rates of a few percent, even in
the presence of considerablemissile parameter uncertainty.

As a � nal note, it should be emphasized that although this paper
hasaddressedthe problemofdistinguishingbetweenjust two theatre
ballisticmissiles,more complex problems, involvingmore than two
missiles, can be handled similarly using extensions of the methods
presented herein. Such extensions can be based on M-ary SPRT
techniques that have been introduced in the literature.
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