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A new health and usage monitoring methodology for detection and identification of damage in a helicopter rotor is presented.
A full-scale rotor analysis in forward flight has been carried out using a detailed model of the coupled blade-fuselage behavior.
Several rotor component faults, as well as local blade stiffness defects are considered. A set of Kalman filters is constructed,
where the calculated blade tip response, in addition to elastic modes, comprises a state vector. In the proposed approach, each
filter is based on the assumption that a particular fault has occurred. The best fitting model, according to measurements taken
from the truth model, is determined in a probabilistic manner. In the numerical study used to demonstrate the performance
of the method, two sets of noisy measurements are generated. The first set is based on blade tip sensors, and the second set
consists of non-rotating hub loads. A Monte-Carlo analysis followed by a statistical experiment enables a comprehensive
view of the statistical nature of the results. A parametric study is presented and conclusions concerning the detectability of
damage in a helicopter rotor and the efficiency of the proposed method are drawn.

Introduction

The detection of damage as a part of self health and usage monitoring
system (HUMS) in structural systems is an important contributor to their
safety, reliability and structural integrity. Early damage detection has the
potential of reducing life cycle costs and increasing replacement time
intervals. If damage is located and monitored, then components of the
structure may be replaced before a critical point is reached and a dan-
gerous failure occurs. Particularly, the components of a helicopter rotor
are subjected to high periodic loads and expected to perform under harsh
environmental conditions. These factors, combined with the absence of
redundant load paths, frequently result in early replacement of structural
components, therefore causing an increase in maintenance costs.

One class of damage detection methods in which damage is seen as a
change in the parameters of a structural model is based on modal infor-
mation (Refs. 1–7). Typically, modal-based damage detection methods
use a finite element model of the system combined with experimen-
tal modal data to determine damage location and extent. The effect of
cracks on the natural frequencies of a cantilever beam is demonstrated
in Refs. 3–4. These cracks were modeled using rotational springs with
equivalent stiffness. Since natural frequencies change very slightly as
crack size and location varies, the addition of noise, not treated in these
studies, would significantly decrease the identification capability.

In Ref. 5 the changes in mode shape due to the presence of structural
damage were determined. A finite element model with a reduction of
the modulus of elasticity in a prescribed segment was implemented. It
was shown that the elastic rotation undergoes a step jump in value when
crossing the damage location, while the displacement parameter takes a
change in its slope.
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An eigenstructure assignment technique for damage detection in ro-
tating structures is demonstrated in Ref. 6. The damage is simulated by a
10% loss of mass and stiffness in the damaged element. A test case with
noise contaminated mode shapes is also presented. An extension of this
algorithm for rotating helicopter blades accounting for hovering aerody-
namics is presented in Ref. 7. The blade’s aerodynamics is incorporated
as a damping term in the structural dynamics of the blade. The damage
is shown to be properly characterized when flapping modes are used.
However, the algorithm presented is based on a least-squares estimation
procedure which might be inaccurate in some cases.

Another approach for damage detection in beam structures described
in the literature uses a subspace rotation algorithm (Ref. 2). This method
views damage location and damage extent as two different problems
requiring two separate solutions. In this approach, damage is manifested
as changes in the mass, damping and stiffness matrices of the structure.
Strain sensors were used, therefore, a method for extracting displacement
frequency responses from strain data was presented. This study shows
that higher-order vibration modes are required to locate damage events.
In addition, condensation methods can not be used to remove rotational
degrees of freedom because of their strong coupling with translation
degrees of freedom.

Several studies, in addition to Ref. 7, have been published concerning
damage detection in helicopters (Refs. 8–11). In these works, a model
of a rotor combined with a rigid fuselage is utilized to simulate typi-
cal main rotor components faults. The model results are then inserted
as inputs to a neural network in order to complete the training stage.
The network’s detection capability is demonstrated using another set of
a priori calculated model results (validation data), and is tested in several
cases including noise corrupted inputs. The results shown in these studies
indicate that for a network trained on ideal data alone, miss-identification
begins even in the presence of low levels of noise (as low as 2%) in the
validation data. However, the network trained on noisy data generates
no classification error for noise less than 10% and relatively small error
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at even higher noise levels. The results also demonstrate that good per-
formance is achieved for relatively large damage levels (for example, an
approximately 20% pitch link stiffness reduction). This emphasizes the
importance of training the neural network using noisy data. The main
drawback of the noisy input training procedure is the large amount of
data needed to appropriately handle the stochastic nature of these inputs.
This method also lacks the flexibility to easily accommodate a change
in helicopter model parameters (i.e., c.g. locations, moments of inertia,
aerodynamic coefficient changes, etc.) after the training stage.

In Ref. 12 a coupled elastic rotor-fuselage helicopter model is pre-
sented and its results are compared with flight test data. The analysis is
based on fuselage vibration measurements. All of the faults considered
in this work were found to increase the 1/rev vibration. The analysis was
able to capture the trend of vibration amplitude, however, the phasing of
the vibration was not predicted accurately. Moreover, a fault detection
methodology is not described in the above study.

The current status of HUMS is reviewed in Refs. 13–17. Via an analy-
sis of its vibration diagnostic capabilities, Ref. 13 shows HUMS to be an
effective maintenance tool. A wide range of faults of gearboxes, shafts,
bearings and tail rotors have been detected using vibration monitoring.

The HUMS described in Ref. 14 is composed of two major compo-
nents. The first is the on-board system, which provides rotor trim and
balance, drive train monitoring and engine checks. These functions are
based on vibration measurements. The second component is the ground
station, which provides diagnostic/prognostic and maintenance require-
ments. The validation of the open system approach (Ref. 14) is described
in Ref. 15. Five modules from a diverse set of manufacturers compose
the system.

A comparison of aircraft usage based on the original predicted flight
spectrum and a HUMS measured aircraft usage is described in Ref. 16.
In this work a ground-based system is described and utilized. Overall,
results indicate an increase in component life based on HUMS, although
torsional fatigue load components resulted in a decreased life time. In
addition, a small cost benefit is also gained.

A composite flexbeam as a part of a rotor system is investigated in
detail in Ref. 17. Piezoceramic sensors are placed on the top and bottom
surfaces. Various damage detection methods are compared.

In the present study, the damage detection methodology is based on the
multiple-model adaptive estimation (MMAE) approach. This algorithm,
as opposed to other published methods, treats process and measurement
noise inherently, and, therefore, is more suitable to account for the mod-
eling errors and noisy environment of a helicopter rotor. In the MMAE
method various rotor component faults and levels are considered, where
each case is adequately represented by a finite element model. A Kalman
filter is tuned according to each model and the best fitting one is de-
termined in a probabilistic manner based on noisy measurements. Since
the MMAE approach is inherently model-based, it is, like all model-
based methods, sensitive to the fidelity of the mathematical model used.
However, as a preliminary study shows, (Ref. 18) this sensitivity can be
handled quite effectively using process noise compensation within the
Kalman filters comprising the MMAE filter bank.

Previous studies concerning a rotating blade and a fixed shaft rotor in
vacuum have been reported in Ref. 19. Results have clearly demonstrated
high damage detection and identification capability. In addition, an ex-
tensive parametric study was carried out, giving insight on the influence
of various parameters. Crack detection in helicopter main rotor elastic
blades, including aerodynamic effects, is discussed in Ref. 20. Results
indicate that detecting a local stiffness defect, representing a crack, us-
ing blade tip response measurements, is very difficult due to the small
changes between the damaged and undamaged models. However, a well
designed statistical experiment enables high detection probabilities com-
bined with low false alarm rates. Rotor component fault identification is

discussed in Ref. 21. Various sensor and fault types are considered, and
the performance of the proposed approach is presented.

In this paper, a fixed-shaft helicopter rotor, as well as the case of a free,
trimmed forward flight are discussed. Several faults are introduced using
a detailed analytical model of the helicopter. Various sensor types are
utilized including measurement noise. The proposed algorithm perfor-
mance is demonstrated, combined with useful suggestions to overcome
some damage detection difficulties. This approach eliminates the need
for a training stage, which characterizes FDI (Fault Detection and Identi-
fication) algorithms based on neural networks. Two additional important
features of the proposed approach are 1) inherent treatment of process
noise, which facilitates handling unmodeled inputs and model parameter
uncertainties, and 2) statistically optimal filtering of measurement noise,
that turns out to be much more efficient than commonly used averaging
techniques. Each one of the filters is based on a model of the dynamic
system. This contributes to the flexibility of the algorithm, by allowing
to perform frequent changes and updates in the models. Another key
advantage of the proposed FDI algorithm is the judgment and decision
making process, which is optionally left to the human operator, due to
the probabilistic nature of the results.

The paper is organized as follows. The next section describes in detail
the adaptive estimator algorithm adopted for fault detection and identifi-
cation. This is followed by a brief description of the development of the
helicopter structural model. The results of an extensive simulation study
are then presented. First, the case of a fixed-shaft rotor with component
faults is introduced. The proposed algorithm capabilities are discussed
for several sensor types and measurement noise levels. This is followed
by a forward flight analysis, where rotor component faults are identified
using fuselage vibration sensors. Then, the case of a local stiffness de-
fect in elastic blades is discussed. Finally, conclusions concerning the
efficiency and robustness of the proposed approach are drawn.

Multiple-Model Adaptive Estimation

In various estimation problems, specifically in damage detection
cases, uncertain parameters exist within the system model used for al-
gorithm design. Typically, these parameters can undergo large jump
changes. Such problems give rise to the need for estimation of parameter
values simultaneously with estimation of state variables. One means of
accomplishing this is the multiple model adaptive estimation technique
(Refs. 22, 23). The system is assumed to be adequately representable by a
linear stochastic state model, with uncertain parameters affecting the ma-
trices defining the structure of the model or the noise distribution model.
It is further assumed that the parameters can take only discrete values.
When the parameters belong to a continuous space, discrete represen-
tative values have to be chosen within this parameter space. A Kalman
filter is then designed for each choice of parameter value, resulting in a
bank ofK separate filters. Based on the residuals of each one of theseK
filters, the conditional probabilities of each discrete parameter value be-
ing “correct” (given the measurement history to that time) are evaluated
recursively. This procedure is summarized in Fig. 1.

Following the development presented in Refs. 23 and 24, consider the
system model described by the first-order, linear, stochastic differential
state equation of the form

ẋ(t) = F(a, t)x(t)+G(a, t)w(t)+ B(a, t)u(t), (1)

with noisy measurements described by the discrete time equation

zk = Hk(a)xk + vk (2)

wherex(t) is the system state vector andu(t) is the control vector.xk

and zk are the state and measurement vectors at the discrete timetk,
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Fig. 1. The MMAE procedure.

respectively. It is assumed that the process noise vector,w(t), and the
discrete measurement noise vector,vk, are independent, zero-mean, white
Gaussian noise processes with covariances

E{w(t)wT (s)} = Q(t)δ(t − s) (3)

and

E{v(ti )vT (t j )} = R(ti )δi j , (4)

whereδi j is Kronecker’s delta function. Moreover,a is a vector containing
the structural damage effects,F(a, t) is the dynamics matrix,G(a, t) is the
process noise distribution model,B(a, t) is the control matrix andHk(a)
is the measurement matrix at timetk. In the case of a discrete stochastic
state propagation model, Eq. (1) is replaced by the following equation:

xk+1 = Φk+1,k(a)xk + wdk +Ψk+1,k(a)uk. (5)

Assuming that the dynamic system is quasi-stationary, the following re-
lations hold:

Φk+1,k(a) = eFk(a)1t (6)

Ψk+1,k(a) = Bk(a)1t, (7)

where1t is the discretization time interval. In Eq. (5),wdk is the equiv-
alent discrete time process noise vector with the covariance

E{wd(ti )wd
T (t j )} = Qd(ti )δi j (8)

whereQd(ti ) is calculated using the relation

Qd(ti ) = GkQkGT
k1t. (9)

Sincea may assume a continuous range of values over the space of al-
lowable parameters, it is necessary to discretizea into a set ofJ vector
values:a1, a2, . . . ,aJ . A multiple model adaptive estimator consists of
J independent Kalman filters, in which thej th filter is constructed ac-
cording to a specific parameter valuea j . TheseJ filters form a bank
of elemental filters which are processed in parallel. Each elemental fil-
ter produces its own estimate of the true state, denoted asx̂ j (ti ), for the
j th hypothesized value ofa. The residuals of allJ elemental filters are
then used to calculate the probability thata assumes the valuea j at time
ti , for j = 1, 2, . . . , J. This probability is called the “hypothesis condi-
tional probability” and is denoted aspj (ti ). This conditional probability
represents the validity of thej th filter’s system model at timeti . The hy-
pothesis conditional probabilitiespj (ti ), j = 1, 2, . . . , J, are calculated
at each sample timeti , by the recursive equation

pj (ti ) =
fz(ti |a,Z(ti−1))(zi |a j ,Z i−1)pj (ti−1)∑J

k=1 fz(ti |a,Z(ti−1))(zi |a j ,Z i−1)pk(ti−1)
(10)

whereZ i−1 is the measurement history from the first sample time until
sample timeti−1, and

fz(ti |a,Z(ti−1))(zi |aj , Zi−1)

= 1

(2π )S/2|A j (ti )|1/2 exp

{
−1

2
r T

j (ti )A−1
j (ti )r j (ti )

}
(11)

whereS is the number of sensors. Thej th filter residual vector is

r j (ti ) = z(ti )− H j (ti )x̂ j (t
−
i ), (12)

where x̂ j (t
−
i ) is the j th filter-predicted state estimate. Thej th filter-

computed residual covariance matrix,A j (ti ), is calculated as

A j (ti ) = H j (ti )P j (t
−
i )HT

j (ti )+ R j (ti ), (13)

whereP j (t
−
i ) is the j th filter prediction error covariance. The residual

of the j th filter plays a major role in determiningpj (ti ). As is evident
from Eq. (10), the filter with the smallest value ofr T

j (ti )A−1
j (ti )r j (ti ) as-

sumes the largest conditional hypothesis probability. Thus, this algorithm
is consistent with the intuition that the residuals of a well-matched filter
should be smaller (relative to the filter’s internally computed residual
covariance,A j ) than the residuals of a mismatched filter. To allow the
estimator to adapt to the changing parameter value, the hypothesis con-
ditional probabilities are artificially bounded below by a small number,
taken in this study to be 0.0005. This ensures preventing any of them
from converging to zero, which would make it very difficult for them to
change significantly in response to a subsequent change in true parameter
value.

Structural Model

The full-scale rotor analysis has been carried out using the software
package RAPID (Ref. 25), which is capable of modeling general ro-
torcraft configurations, conventional helicopters and tilt-rotors. RAPID
may handle nonuniform and dissimilar blades and is therefore suitable
to the current task. Both rigid and elastic blade analyses are possible.
Blade elasticity is modeled using a built-in model based analysis for
structurally pretwisted spars. This analysis enables including the blade’s
axial, lead-lag, flap and twist elastic deformations, designated byu, v,
w andφ, respectively. The model also includes fully articulated blades
with arbitrary pitch, flap and lag offsets, root springs and dampers, and a
detailed control system mechanism (swashplate, elastic pitch links, pitch
horn, etc.), which enables a study of faults in these components.

The package RAPID enables a nonlinear solution of the helicopter
equations of motion, derived with symbolic exactness. When conver-
gence is achieved, the small perturbation equations are generated around a
working point (or trim state). The global periodic mass, damping and stiff-
ness matrices, denotedM (a, t), C(a, t) andK (a, t), respectively, com-
bined with the transformation to a first-order state equation, are used to
construct the continuous dynamics matrix,F(a, t) (see Eq. (1)) as follows:

F(a, t) =
[

0 I

−M (a, t)−1K (a, t) −M (a, t)−1C(a, t)

]
. (14)

The control matrixB(a, t) is given by

B(a, t) =
[

0 0

0 −M−1

]
. (15)

In this work it is assumed that only one fault occurs. For the case of
rigid articulated blades, the following component faults are investigated:
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pitch-link damage, lag damper defect, friction in pitch bearing and mois-
ture absorption. The case of a local damage in hingeless elastic blades is
also considered. The damage detection algorithm consists of 5 different
models running in parallel: four damaged rotor models, along with the
baseline undamaged one.

Damage Identification Logic

The fault detection and identification (FDI) process is carried out
during 5 rotor revolutions (approximately 1 sec) in which all the 5 models
run in parallel. Detection based on a 5-rev. time interval, designated astp,
is termed, in this study, single-run detection process. The decision logic
is based on calculating the fitness probability for each of the models over
an inspection time interval (designated astd), which includes only the
last revolution. Letpj (ti ) denote the hypothesis conditional probability
of the j th model at a discrete timeti , andqj refer to the fitness probability
of the j th model. Then

qj =
∑

t∈td
pj (t)∑J

k=1

∑
t∈td

pk(t)
. (16)

Let qmax be defined as

qmax
4= max

j∈{1,2,...,J}
{qj }. (17)

The model associated withqmax is said to describe the true damaged
behavior in the best manner.

In order to provide a better view of the statistical nature of the results,
a Monte-Carlo analysis (Ref. 26) is carried out, where the same damaged
case is repeated, however with different noise values. The Monte-Carlo
procedure continues until the identification probability of the model,
found to be the most fitting, converges. In any case, an upper limit of 150
Monte-Carlo runs is set. This procedure results in estimated probability
values for the single-run process. When the true case is the case of no
damage, the single-run false alarm rate, designated bypFA, is calculated.
Single-run detection and identification probabilities result for each one
of the cases where a fault occurs. These probabilities are designated by
pD and pI , respectively.

Control of Error Probabilities

The overall false alarm and detection probabilities can be controlled
using a well designed statistical experiment. LetH0 and H1 denote the
hypotheses of “no damage” and “damage”, respectively. Assume thatN
is the total number of single-run repetitions andn is the number of runs
in which damage was detected. A decision criterion is defined as

n
H1
>=
<
H0

nD (18)

wherenD is a predetermined threshold. When the true undamaged case
is not detected, a false alarm results (type I error). The associated false
alarm probability is calculated using the expression

PFA
4= P(H1|H0) =

N∑
i=nD

(
N

i

)
pi

FA(1− pFA)N−i . (19)

When true damage is not detected, a missed detection (or type II error)
occurs. The probability associated with this case is calculated as follows:

PMD = 1− PD
4= P(H0|H1) =

nD−1∑
i=1

(
N

i

)
(1− pD)i pN−i

D . (20)

A detector operating characteristics plot, showingPD vs PFA, can be
constructed. Using this plot, the total number of runs and the threshold
level can be tuned to achieve an overall low false alarm rate combined with
a high detection probability, according to some specified requirements.

Simulation Study

An extensive numerical simulation study was carried out to analyze
and demonstrate the performance of the proposed FDI method. In this
study, various rotor component faults were investigated, using various
kinds of measurements. For conciseness, not all simulation study results
are presented herein. The interested reader is referred to Ref. 18 for a
detailed description.

Tip response measurements

Consider a typical full-scale articulated two-bladed fixed-shaft ro-
tor with rigid blades, whose properties are listed in Table 1. Forward
flight conditions at advance ratioµ= 0.3 were simulated including trim
commands.

A parametric study was carried out, investigating the influence of
various damage levels, for the faults mentioned in the previous section,
combined with several noise levels. As mentioned above, only one fault
may occur in one of the blades. Five damage levels were examined (ex-
cept for the lag damper fault which has only 3 damage levels), each with
five noise levels. The noise levels presented in the following figures are
dimensional, where displacement noise is measured in meters and pitch
angle noise is measured in radians. The measurements taken are tip re-
sponse of the two blades (tip flap and lead-lag displacements along with
the tip pitch angle).

Pitch link damage is manifested as a stiffness reduction caused by a
crack. The damage spectrum includes five levels which vary from 10%
stiffness reduction to 30%. Lag damper damage is modeled by reducing
the damping coefficient by 50%, 60% and 68% (lead-lag stability margin).
Pitch bearing friction is modeled by an increase in the pitch damping
coefficient at the blade root. Five levels are considered: an increase by
a factor of 4 up to a factor of 8. Moisture absorption (for the case of a
composite blade) is manifested by an increase in the blade mass per unit
length, from 2% mass increase up to 4% (five levels).

The performance of any FDI algorithm is based on differences be-
tween the various damaged cases under consideration. These differences
are usually manifested in the matrices defining the dynamic response of
the system (the mass, damping and stiffness matrices). Incipient struc-
tural faults cause small changes to appear in several components of the
system’s dynamic matrices, therefore, producing a slightly different struc-
tural response—known as the fault signature. Most of the FDI methods
exploit these signatures for damage detection and identification. When
using a filtering algorithm, as described in this work, the changes in the
system matrices transform to differences in the dynamics matrixF(a), as

Table 1. Rotor properties

Parameter Value

Radius 7.1 m
Chord 0.76 m
Blade twist angle −9◦

Baseline pitch link stiffness 106 N/m
Baseline lead-lag damper 3000 N-m-s
Baseline pitch damper 10 N-m-s
Mass per unit length 20 Kg/m
Angular velocity 34 rad/s
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(a) Tip flap differences∆w

(b) Tip lead-lag differences∆v

Fig. 2. Blade tip response differences.

discussed previously. An example of several fault signatures, treated as
measurement differences, is presented in Fig. 2. The tip flap displacement
difference is shown in Fig. 2(a), and Fig. 2(b) shows the lead-lag displace-
ment differences. The differences are calculated for all damaged models
with respect to the baseline undamaged tip response. Clearly, pitch-link
damage results in a relatively large response difference and is, there-
fore, expected to be highly detectable. However, the lag damper damage
causes hardly any difference in the observables, suggesting detection
difficulties.

Figures 3–6 show the single-run probability contours, estimated using
a Monte-Carlo analysis consisting of a maximum of 150 runs. Figure 3
presents the detection and identification probability contours for a pitch
link fault, respectively. The relatively high probability values indicate
that this fault is highly detectable and identifiable. Moreover, a low noise
level combined with a high damage level produce better detection and
identification results, as can be expected. An interesting phenomenon
is revealed where the detection probability decreases as the noise level
increases, until a certain point where the former starts to increase. The
reason is that for high noise levels, the differences between the models
are masked by the noise, rendering similar probabilities (around 0.2)
to all the models. Therefore, the detection probability, consisting of the

(a) Detection probability

(b) Identification probability

Fig. 3. Pitch link damage detection and identification performance.

probability sum of all 4 damaged models, tends to the theoretical value
of approximately 0.8. This phenomenon is demonstrated in Figs. 4(a),
5(a) and in Fig. 6(a) as well.

Figure 4 shows the probability contours for the lag damper damage.
Clearly, this damage case is less detectable. As seen from the figures, the
detection and identification probabilities are not sensitive to the damage
level. This is because relatively small lag damping values exist even in
the undamaged case. Figure 5 shows the probability contours for the
pitch friction case. As shown, this fault is also relatively easy to detect
and identify. Figure 6 shows the probability contours for the moisture
absorption case. This type of fault is somewhat less detectable than the
pitch link and pitch friction cases.

Figure 7 presents the false alarm rate contours. Since all 5 models
are included, at each damage level, all 4 faulty models assume the corre-
sponding damage value. For example damage level 1 means 10% pitch
link stiffness reduction, 50% lag damping reduction, pitch friction in-
crease of a factor of 4 and 2% mass increase due to moisture absorption.
For high noise levels the false alarm probability approaches 0.8, as the-
oretical analysis predicts.

A statistical experiment composed of several repetitions of a single-
run process enables some control on the overall false alarm and detection
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(a) Detection probability

(b) Identification probability

Fig. 4. Lag damper damage detection and identification performance.

probabilities. The results of such an experiment depend on the single-
run value of pFA and pD, as discussed in the previous section. As an
example, the case of lag damper damage (50% lag damping reduc-
tion) is considered. In this case, in order to achieve reasonable single-
run false alarm and detection probabilities, only a very low noise level
is allowed. Figure 8 shows two examples: in the first case, shown in
Fig. 8(a), a low noise level (σ = 10−4 m) is considered, and the single-
run probabilities,pFA and pD, assume the values 0.1 and 0.8, respec-
tively. Clearly, the number of repetitions (N) needed for low false alarm
and high detection rates is not large (N ≈ 5). For a higher noise level,
where pFA and pD assume the unacceptable values of 0.4 and 0.5, re-
spectively, as demonstrated in Fig. 8(b), a much larger number of runs
is needed (N≈ 400), but, still, reasonable values ofPF A andPD can be
achieved.

Let the required overall false alarm and detection rates assume ac-
ceptable representative values of 0.05 and 0.95, respectively. Using the
above statistical experiment, the number of repetitions (N) can also be
presented as contours, for each fault under consideration. For example,
the contour lines in Fig. 9 correspond to the smallest values ofN required
to meet those rates in the moisture absorption fault.

(a) Detection probability

(b) Identification probability

Fig. 5. Pitch friction detection and identification performance.

Non-rotating hub load measurements

Consider the same rotor as in the previous section. In this case, only
one damage level is considered, which consists of 5% stiffness reduc-
tion for the pitch link damage, 68% lag damping reduction, pitch friction
which results in a pitch damping increase of factor 1.5, and 0.5% mass
increase for the moisture absorption case. Note that all these damage lev-
els are lower than the levels presented in the previous section. Moreover,
a much higher measurement noise level is induced, with standard devi-
ations of 1 KN and 1 KN-m for the force and moment measurements,
respectively.

Fault signature examples, represented here as load differences of each
of the damaged cases under consideration with respect to the undamaged
case loads, are shown in Fig. 10. Figure 10(a) demonstrates the normal-
ized hub force differences in the lateral direction (1Fy), and Fig. 10(b)
shows the normalized pitching moment differences (1My). The mois-
ture absorption case clearly results in larger differences, indicating high
detectability. The other damage cases produce load differences bounded
by±1σ of the noise.

The single-run identification probability time histories, for the vari-
ous damage cases, are shown in Fig. 11. These results indicate that the
model associated with the highest probability is indeed the correct one.
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(a) Detection probability

(b) Identification probability

Fig. 6. Moisture absorption detection and identification performance.

Fig. 7. False alarm rate.

(a) Experiment results for a noise level ofσ= 10−4 m

(b) Experiment results for a noise level ofσ= 10−3 m

Fig. 8. Detector operating characteristics examples.

Fig. 9. Required number of runs to meet 0.05/0.95 false alarm/
detection probabilities. Moisture absorption fault.
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(a) Normalized lateral force differences∆Fy/W

(b) Normalized pitching moment differences∆My/Q

Fig. 10. Non-rotating hub load differences.

Moreover, during the decision time intervaltd, the probability results are
quite decisive, suggesting that a Monte-Carlo analysis is not needed. The
high probability values (≈1) indicates that the statistical experiment is
also unnecessary.

Fuselage vibration measurements

Consider the same rotor as in the previous section. In this case also,
only one damage level is considered, consisting of 5% stiffness reduc-
tion for the pitch link damage, 68% lag damping reduction, pitch fric-
tion which results in a pitch damping increase of factor 1.5 and 0.5%
mass increase due to moisture absorption. The FDI algorithm is based
on fuselage vibration measurements in trimmed forward flight. Vibra-
tion levels are measured in 3 locations on the fuselage (assumed to be
rigid), where 2 directions are considered in each location: pilot seat—
vertical and lateral directions, wing tip—vertical and longitudinal, and
hub—lateral and longitudinal. Accelerometers are used as sensors, where
the noise standard deviation, in this study, is 0.007g. Two vibration dif-
ferences, measured at the pilot seat, are shown in Fig. 12, as an exam-

Table 2. Monte-Carlo FDI results

True Fault Identified Fault ID Probability

No damage No damage 0.69
Pitch link damage Pitch link damage 0.99
Lag damper damage Lag damper damage 0.99
Pitch friction Pitch friction 0.68
Moisture absorption Moisture absorption 0.99

ple. Figure 12(a) demonstrates the vertical vibration differences (1az)
and Fig. 12(b) shows the lateral vibration differences (1ay), both mea-
sured ing. The moisture absorption case clearly results in larger dif-
ferences, due to high vibration levels caused by the rotor mass imbal-
ance. These large differences indicate high detectability for this type of
fault. The pitch friction fault, as shown in Fig. 12, is expected to be less
detectable since the vibration differences, caused by this type of fault,
are quite small. This a priori statement is confirmed by the following
results.

Table 2 summarizes Monte-Carlo results, which indicate good identi-
fication capability for the pitch link, lag damper and moisture absorption
faults. The case of the pitch friction fault, as seen before in Fig. 12, is
hard to detect due to the lack of sufficient vibration signature. Therefore,
this fault model mixes with the undamaged baseline model, causing, on
the one hand, detection problems, and, on the other, a relatively high
false alarm rate. The same phenomenon was also observed with the lag
damper fault detection based on blade tip response measurements.

Hub load measurements

Consider a hingeless fixed shaft rotor with elastic blades, with
the properties listed in Table 1. The blade beamwise and chord-
wise stiffnesses and torsional rigidity areE Ib= 7.6× 104 Nm2,
E Ic= 12× 105 Nm2 andG J= 8.6× 104 Nm2, respectively. The blade
local damage, discussed in this section, is a crack at a specific location
along the span. This crack is simulated by reducing the stiffnesses (bend-
ing stiffnesses and torsional rigidity) at a particular finite element in the
blade structural model, as illustrated in Fig. 13. In this study, the damage
intensity is modeled by a 5% stiffness reduction. Hub loads are mea-
sured with additive measurement noises having standard deviations of
1 KN and 1 KN-m for the force and moment measurements, respectively.
Four filters are constructed, based on 4 models in which the damage
locationx, measured from the hub, assumes 4 discrete normalized val-
ues:x/R= 0.15, 0.35, 0.55, 0.75. The 5th filter simulates the undamaged
case. The true damage, also simulated as a 5% stiffnesses reduction, oc-
curs at the discrete locationsx/R= 0.1, 0.2, 0.3 . . .0.9. (Note that the
true location is never identical to one of the modeled locations).

Figure 14 shows an example of the damaged case load differences with
respect to the undamaged loads. As could be expected, damage located
near the root results in the largest difference. As the damage location
approaches the tip, the differences diminish.

Table 3 summarizes Monte-Carlo results, which indicate good iden-
tification capabilities. In most cases, the model corresponding to damage
location closest to the true location is indeed assigned the highest fit-
ness probability. The case where the true damage occurs near the tip
(x/R= 0.9) results in a missed detection. As can be expected, this case
constitutes a very difficult problem and requires special treatment.

In passing, some remarks are in order concerning the use and
implementability of the proposed new FDI method.

Remark 1. An important issue with all model-based methods is
sensitivity to modeling uncertainties. In practice, it can be expected that
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Fig. 11. Single-run identification probability time history. td is the inspection interval.

Table 3. Monte-Carlo identification results

True Damage Identified Identification
Location Location Probability

No damage No damage 0.99
0.1 0.15 0.99
0.2 0.15 0.99
0.3 0.35 0.91
0.4 0.35 0.89
0.5 0.55 0.63
0.6 0.55 0.99
0.7 0.75 0.99
0.8 0.75 0.97
0.9 No damage 0.90

some variations will exist between (undamaged) production blades. This
gives rise to the question of how well can the proposed method cope with
structural modeling uncertainties. Recent results, presented in Ref. 18,
show that the proposed FDI algorithm provides good performance even

when some variations are applied to some of the system parameters (up
to 20% variation was implemented in the study presented in Ref. 18).
These variations may also represent the case of undamaged, but slightly
different blades.

Remark 2. In many recently published studies (Refs. 27–29), as well
as in existing HUMS reports (Ref. 30), the measurement noise is treated
through averaging. In the case of rotating machinery (as is the case of a
helicopter rotor), the input signals are periodic, where the averaged cy-
cle is calculated using all the response cycles up to a specific time point.
Assuming the noise to have zero mean and varianceσ 2, combined with
the assumption that the measurements are independent and identically
distributed, the variance of the sample mean, denoted byσ̄ 2, decreases
according toσ̄ 2= σ 2/N, where N is the sample size. Therefore, as the
number of cycles, used to calculate the average cycle, is increased, the
noise level is decreased. Since noise is not treated inherently when fil-
tering algorithms are not used, or in non-model based methods, this
noise reduction technique is applicable. However, the averaging process
introduces measurement correlation in time, since the averaged cycle
depends upon all the previous signal cycles. This is contradictory to the
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(a) Vertical vibration differences ∆az

(b) Lateral vibration differences ∆ay

Fig. 12. Pilot seat vibration differences.

Fig. 13. A damaged elastic blade.

basic filtering assumption of white measurement noise. Hence, noise av-
eraging cannot be implemented with filters without the use of proper
techniques to deal with colored measurement noise (Ref. 31). Since the
proposed MMAE approach uses model information to filter the noisy
measurements, it is plausible that it should be able to decrease the esti-
mation error variance much faster than the decrease rate of non-model
based simple averaging, rendering the required number of cycles needed
for correct damage identification significantly smaller.

(a) Normalized lateral force differences∆Fy/W

(b) Normalized pitching moment differences∆My/Q

Fig. 14. Non-rotating hub load differences.

Conclusions

A model-based damage detection algorithm for a helicopter rotor, us-
ing an adaptive estimation technique, incorporating noisy measurements,
is presented. The coupled blade-fuselage dynamic behavior is introduced
using the RAPID package where finite element model of the blade is uti-
lized. A set of Kalman filters is constructed to simulate various rotor
faults. The proposed method also enables sensors of various types to be
implemented.

The algorithm presented constitutes a new approach towards damage
detection in mechanical systems. Contrary to other model-based damage
detection methods in helicopter rotors, such as methods based on neural
networks, this approach requires no training stage. Moreover, the algo-
rithm treats measurement and process noise inherently, accounting for
the noisy rotor environment and modeling uncertainties. Combined with
the model-based feature, the proposed algorithm eliminates the need for
a training stage and enables a wide range of flight regimes. The dam-
age detection capability is tested in various cases. In general, for low
noise levels, this approach produces excellent results. The illustrative
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rotor faults considered in this work demonstrate several levels of de-
tectability. Pitch link damage was found to be highly detectable, for all
sets of measurements considered. This emerges from the relatively high
response sensitivity to pitch changes. On the contrary, lag damper dam-
age was hard to detect using blade tip response measurements, since
small damping values are present. Lag damping changes, in this case,
have a small effect on the overall rotor response. The detectability of
this type of damage was shown to increase significantly using hub load
measurements. Pitch friction was hard to detect using fuselage vibra-
tions, due to the lack of significant vibration signature. Blade moisture
absorption detectability is also quite high. In cases of poor single-run per-
formance, the suggested statistical experiment enables sustaining a low
false alarm rate combined with a high detection capability. The case of a
blade local stiffness defect was also investigated. It was shown that, us-
ing noisy hub load measurements, this approach is capable of detecting,
and, in most cases, correctly locating small stiffness changes along the
span.

The significant advantage of the proposed approach arises from the
filtering process enabling probabilistic determination based on relatively
little information. Introducing an external excitation in this case would
probably increase damage detectability since the transient system re-
sponse will provide additional information.
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