
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 25, No. 6, November–December 2002

Adaptive Estimation Methodology for Helicopter
Blade Structural Damage Detection
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A new, multiple model approach for detection and identi� cation of structural damage in a rotating helicopter
blade is presented. A full-scale rotor analysis using a detailed model of the hingeless blade elastic behavior and
dynamics is carried out. Several stiffness damage levels and locations are considered, and a set of Kalman � lters is
constructed accordingly. The best � tting model is determined in a probabilistic manner. Because the new method
is model-based, the need for a training stage is eliminated, and a wide range of � ight regimes can be handled.
Moreover, process and measurement noises are treated inherently, contributing to the superiority of the method
over previously published related methods. A Monte Carlo simulation study is used to provide a comprehensive
analysis of the statistical nature of the method. Single-blade analysis results demonstrate excellent identi� cation
capability and good damage detection in the presence of a relatively high level of noise. The case of damage located
near the blade’s root combined with a sensor near the tip produces a high damage identi� cation probability. In
less detectable cases, such as damage located in midspan, a simple statistical procedure enables achieving a high
detection probability along with a low false alarm rate.

Nomenclature
A j = j th � lter residual covariance matrix
a = vector of unknown parameters (fault in� uence)
B = continuous-timecontrol matrix
F = continuous-timestate transition matrix
G = continuous-timeprocess noise distribution model
H = measurement matrix
N = number of single-run repetitions
n = number of runs where damage was detected
nd = predetermined threshold
P = � lter error covariance matrix
PD = overall detection probability
PFA = overall false alarm probability
p = probability
pD = single-run detection probability
pFA = single-run false alarm probability
Qd = discrete-time process noise covariance matrix
q = � tness probability
R = measurement noise variance matrix
r = residual vector
u = control vector
v = measurement noise vector
w = process noise vector
wd = equivalent discrete-time process noise vector
x = state vector
xd = damage location along the blade’s span (measured

from root)
xs = sensor location along the blade’s span (measured

from root)
Ox j = j th � lter predicted state estimate
Zi = measurement history from the � rst sample until

sample time ti

Presented as Paper 2000-4569 at the AIAA Guidance, Navigation, and
Control Conference, Denver, CO, 14–17 August 2000; received 13 August
2001; revision received 22 July 2002;accepted for publication24 July 2002.
Copyright c° 2002 by the authors. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0731-5090/02 $10.00 in
correspondence with the CCC.

¤Graduate Student, Department of Aerospace Engineering.
†Associate Professor, Department of Aerospace Engineering; yaakov.

oshman@technion.ac.il. Associate Fellow AIAA.
‡Associate Professor, Department of Aerospace Engineering; aeromri@

aerodyne.technion.ac.il.

z = measurement vector
H = mode shape matrix
» = vector of elastic mode participating factors
U = state transition matrix
W = control matrix

I. Introduction

T HE detection of damage as a part of self-health monitoring in
structural systems is an important contributor to their safety,

reliability, and structural integrity. Early damage detection has the
potential of reducing life-cycle costs and possibly increasing re-
placement time intervals. If damage is located and monitored, then
components of the structure may be replaced before some critical
point is reached and a dangerous failure occurs.

Cracks found in structural elements have various causes. One
form of crack is caused by fatigue and takes place under service
conditions as a result of the limited fatigue strength. Cracks may
also appear due to mechanical defects or manufacturing processes.
Cracks present a serious threat to proper performance, and most
failures of presentlyused equipment are due to material fatigue.For
this reason, methods enabling early detection and localization of
cracks have been the subject of many studies.1¡6

One approach for damage detection in beam structuresdescribed
in the literature is based on using a subspace rotation algorithm.1

This method views damage location and damage extent as two dif-
ferent problems requiring two separate solutions. In this approach,
damage is manifested as changes in the mass, damping, and stiff-
ness matrices of the structure. Strain sensors were used; therefore,
a method for extracting displacement frequency responses from
strain data was presented. This study shows that higher-order vi-
bration modes are required to locate damage events. In addition,
condensationmethods cannot be used to remove rotational degrees
of freedom because of their coupling with translation degrees of
freedom.

Another class of damage detection methods in which damage is
seen as a change in the parameters of a structural model is based
on modal information. Typically, modal-based damage detection
methods use a � nite element model of the system combined with
experimental modal data to determine damage location and extent.
The effect of cracks on the natural frequencies of a cantilevered
beam is demonstrated in Ref. 2. In their study, the authors assumed
that the cracks occur in the � rst mode of fracture, that is, the crack
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opening mode. These cracks were modeled using rotational springs
with equivalentstiffnesses.The natural frequencieswere calculated
by solving the beam’s de� ection partial differential equation with
the appropriateboundary conditions at the crack locations.The po-
sitions of two cracks in relation to each other, in addition to the
changes in crack depths, were shown to affect the beam’s natural
frequencies. However, only the � rst mode was shown, and no in-
formation was given regarding the effect of the cracks relative to
an undamaged beam. The work presented in Ref. 3 also applies a
rotational spring to model the crack when the crack is open. The
crack parameters (size and location) are to be extracted by exam-
ining two crack signatures calculated by subjecting the beam to
harmonic loading at two frequencies that would excite the � rst and
second modes. These crack signatures are calculated using Fourier
transforms of the displacement at a speci� c point along the beam
and are shown to be very small. Because natural frequencieschange
very slightly as crack size and location varies, the addition of noise,
not treated in this work, would signi� cantly decrease the identi-
� cation capability. In Ref. 4, the changes in mode shape due to
presence of structural damage were determined. A � nite element
model with reductions of the modulus of elasticity in prescribed
segments was implemented. It was shown that the elastic rotation
undergoes a step jump in value when crossing the damage location,
whereas the displacementparameter takes a change in its slope. An
eigenstructureassignment technique for damage detection in rotat-
ing structuresis demonstratedin Ref. 5. The damage is simulatedby
a 10% loss of mass and stiffnessin the damagedelement.The eigen-
vector that best approximates the damaged eigenvector is obtained,
and the angle between these two vectors is evaluated. This process
is repeated for every one of the modes considered.A test case with
noise-contaminatedmode shapes is also presented.An extension to
this algorithm for rotating helicopter blades accounting for hover-
ing aerodynamics is presented in Ref. 7. The blade’s aerodynamics
is incorporated as a damping term in the structural dynamics of the
blade. The damage is shown to be properlycharacterizedwhen � ap-
ping modes are used. However, the algorithm presented is based on
a least-squares estimation procedure, which can prove to perform
poorly in some cases.

In the present study, the damage detection methodology is based
on the multiple-model approach. In this method, various damage
locations and levels are considered, where each case is adequately
represented by a � nite element model. A Kalman � lter is tuned ac-
cording to each model, and the best � tting one is determined in a
probabilisticmanner based on noisy displacementor velocity mea-
surements. This approach eliminates the need for a training stage
that characterizes other methods, like the fault detection and iden-
ti� cation (FDI) algorithms based on neural networks. Additional
important features of the proposed approach are the inherent treat-
ment of process noise, which enables the inclusion of modeling
uncertainties, as well as the � ltering of measurement noise, which
is done in a manner much more ef� cient than averaging techniques
commonly used. That each one of the � lters is based on a model of
the dynamic system contributesto the � exibilityof the algorithmby
allowing a direct access to perform frequent changes and updates
in the models. Another key advantage, using the proposed FDI al-
gorithm, is the judgment and decision-making process, which is
optionally left to the human operator due to the probabilisticnature
of the results.

The remainder of this paper is organized as follows: In the next
section, a detailed discussion of the multiple-model adaptive es-
timation (MMAE) approach, adopted as an FDI methodology, is
presented. This is followed by a formulation of the blade model
used in the present analysis. A damage identi� cation decision logic
is also presented to complete the FDI algorithm. Several numerical
studiesare shown, includinga case of a singlebladeand a full-scale,
� xed-shaft rotor, followed by concluding remarks.

II. MMAE
In various estimation problems, speci� cally in damage detection

cases, uncertain parameters exist within the system model used for
algorithm design. Typically, these parameters can undergo large
jump changes. Such problems give rise to the need for estimation

of parameter values simultaneously with estimation of state vari-
ables. One means of accomplishingthis is the MMAE technique.8;9

The system is assumed to be adequately representable by a lin-
ear stochastic state model, with uncertain parameters affecting the
matrices de� ning the structure of the model or the noise distribu-
tion model. It is further assumed that the parameters can take only
discretevalues. In caseswhere continuousparameter values are pre-
sented, representativediscrete values have to be chosen throughout
the continuous range of possible values. A Kalman � lter10 is then
designed for each choice of parameter value, resulting in a bank
of K separate � lters. Based on the residuals of each one of these
K � lters, designated r j for the j th � lter [see Fig. 1 and Eq. (14)]
the conditionalprobabilitiesof each discrete parameter value being
“correct” (given the measurementhistory to that time) are evaluated
recursively. Note that the estimated j th � lter state vector Ox j is not
used in this damage detection application.

Following the developmentpresented in Refs. 9 and 11, consider
the system model described by the � rst-order, linear, stochastic dif-
ferential state equation of the form

Px.t/ D F.a; t/x.t/ C G.a; t/w.t/ C B.a; t/u.t/ (1)

with noisy measurements described by the discrete time equation

zk D Hk.a/xk C vk (2)

where x.t/ is the system state vector and u.t/ is the control vector.
Here, xk and zk are the state and measurementvectors at the discrete
time tk , respectively. It is assumed that the process noise vector
w.t/ and the discrete measurement noise vector vk are independent,
zero-mean, white Gaussian noise processes with covariances

Efw.t/wT .s/g D Q.t/±.t ¡ s/ (3)

E
©
v.ti /vT .t j /

ª
D R.ti /±i j (4)

where ±i j is Kronecker’s delta function, a is a vector containing
the structural damage effects, F.a; t/ is the state transition matrix,
G.a; t/ is the process noise distributionmodel, B.a; t/ is the control
matrix, and Hk .a/ is the measurement matrix at time tk . In the case
of a discrete stochastic state propagation model, Eq. (1) is replaced
by the following equation:

xk C 1 D U k C 1;k .a/xk C wdk C W k C 1;k .a/uk (5)

Assuming that the dynamicsystemis quasi-stationary,the following
relations hold:

U k C 1;k .a/ D eFk .a/1t (6)

W k C 1;k .a/ D Bk .a/1t (7)

where

Fk .a/ D F.a; t/ jt D tk (8a)

Bk .a/ D B.a; t/ jt D tk (8b)

Fig. 1 MMAE procedure ( Ãxj and rj are the jth � lter state estimate and
residual vectors, respectively).
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and 1t is the discretizationtime interval.Then, wdk is the equivalent
discrete-time process noise vector with the covariance

E
©
wdi w

T
d j

ª
D Qdi ±i j (9)

where Qdi is calculated using the relation

Qdi D Gi Q.ti /GT
i 1t (10)

where

Gk.a/ D G.a; t/ jt D tk (11)

Because a may assume a continuous range of values over the
space of allowable parameters, it is necessary to discretize a into
a set of J vector values: a1; a2; : : : ; aJ . An MMAE consists of J
independentKalman � lters, in which the j th � lter is constructedac-
cording to a speci� c parameter value a j . These J � lters form a bank
of elemental � lters that are processed in parallel. Each elemental
� lter produces its own estimate of the true state, denoted as Ox j .ti /,
for the j th hypothesizedvalue of a. The residualsof all J elemental
� lters are then used to calculate the probability that a assumes the
value a j at time ti , for j D 1; 2; : : : ; J . This probability is called
the “hypothesis conditional probability” and is denoted as p j .ti /.
This conditionalprobabilityrepresents the validityof the j th � lter’s
system model at time ti . The hypothesis conditional probabilities
p j .ti /; j D 1; 2; : : : ; J , are calculated at each sample time ti , by the
recursive equation

p j .ti / D
fz[ti ja;Z .ti¡1/].zi ja j ; Zi¡1/p j .ti¡1/

PJ
k D 1 fz[ti ja;Z.ti¡1 /].zi ja j ; Zi¡1/pk .ti¡1/

(12)

where Z.ti ¡ 1/ is the measurementhistory from the � rst sample time
until sample time ti ¡ 1 , and

fz[ti ja;Z .ti ¡ 1/].zi ja j ; Z i ¡ 1/

D
£
1
¯

.2¼/S=2jA j .ti /j
1
2
¤

exp
©
¡ 1

2 rT
j .ti /A¡1

j .ti /r j .ti /
ª

(13)

where S is the number of sensors. The j th � lter residual vector is

r j .ti / D z.ti / ¡ H j .ti /Ox j

¡
t¡
i

¢
(14)

where Ox j .t
¡
i / is the j th � lter predictedstate estimate. The j th � lter-

computed residual covariance matrix A j .ti / is calculated by

A j .ti / D H j .ti /P j

¡
t¡
i

¢
HT

j .ti / C R j .ti / (15)

where P j .t
¡
i / is the j th � lter prediction error covariance. The

residual of the j th � lter plays a major role in determining p j .ti /.
As is evident from Eq. (12), the � lter with the smallest value
of rT

j .ti /A¡1
j .ti /r j .ti / assumes the largest conditional hypothesis

probability.Thus, this algorithm is consistentwith the intuition that
the residuals of a well-matched � lter should be smaller (relative
to the � lter’s internally computed residual covariance A j ) than the
residuals of a mismatched � lter. To allow the estimator to adapt
to the changing parameter value, the hypothesis conditional proba-
bilities are arti� cially bounded below by a small number, taken in
this study to be 0.0005. This ensures preventing any of them from
converging to zero, which would make it very dif� cult for them
to change signi� cantly in response to a subsequent change in true
parameter value. The MMAE procedure is summarized in Fig. 1.

III. Blade Model
A. Blade Elements

To use the multiple-modelapproach just presented, the structural
model of a rotating blade must � rst be determined. The develop-
ment of a � nite element (FE) model of an Euler–Bernoulli beam in
bending, representing the blade, follows.

A blade element is shown in Fig. 2. At each end there are two
local degrees of freedom, one for vertical translation w and one
for rotation µ , resulting in a total of four degrees of freedom per

Fig. 2 Damaged blade model.

element. The structural model representative of a blade element
with no damping must, therefore, comprise a 4 £ 4 mass matrix
and a 4 £ 4 stiffness matrix that couple the vertical translationsand
rotations. For a uniform i th blade element, the elemental mass and
stiffness matrices are as follows12:
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where

Ji D
NX

j D i

¸ j ` j

¡
x2

j C 1 ¡ x2
j

¢
(18)

and ¸i is the i th element mass per unit length, .E I0/i is the i th
element undamaged stiffness, xi is the i th element position (� rst
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node location, see Fig. 2), and `i is the i th element length. These
elementalmatrices can be assembled into globalmatrices represent-
ing the entire blade, where coef� cients of the elemental matrices of
one blade element are added to the coef� cients of the elemental
matrices of another blade element that shares a common node. The
global mass, damping, and stiffness matrices, denoted M.a/, C.a/,
and K.a/, respectively, are used to construct the continuous state
transition matrix, F.a/ [see Eq. (1)] as follows:

F.a/ D
µ

0 I

¡M.a/¡1K.a/ ¡M.a/¡1C.a/

¶
(19)

B. Calculation of the Reduced Stiffness
Consider a cracked section of the blade, illustrated in Fig. 2.

The calculation of the reduced stiffness of the cracked portion of
the blade is based on concepts of linear elastic fracture mechanics
and Castigliano’s theorem (see Ref. 2). The potential energy of the
crackedsectionof the bladecan be regardedas the sum of a potential
energythatwould exist in an undamagedstateand an additionalterm
due to the presence of the crack:

V D V0 C Vc (20)

The angle of rotation is expressed using Castigliano’s theorem as
follows:

µ
4D

@V0

@ M
C

@Vc

@ M
D µ0 C µc (21)

The potential energy associated with the crack is evaluated by inte-
grating the energy release rate over the crack area

Vc D
Z

A

1

2
¾ " dA D

Z ab

0

K 2
I

E
dA (22)

where K I is the stress intensity factor for mode I and b is the blade
width. Combination of Eqs. (21) and (22) gives an expressionof µc

in terms of K I ,

µc D
Z ab

0

2

E
K I

@ K I

@ M
dA (23)

The stress intensity factor, which depends on the type of loading,
can be expressed as follows:

K I D .6M=bh2/
p

¼aF.a=h/ (24)

where

F.a=h/ D 1:122 ¡ 1:4.a=h/ C 7:33.a=h/2

¡ 13:08.a=h/3 C 14.a=h/4 (25)

where a is the crack length and h is the blade thickness (see Fig. 2).
Substituting Eqs. (25) and (24) in Eq. (23) and integrating yields

µc D .72¼ M=Ebh2/F1.a=h/ (26)

where

F1.a=h/ D 19:6.a=h/10 ¡ 40:693.a=h/9 C 47:04.a=h/8

¡ 32:993.a=h/7 C 20:294.a=h/6 ¡ 9:975.a=h/5

C 4:602.a=h/4 ¡ 1:047.a=h/3 C 0:629.a=h/2 (27)

From Eq. (27), it is evident that this formulation is valid only for
small cracks because F1.a=h/ has a � nite value for a=h D 1. It is
also assumed that the blade’s response is symmetric for a symmetric
excitation.The angle of rotation of the cracked section of the blade
is, therefore, given by

µ
4D M`=E Ic D M`=E I0 C .72¼ M=Ebh2/F1.a=h/ (28)

which yields

E Ic

E I0
D

1

1 C 6¼.h=`/F1.a=h/
(29)

Fig. 3 Cracked element stiffness to baseline stiffness ratio vs crack
intensity: s , h/` = 0.001; ¤, h/` = 0.01; ¦, h/` = 0.1; M, h/` = 1; q , h/`
= 10; and ¤, h/` = 100.

where ` is the section length. The cracked element stiffness to base-
line stiffness E Ic=E I0 , as a function of the crack intensity a=h and
the blade thickness to element length ratio h=`, is shown in Fig. 3.
Evidently, to describe correctly that damage caused by a crack is a
local phenomenon, the ratio h=` must be suf� ciently large; there-
fore, re� nement of the element meshing is essential near the crack.

Remark 1: Although the present study assumes that the dam-
aged blade’s response is symmetric for symmetric excitation, non-
symmetric response can be handled by the proposed FDI method
as well. Note, however, that modeling the blade’s response in the
nonsymmetriccase would be signi� cantlymore complex than in the
symmetric case discussed herein.

IV. Damage Identi� cation Decision Logic
The damage detection algorithm consists of � ve different mod-

els running in parallel: four damaged blade models along with the
baselineundamagedblade model. These models are designatedas 0
for the baseline model and 1–4 for the damaged blade models. The
modeled damage, re� ected by reduced stiffness values, is assumed
to be located at one of four equally spaced spanwise locations, that
is, elements 3, 7, 11, or 15. The true damage may occur at 10 equally
spaced elements along the blade, that is, elements 2, 4, 6; : : : ; 20.
Note that the true damage location is not congruent with the � lter
locations. Therefore, one of this study’s objectives is to verify that
the � lter with the closest damage location (the most suitable to de-
scribe the true damaged blade behavior) indeed receives the highest
probability.

The damage detection process, which is based on a detection
time interval, designated as tp , is termed, in this study, a single-run
detection process. The decision logic is based on calculating the
� tness probabilityfor each of the models over a decision time inter-
val (designated as td ). Let p j .ti / denote the hypothesis conditional
probability of the j th model at a discrete time ti [see Eq. (12)], and
let q j refer to the � tness probability of the j th model. Then,

q j D

P
t 2 td

p j .t/
PJ

k D 1

P
t 2 td

pk.t/
(30)

Let qmax be de� ned as

qmax
4D max

j 2 f1;2;:::; J g
fq j g (31)

The model associatedwith qmax is said to describe the true damaged
behavior in the best manner. Because there are 11 possible loca-
tions of the true damage (zero means no damage), and 10 different
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sensor locations, the total number of cases inspected equals 110.
Although measurement noise is � ltered, the possibility of getting
different identi� cation results while examining the same damaged
case still exists due to the stochastic nature of the noise. To provide
a better view of the statistical nature of the results, a Monte Carlo
analysis is carried out, where the same damaged case is repeated,
albeit with different noise values. For each one of the possible 110
cases, the Monte Carlo procedure continues until the identi� cation
probability of the model, found to be the most � tting, converges.
In any case, an upper limit of 150 Monte Carlo runs is set. This
procedure results in estimated probability values for the single-run
process.When the true case is the case of no damage, the single-run
false alarm rate, designated by pFA, is calculated.Single-run detec-
tion and identi� cation probabilities result for each one of the cases
where a fault occurs. These probabilities are designated by pD and
pI , respectively.

V. Statistical Experiment
The overall false alarm and detection probabilities can be con-

trolled using a well-designed statistical experiment. Let H0 and H1

denote the hypothesesof “no damage” and “damage,” respectively.
Assume that N is the total number of single-run repetitions and n
is the number of runs in which damage was detected. A decision
criterion is de� ned as follows:

n

H1
>D
<
H0

nd (32)

where nd is a predetermined threshold. When the true undamaged
case is not detected, a false alarm results (type 1 error). The false
alarm probability is calculated using the following expression:

PFA
4D P.H1jH0/ D

NX

i D nd

³
N

i

´
pi

FA.1 ¡ pFA/N ¡ i (33)

When true damage is not detected, a missed detection (or type 2
error) occurs. This probability is calculated as follows:

PMD D 1 ¡ PD
4D P.H0jH1/ D

nd ¡ 1X

i D 1

³
N

i

´
.1 ¡ pD/i pN ¡ i

D (34)

A detector operating characteristics plot, showing PD vs PFA, can
be constructed. With this plot, the total number of runs and the
threshold level can be tuned to achieve an overall low false alarm
rate combined with a high detection probability.

VI. Simulation Study
The detection and identi� cation capabilities of the proposed

method are demonstrated through two test cases of a deformed ro-
tating blade: an elastic � apping blade in vacuum and a full-scale
rotor with � ap, lead-lag, and twist elastic motions.

A. Elastic Flapping Blade
Consider a rotatingcantileveredblade in vacuum, with properties

as listed in Table 1. A schematic representation of the damaged
blade is shown in Fig. 2. The blade is divided into 20 equally spaced
elements. The baseline damaged case consists of a crack with a

Table 1 Blade properties

Parameter Value

Radius R 6.7 m
Chord c 0.39 m
Thickness h 3.9 cm
Baseline stiffness E I0 2:3 £ 104 N ¢ m2

Mass per unit length ¸ 6.05 kg/m
Damping coef� cient ³ 0.01
Number of elements N 20

ratio a=h of 0.2. A modal analysis is then carried out by applying
the transformation

xk D H .a/»k (35)

where H .a/ is the modal shape matrix for a given damaged case.
The blade’s equation of motion, represented by

M.a/Rx C C.a/Px C K.a/x D u.t/ (36)

now becomes

NM.a/ R» C NC.a/ P» C NK.a/» D Nu.t/ (37)

where

NM.a/
4D H .a/T M.a/ H .a/ (38a)

NC.a/
4D H .a/T C.a/ H .a/ (38b)

NK.a/
4D H .a/T K.a/ H .a/ (38c)

Nu.t/
4D H .a/T u.t/ (38d)

NM.a/, NC.a/, and NK.a/ are the generalizedmass, damping, and stiff-
ness matrices for a given damaged case, respectively, and Nu.t/ is
the generalized control vector. These generalizedmatrices are used
to calculate the discrete-time state transition matrix U k C 1;k using
Eqs. (19) and (6) and the control matrix W k C 1;k using Eq. (7).
The original, discrete-time state vector xk , which includes the � -
nite element degrees of freedom, is transformed to a new state

Fig. 4 Performance measures.
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Fig. 5 Performance measures; model of damage at tip eliminated.

vector »k , which comprises the modal participation factors. Sub-
stituting Eq. (35) into Eq. (2) ensures that the measurements are
kept displacement/rotations in nature, although the state vector is
transformed.The � rst � ve modal shapes of both the baselineand the
damaged cases are calculatedand used in each � lter’s discreteprop-
agation and updating equations. The main advantage of this modal
representation arises from the signi� cantly reduced model size, al-
lowing smaller (and, therefore, faster) � lters to be implemented.

The noisy measurement information is based on one sensor lo-
cated at one of 10 equally spaced possible nodes along the blade.
The sampling frequency is 20 Hz. In each of the possible cases a
t p D 4 s detection time interval is given to the multiple-modelidenti-
� cation algorithm, of which the last td D 1 s comprises the decision
time interval. The single-run detection and identi� cation capabil-
ities are demonstrated in Figs. 4–8. In these cases, the � rst mode
of the blade is excited by an initial tip de� ection (initial velocity
is zero), where the only external load comes from the blade’s own
weight. The measurement taken is a single vertical displacement
at one of the FE nodes. The measurement noise standard deviation
equals 0.5 mm.

In Fig. 4, three single-runperformancemeasures of the proposed
detection and identi� cation algorithm are examined: false alarm,
missed detection,and false identi� cation rates, all presentedvs sen-
sor locationalong the blade. False alarm rate is de� ned as the proba-
bilityof detectingdamagewhennodamageoccurs.Misseddetection
is the probabilityof obtainingthe output“no damage”when damage
indeed occurs along the blade. The probability of false identi� ca-
tion is de� ned, in this study, as the probabilityof correctlydetecting
the presence of damage, albeit in a wrong location. As seen from
Fig. 4, the false alarm rate is fairly high even in cases where the

Fig. 6 Detector operating characteristics for the case of a tip damage
and tip sensor.

Fig. 7 Damage identi� cation results for baseline case.

sensor is located near the tip. This phenomenon can be explained
by considering that two of the � lters, in this particular damage de-
tection problem, have small, even insigni�cant, differencesbetween
them, namely, the � lter representingdamage close to the blade’s tip
and the undamaged one. Because damage close to the tip causes no
signi� cant changes in displacement, the differences in the residuals
of these two � lters fade away when noise is present. Thus, in some
cases, the true undamaged case is identi� ed incorrectly as damage
near the tip. To demonstrate the precedingassumption, the � lter rep-
resenting damage near the tip was removed from the bank of � lters.
Now, as seen fromFig. 5, the false alarmratedecreasessigni� cantly.
However, the missed detectionrate of damage near the tip increases
because no model represents this case adequately. Concluding this
discussion, it is evident that the case of damage near the tip is less
observableandshouldbe treatedseparatelyusingadditionalmodels.

A statistical experiment composed of several repetitions of a
single-run process enables some control on the overall false alarm
and detection probabilities. The results of such an experiment de-
pendon pFA and pD , as discussed in Sec. V. As an example, consider
the problematic case of a damage close to the tip (x=R D 0:9) along
with a sensor located at the tip (xs =R D 1). As seen from Fig. 4, the
single-run false alarm rate and detection probability correspond to
unacceptablevalues of 0.27 and 0.48, respectively.Figure 6 is a de-
tector operating characteristicsrepresentation,showing the number
of repetitionsN neededalongwith theappropriatethresholdlevelnd

to achievereasonableoverallfalse alarmand detectionprobabilities.
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For example, choosing N D 50 and nd D 19 gives an overall false
alarm rate of 0.06 and a detection probability of 0.95.

The shaded areas in Figs. 7 and 8 comprise all of the cases in
which the true damage was identi� ed. (This is the case where the
model associatedwith qmax representsdamagelocationclosest to the
true damage location.)The � rst column (zero damage location)rep-
resents the no-damage case. Let p denote the probability of correct
identi� cation for a speci� c damage and sensor locations,de� ned as
p 4D Nc=NMC, where Nc corresponds to the number of Monte Carlo
runs in which correct identi� cation was achieved and NMC is the
total number of Monte Carlo runs. Three levels of con� dence are

a/h = 0.05

a/h = 0.1

a/h = 0.2

a/h = 0.3

a/h = 0.4

Fig. 8 Damage identi� cation results for several damage intensities.

shown, each one corresponding to an interval of values of p. Let
Nqmax.xd ; xs/ be de� ned as

Nqmax.xd ; xs/
4D

»
qmax correct identi� cation achieved

0 no identi� cation (39)

Then, the percentage given in Fig. 7, and also later on, is given by

true identi� cation D

P1

xd D 0

P1

xs D 0:1 Nqmax.xd ; xs /

110
(40)



1056 ALKAHE, OSHMAN, AND RAND

Fig. 9 Rotating blade tip response to � rst mode excitation (³ = 0.1).

where xd is the damage location and xs refers to the sensor location.
As shown in Fig. 7, damage located close to the � xed end of the
blade is more observable. Moreover, a sensor located close to the
tip also enhancesdetection capability.This results from the fact that
damage near the � xed end has the most signi� cant in� uence on the
vertical displacementsalong the beam. In addition, the noise level is
kept constant; therefore, the signal-to-noise ratio decreases toward
the � xed end, preventing correct identi� cation. The identi� cation
of “inboard damage” (i.e., damage located inboard relative to the
sensor) is of higher quality and reliability.On the other hand, detec-
tion of “outboarddamage” (i.e., damage locatedoutboardrelative to
the sensor) is more complicated due to the relatively little informa-
tion contributed inboard by a crack compared with the information
contributed outboard. In some cases, however, outboard damage is
detecteddue to small differencesin modal shapes between the dam-
aged models and the undamaged baseline case. Also, during the
short blade’s transient response time, dynamic effects may become
signi� cant, so that outboard damage detectability is achieved.

A parametric study was carried out, investigating the effects of
variousparametersunderconsideration.13 Figure8 demonstratesthe
effect of increased damage level. As can be expected from before,
the detection capability increases as the damage level increases.
Typically, sensors located near the tip give the best results. Small
cracks can be detected using this algorithm only when located near
the � xed end of the blade. Large cracks are easily detected even
when the sensor is located inboard relative to the crack location.

The case of a rotating blade excited by an initial tip de� ection
(equal to the excitation in the baseline case) was also examined.13

Here, the tip displacement initial condition is identical for all ex-
amined cases. However, the steady-state displacement depends on
the speci� c angular velocity. Hence, the initial to steady-state dis-
placement ratio increaseswith increasedangular velocity, as shown
in Fig. 9. (The blade’s structural damping ³ is increased to 0.1 to
demonstrate the aforementionedeffect.) This enhances the damage
detection capability. On the other hand, the blade’s angular veloc-
ity contributes to the total stiffness (as shown in Fig. 10), hence,
causing a decrease in the settling time, allowing the � lters less time
to perform the identi� cation process. The results in Ref. 13 show
that damage detection capability decreases as the blade’s angular
velocity increases.

B. Full-Scale, Fixed-Shaft Rotor
Consider a full-scale cantilevered two-bladed � xed-shaft rotor in

vacuum with blade properties listed in Table 2. A deformed can-
tilevered blade is schematically presented in Fig. 11. In this case,
three elastic modes are considered: the � rst beamwise (� ap) bend-
ing mode, the � rst chordwise (lead-lag) bending mode, and the � rst
twist mode. Here, the damage is manifested as a 10% reduction in
both the beamwise and the chordwise stiffnesses, as well as in the
torsional rigidity, at a speci� c blade element. The rotor analysis has

Table 2 Rotor properties

Parameter Value

Radius R 8.2 m
Chord c 0.53 m
Beamwise stiffness E Ib 7:62 £ 104 N ¢ m2

Chordwise stiffness E Ic 1:72 £ 105 N ¢ m2

Torsional rigidity G J 8:57 £ 104 N ¢ m2

Tensile stiffness AE 2:97 £ 109 N
Mass per unit length ¸ 10 kg/m
Angular velocity Ä 27 rad/s

Fig. 10 Normalized modal stiffness vs blade angular velocity.

Fig. 11 Deformed elastic blade.

been carriedoutusing the softwarepackageRAPID/Plus,14 which is
capableof modeling general rotorcraft con� gurations,conventional
helicopters, and tilt rotors. RAPID/Plus may handle nonuniform
and dissimilar blades and is, therefore, suitable to the current task.
Both rigid and elastic blade analyses are possible. Blade elasticity
is modeled using a built-in modal-based analysis for structurally
pretwisted spars. This analysis enables including the blade’s ax-
ial, lead-lag, � ap, and twist elastic deformations, designated by u,
v, w, and Á, respectively. The software package also enables the
inclusion of fully articulated blades (not used in this study) with
arbitrarypitch, � ap, and lag offsets; root springs and dampers; and a
detailed control system mechanism (swashplate, elastic pitch links,
pitch horn, etc.), which enables future study of faults in these com-
ponents. Although it is assumed, in this study, that the undamaged
blades are identical, it is by no means a necessary condition. The
ability to handle dissimilar blades may also be used to model an
undamaged case with nonidentical blades.

The equations of blade motions are derived using RAPID/Plus.14

The system matrices are then utilized for constructing the bank of
Kalman � lters. In this case, the damaged models are spread along
the blade as stated earlier in Sec. VI.A; however, the damage is
assumed to occur only in one of the blades, designated as blade 1.
Moreover, the models account for damage only in blade 1.

Three measurements are taken at a speci� c node along blade 1,
two velocity components (vertical and horizontal), and one angular



ALKAHE, OSHMAN, AND RAND 1057

Fig. 12 Performance measures, case of a full-scale damaged rotor:
——, no damage; ², damage at x/R = 0.3; s , damage at x/R = 0.6; and
¤, damage at x/R = 0.9.

Fig. 13 Rotor damage identi� cation results.

velocity (pitch rate). The measurement noise standard deviation is
§0:1 m/s for velocity and §0:1 rad/s for angular velocity. (These
values correspond to a signal-to-noiseratio of 10 for measurements
takenat the blade’s tip.) For this case, four rotor revolutionsare taken
as the detection time interval, whereas the decision time is the last
revolution. Figure 12 shows the single-run three performance mea-
sures de� ned earlier, whereas Fig. 13 shows the single-rundamage
identi� cation results. As demonstrated in Figs. 12 and 13, damage
detectability using the proposed method is fairly high at most sen-
sor locations. The high false alarm rate, for sensors located near
the blade’s root, originates from the relatively low signal-to-noise
ratio (10 at tip, less than 10 inboard) adopted in the present results.
Here also, as demonstrated in Sec. VI.A, the use of a statistical ex-
periment enables improving the overall false alarm and detection
probabilities by choosing an appropriate number of repetitions N
and threshold level nd .

In passing, some remarks are in order concerning the use and
implementability of the proposed new FDI method.

Remark 2: In practice, it can be expected that some variationswill
exist between (undamaged)productionblades. This gives rise to the
question of how well the proposed method can cope with structural
modeling uncertainties. Recent results, presented in Ref. 13, show
that the proposed FDI algorithm provides good performance, even

when some variationsare applied to some of the system parameters.
(Up to 20% variation was implemented in the study presented in
Ref. 13.)Thesevariationsmay also representthecaseof undamaged,
but slightly different, blades.

Remark3: The computersimulationsperformedduring thecourse
of this study have proved that the new method can be implemented
in real-time using current computer technology.

Remark 4: The noise levels used in the computer simulations
were very conservative. In practice, lower noise levels are ex-
pected, allowing prediction of even better detection and identi� -
cation performance.

VII. Conclusions
A model-based damage detection algorithm for rotating blades,

using an adaptive estimation technique, incorporating noisy mea-
surements, is presented. When rotary mechanical systems are con-
sidered, the algorithm presented constitutes a new application of
the adaptive estimation approach, to the best of the authors’ knowl-
edge. The damage detection capability is tested in various cases.
In general, for low noise levels, this approach provides excellent
damage identi� cation results. For the case of a � apping only blade,
it is shown that, typically, a sensor located near the blade’s tip gives
the best results. In some cases, when several modes are excited,
a sensor located inboard relative to the crack location contributes
valuable information, thus enhancing the detection capability. The
results for the case of a full-scale rotor clearly indicate good dam-
age detectability, even in the presence of a relatively high level of
noise. The proposed method enables various types of rotor faults
and sensors to be implemented.

Only cantilevered blade results are presented in this paper. How-
ever, the methodology presented herein is not limited to this partic-
ular type of blade. In fact, the same methodology is expected to be
adequate for the analysis of other types of rotor blades as well.
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